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Abstract

In this paper we consider the problem of maxi-
mizing sum rate on a multiple-antenna downlink in
which the base station and receivers have multiple-
antennas. The optimum scheme for this system was
recently found to be \dirty paper coding". Obtaining
the optimal transmission policies of the users when
employing this dirty paper coding scheme is a com-
putationally complex non-convex problem. We use a
\duality" to transform this problem into a convex mul-
tiple access problem, and then obtain a simple and fast
iterative algorithm that gives us the optimum trans-
mission policies.

1 Introduction
There has been a great interest in characterizing

and computing the capacity region of downlink chan-
nels in recent years. An achievable region was found
by [6], and this achievable region was shown to be sum
rate optimal in [6, 2, 9, 10].

Unfortunately, the characterization of the region in
[6] leads to a non-convex non-linear optimization prob-
lem that is diÆcult to solve, and hence obtaining the
optimal rates and transmission policies of each user is
computationally complex. Note that, in the single an-
tenna case, although the problem is still non-convex,
it simpli�es to only the best user transmitting at any
time instant. Such a policy is, however, not the op-
timal policy in the multiple antenna case. A dual-
ity technique presented in [8, 2] transforms the non-
convex downlink problem into a convex sum power

uplink (MAC) problem, which is much easier to solve.
In this sum power uplink or sum power MAC problem,
the users in the system have a joint power constraint
instead of the individual constraints in the conven-
tional MAC. As in the case of the conventional MAC,
there exist standard interior point convex optimiza-
tion algorithms [11] that solve the sum power MAC
problem. A new interior point based method has also
been found in [12].

However, employing a interior point convex opti-
mization algorithm to tackle as well structured a prob-
lem as sum capacity is ineÆcient. In this paper, we
exploit the structure in this sum capacity problem to
obtain a simple iterative algorithm for calculating sum
capacity. This algorithm is inspired by and is very
similar to an iterative algorithm for the conventional
individual power constraint MAC problem by Yu and
CioÆ [1]. Although a rigorous proof of the optimality
of the algorithm for the general case is unknown, its
working is highly intuitive and is found to converge in
all simulation results so far. Here, we �rst provide an
argument that shows that the algorithm either con-
verges or oscillates between two points.

This paper is structured as follows. In the next
section, we present the system model. In Section 3,
we present some background on dirty paper coding
and duality. In Section 4, we study the Kuhn-Tucker
conditions of the problem and present the algorithm.
Finally, we present an analysis of the properties of this
algorithm in Section 5 and conclude with Section 6.

2 System Model
The downlink channel model considered is shown in

Figure 1. Note that an uplink model is depicted along-
side it. This is the dual uplink, where the users in the
system have a sum power constraint. The signi�cance
of this dual uplink model is explained in Section 3

The downlink and uplink channel models are as be-
low:

yi = Hix+ ni; 8 i Downlink channel model (1)

v =
MX

i=1

Hy
i xi + w: Dual uplink channel model (2)

where we assume H1, H2, . . . , HK to be the chan-
nel matrices of users 1 through K respectively on the
downlink, and a transmit power constraint of P .

In the next section we provide some background on



Figure 1: System models of the BC MIMO(left) and
the MAC MIMO (right) channels

two important concepts that lead to the algorithm -
dirty paper coding and duality.

3 Background
3.1 Dirty Paper Coding

Caire and Shamai [6] developed an achievable set
of rates for the MIMO broadcast channel based on the
\dirty paper coding" result of Costa [5], and hence this
region is termed the dirty paper region. This coding
strategy allows a channel with interference known at
the transmitter to achieve the same data rate as if the
interference did not exist. This translates to the fol-
lowing coding strategy: The transmitter �rst picks a
codeword for receiver 1. The transmitter then chooses
a codeword for receiver 2 with full (non-causal) knowl-
edge of the codeword intended for receiver 1. There-
fore receiver 2 does not see the codeword intended for
receiver 1 as interference. Similarly, the codeword for
receiver 3 is chosen such that receiver 3 does not see
the signals intended for receivers 1 and 2 as interfer-
ence. This process continues for all K receivers. Since
the ordering of the users clearly matters in such a pro-
cedure, the following is an achievable set of rates

R�(i) =
1

2
log

jI +H�(i)(
P

j�i��(j))H
y
�(i)j

jI +H�(i)(
P

j>i��(j))H
y
�(i)j

i = 1; : : : ;K:

(3)
The dirty-paper region Cdirtypaper(P;H) is de�ned as
the union of all such rate vectors over all covariance
matrices �1; : : : ;�K such that Tr(�1 + : : :�K) =
Tr(�x) � P and over all decoding order permu-
tations (�(1); : : : ; �(K)). The transmitted signal is

x = x1 + : : : + xK and the input covariance matrices
are of the form �i = E[xixi

y].

3.2 Duality

Next, we introduce the concept of duality with the
following theorem:

Theorem 1 ([2]) The dirty paper region of a MIMO

BC channel with power constraint P is equal to the

the capacity region of the dual MIMO MAC with sum

power constraint P .

Cdirtypaper(P;H) = Cunion(P;H
y):

Since the dual MIMO MAC with sum power P is, in
fact, a convex problem, while the original dirty paper
problem is not, this duality result is of great use, both
computationally and analytically.

Using this duality, the sum rate of the downlink has
been shown to be achievable by dirty-paper coding [2].
The sum rate maximization problem is:

max
�1�0;

P
M

i=1
Tr(�i)�P

log jI +H1�1H
y
1 j+

log
jI +H2(�1 +�2)H

y
2 j

jI +H2�1H
y
2 j

+ � � �

+ log
jI +HM (�1 + � � �+�M )Hy

M j

jI +HM (�1 + � � �+�M�1)H
y
M j

: (4)

As noted for the general dirty paper region, this prob-
lem is not convex. By using duality, however, we get
the following equivalent uplink sum rate maximization
problem:

max
Si�0;

P
M

i=1
Tr(Si)�P

log jI +
MX

i=1

Hy
i SiHij: (5)

This problem is convex and can be solved using con-
vex maximization techniques which are polynomial in
complexity [11].

3.3 Iterative Water�lling by Yu and CioÆ

The iterative water�lling algorithm for the conven-
tional MIMO MAC problem, with individual power
constraints on each user was obtained by Yu and CioÆ
in [1]. This algorithm can also be applied to the sum
power MIMO MAC problem, but is however, ineÆ-
cient, since it requires a search for covariances over
all power splits amongst the K users in the system.
This iterative water�lling algorithm, however, forms
the basis on which we develop the sum-power itera-
tive water�lling algorithm in this paper.



4 The Algorithm
We propose a specialized algorithm which is found

to converge quickly to the optimal covariance matri-
ces. This algorithm is based on the same mathemati-
cal quantity as the most common algorithms in fading
and multi-antenna theory - the Karush Kuhn Tucker
(KKT) conditions. The KKT conditions were used in
[13] to obtain the time-water�lling power distribution
for single antenna point to point fading channels. The
space water�lling results in [3] using singular value
decomposition in multi-antenna systems, and power
allocation results in [14] for the single antenna MAC
can also be shown to be connected to KKT conditions.

The KKT conditions have also been used to obtain
iterative algorithms. For the MIMO MAC, an itera-
tive algorithm was found by [1] that performs signif-
icantly better than convex optimization software em-
ployed to solve the problem. The algorithm we present
here for the MIMO BC is inspired by the MAC algo-
rithm in [1]. In our algorithm, we �rst solve the dual
sum power MAC problem, and then use the duality
transformations in [2] to obtain the downlink covari-
ances. Before analyzing the dual sum power MAC
problem, let us review the KKT conditions of a multi-
antenna point to point system. This problem can be
written mathematically as

max
fS:Tr(S)�Pg

log jI + (Heff )ySHeff j (6)

where Heff is the channel of this user. The KKT
conditions for this problem are given by

�I = Heff (I + (Heff )ySHeff )�1(Heff )y +	

along with complementary slackness conditions, where
	 is a slackness variable. Note that these KKT con-
ditions have a deep connection with the celebrated
space-water�lling algorithm [3] to obtain the optimum
covariance S, with the inverse of the Lagrangian con-
stant 1=� corresponding to the waterlevel. Next, let
us focus on the dual sum power MAC problem. It can
be written mathematically as

max
Si

log jI +
X

i

Hy
i SiHij

such that
X

Tr(Si) � P

Si � 0:

We can obtain the Lagrangian for the above prob-
lem, and di�erentiating it with respect to Si, the KKT
conditions are found to be:

�I = HiZ
�1=2
i (I + Z

�1=2
i Hy

i SiHiZ
�1=2
i )�1Z

�1=2
i Hy

i +	i

where Zi = (I +
PM

j 6=iH
y
jSjHj).

Note that these KKT conditions are very similar
to the KKT condition of the point to point chan-
nel above. In fact, for each user i, if Heff =
Hj(I +

PM
i6=j H

y
i SiHi)

�1=2, then the KKT conditions
are identical. This observation was made in [1] to ob-
tain the iterative water�lling algorithm for the MAC
channel with separate power constraints, and hence
di�erent water levels 1=�i. In our case, we further
�nd that the water level 1=� is the same for all i. This
inspires the following sum power iterative water�lling
algorithm:

1. Initialize covariance matrices to zero: Si(0) =
0 8 i.

2. For iteration l : Generate e�ective channels
Heff
j = Hj(I +

PM
i6=j H

y
i Si(l � 1)Hi)

�1=2.

3. Treating these e�ective channels as parallel, non-
interfering channels, obtain the new covariance
matrices by water�lling with total power P .

fSi(l)g
M
i=1 = argmax

MX

i=1

log jI + (Heff
i )yQiH

eff
i j

over the set

Qi � 0;
MX

i=1

Tr(Qi) � P

This maximization is equivalent to water�lling
the block diagonal channel with diagonals equal
to Heff

j .

4. Return to Step 2 until desired accuracy is reached.

Any set of covariance matrices that are a �xed point
of this algorithm can be shown to satisfy the KKT con-
ditions of (5). It is then easy to transform these uplink
covariance matrices to downlink covariance matrices
using the transformations speci�ed in [2].

This algorithm is di�erent from that in [1] in that
it performs a joint water�lling on all the users in the
system instead of a user-by-user water�lling. Note
that, to perform user-by-user water�lling, individual
power constraints on the users are essential. Thus,
the joint water�lling algorithm is designed for the case
when there is a joint power constraint on all the users.

5 Analysis of the Algorithm
For this analysis, we assume a simple system with

two users. We use the subscript l to denote the iter-
ation number. Let us consider instead, the following



optimization problem:

max log jI +Hy
1S1(l)H1 +Hy

2S2(l � 1)H2j+ (7)

log jI +Hy
1S1(l � 1)H1 +Hy

2S2(l)H2j

such that

Tr(S1(l) + S2(l)) = P

Tr(S1(l � 1) + S2(l � 1)) = P

Although each iteration of the sum power iterative al-
gorithm may not increase the objective value of (5),
we show that it increases the objective value of the
optimization problem (7) above. Note that the opti-
mization problem in (7) can be rewritten as:

max
S1(l);S2(l);S1(l�1);S2(l�1)

log jI +Hy
1S1(l)H1j

+ log jI + (I +Hy
1S1H1)

�1Hy
2S2(l � 1)H2j (8)

+ log jI + (I +Hy
2S2(l)H2)

�1Hy
1S1(l � 1)H1j

+ log jI +Hy
2S2(l)H2j:

After the l+1th iteration in the algorithm, we obtain
new estimates S1(l + 1) and S2(l + 1). Substituting
them into the expression (8) above, we get

max
S1(l);S2(l);S1(l+1);S2(l+1)

log jI +Hy
1S1(l)H1j

+ log jI + (I +H1yS1H1)
�1Hy

2S2(l + 1)H2j (9)

+ log jI + (I +Hy
2S2(l)H2)

�1Hy
1S1(l + 1)H1j

+ log jI +Hy
2S2(l)H2j

Note that, by the nature of the algorithm, the ex-
pression in (9) is greater than the expression in (8).
Moreover (9) can be rewritten as

max log jI +Hy
1S1(l + 1)H1 +Hy

2S2(l)H2j

+ log jI +Hy
1S1(l)H1 +Hy

2S2(l + 1)H2j

such that

Tr(S1(l) + S2(l)) = P

Tr(S1(l + 1) + S2(l + 1)) = P

Thus, the objective function in (7) is always increas-
ing with the iteration l in the algorithm. Since the ex-
pression in (7) is jointly convex in S1(l); S2(l); S1(l �
1); S2(l � 1), and the function is bounded, the incre-
ments in the function must converge to zero.

Note that, after the increments in the function re-
duce to zero, the uniqueness of the water�lling algo-
rithm [3] guarantees that Si(l � 1) = Si(l + 1) for

Figure 2: Convergence to sum rate of the iterative
algorithm for di�erent channel realizations

i = 1; 2. Thus, the algorithm either oscillates between
two sets of values for Si but or it converges to a �xed
point. If Si converges to a �xed point, then we are
done. If it does not, we must modify the algorithm to
guarantee convergence. We know, from optimization
theory, that such a �xed point for the KKT condi-
tions exist and that this �xed point is the optimum
point. We must initialize the algorithm with matrices
Si that are in the neighborhood of this optimal �xed
point. This can be achieved, for example, using greedy
algorithm techniques [15].

This concludes our analysis of this algorithm. A
plot showing the convergence properties of this algo-
rithm for di�erent random channel realizations in a
two transmit antenna, two receivers with two anten-
nas each is shown in Figure 2. Note that the algorithm
converges within 7 iterations in all these cases.

6 Conclusion
We provide an iterative algorithm to eÆciently

compute the optimal transmit policies corresponding
to the sum capacity of broadcast (downlink) systems.
This algorithm is based on the Kuhn-Tucker condi-
tions of the dual sum power multiple access channel.
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