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Abstract— We consider a set of parallel, two-user Gaussian broadcast
channels, where the transmitter wishes to send independentinformation to
each of the receivers and common information to both receivers. The ca-
pacity region of this channel has been implicitly characterized in the past,
but we provide an explicit characterization of the power andrate allocation
schemes that achieve the boundary of the three-dimensionalrate region.
Unlike the broadcast channel with only independent information, we find
that the optimal power allocation policy cannot be viewed asa generaliza-
tion of single-user water-filling. We also consider MIMO broadcast chan-
nels, which are non-degraded in general. We propose an achievable region
based on dirty paper coding, and discuss the maximum common informa-
tion rate achievable over these channels.

I. I NTRODUCTION

As wireless networks evolve, it is apparent that multi-cast(i.e.
sending a common message to all users on a downlink chan-
nel) is an important mode of communication that systems will
require in the future. In cellular networks, for example, multi-
cast information could be common information such as news
updates or location-based information. It is reasonable toas-
sume that networks will want to transmit a mixture of common
information to all users and independent information to each of
the users. With this in mind, we consider broadcast channels
with both common and independent information.

We consider parallel two-user Gaussian broadcast channels,
where the transmitter wants to send independent information to
users 1 and 2 at ratesR1 andR2, respectively, and common in-
formation (decodable by both users) at rateR0. For degraded
broadcast channels, the common information rate and the inde-
pendent information rate to the degraded user are interchange-
able, because the strongest user can decode anything that the de-
graded user can. However, we consider parallel channels where
in some channels User 1 is the degraded user, but in other chan-
nels User 2 is the degraded user. The capacity region of this
channel (for both discrete memoryless channels and for Gaus-
sian channels) was characterized in [1] in terms of a union of
regions, where the union was taken over different power distri-
butions between the different channels. We first derive an equiv-
alent expression for this capacity region that is more amenable to
optimization techniques. We then pose the problem of character-
izing the optimal power and rate allocation schemes that achieve
the boundary of the three-dimensional region using Lagrangian
techniques. We then apply the utility function approach used
for the broadcast channel [2] without common information, but
we find that this approach does not work in general. We use a
more direct approach to maximize the Lagrangian function and
obtain the capacity region with common information using this
approach. Using this method, the optimal allocation is found by
performing a finite maximization in each channel.

Finally, we consider MIMO broadcast channels, which in
general are not degraded. Thus, the capacity region with or
without common information is not known for this channel. We
propose an achievable region based on dirty paper coding. We
also consider the maximum common rate achievable on these
channels, i.e. the common information capacity.

The remainder of this paper is organized as follows. In Sec-
tion II we describe the system model, followed by the capacity
region of the broadcast channel in III. In Section IV we describe
the Lagrangian formulation used to find the optimal power al-
location, along with a method to maximize the Lagrangian. In
Section VI we describe a simple procedure to find the optimal
Lagrangian multipliers, followed by some numerical results in
VII. We briefly discuss MIMO broadcast channels in VIII, fol-
lowed by our conclusions.

II. SYSTEM MODEL

We consider the following channel:

y1(i) = x(i) + z1(i) i = 1, . . . , N (1)

y2(i) = x(i) + z2(i) i = 1, . . . , N (2)

where z1(i) ∼ N(0, N1(i)) and z2(i) ∼ N(0, N2(i)). If
N1(i) ≤ N2(i) for all i, then this is adegraded broadcast chan-
nel. For such a channel, common information and independent
information sent to User 2 are interchangeable, and the optimal
power allocation is essentially equivalent to that for channels
with only independent information [2, 3]. We will only con-
sider the non-degraded case, i.e. where for somei we have
N1(i) ≤ N2(i) and for some otheri we haveN2(i) ≤ N1(i).
We impose an average power constraintP on the input, i.e.
∑N

i=1 E[x(i)2] ≤ P .

III. C APACITY REGION CHARACTERIZATION

In [1], the capacity region for two parallel Gaussian broadcast
channels (non-degraded) with a common message and indepen-
dent messages for both users is given. This characterization can
easily be extended toN parallel channels

Theorem 1: The capacity region ofN parallel two-user
broadcast channels is equal to the convex hull of the union of
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the regions defined by

R0 ≤ min

(

N
∑

i=1

C

(

P0(i)

P1(i) + P2(i) + N1(i)

)

,

N
∑

i=1

C

(

P0(i)

P1(i) + P2(i) + N2(i)

)

)

R1 ≤
∑

i∈A1

C

(

P1(i)

N1(i)

)

+
∑

i∈A2

C

(

P1(i)

P2(i) + N1(i)

)

R2 ≤
∑

i∈A1

C

(

P2(i)

P1(i) + N2(i)

)

+
∑

i∈A2

C

(

P2(i)

N2(i)

)

where the union is taken over allP0(i), P1(i), P2(i) such that
∑N

i=1 P0(i)+P1(i)+P2(i) ≤ P , and whereA1 is the set ofi ∈
1, . . . , N such thatN1(i) ≤ N2(i) andA2 is the complementary
set, i.e. the set ofi such thatN2(i) < N1(i).

Proof: The converse for this region is a straightforward
generalization of [1]. Achievability follows from standard argu-
ments similar to [3].

The powers(P0(i), P1(i), P2(i)) can be interpreted as the
power allocated to send the common message, the independent
message to user 1, and the independent message to user 2, re-
spectively. The common message is decoded first (with the pow-
ersP1(i) + P2(i) treated as interference), followed by the inde-
pendent messages. Fori ∈ A1, User 1 can decode and subtract
out the codeword intended for User 2 before decoding his own
codeword. Fori ∈ A2, User 1 must treatP2(i) as interference.

For transmission of the independent messages, separate code-
books (and rates) are used for each user on each of theN
channels. These codewords are decodedindependently on
each channel. However, the common message codebook can-
not be broken into different codebooks for each channel, i.e.
joint encoding and joint decoding must be performed across
the channels to achieve capacity. If the common message
was broken into different codebooks for each channel, the
common rate transmitted on each channel would be limited
by the weakest user ineach channel (since the stronger user
can decode anything that the weakest user can, by degrad-
edness). The corresponding common rate would be given

by
∑N

i=1 C
(

P0(i)
P1(i)+P2(i)+max(N1(i),N2(i))

)

(without any mini-

mization operation required). This is highly sub-optimal,and
much higher common information rates can be achieved by
jointly decoding. Each user extracts a different amount of infor-
mation about the common message from each of the channels
due to the different noise powers of the users on each channel,
and we consider the total amount of mutual information across
all channels. This is similar from an information theoreticpoint
of view to a flat-fading single-user channel where only the re-
ceiver knows the channel state information. In such a scenario,
encoding must be done across all different channel fades and
joint decoding must be performed.

IV. FORMULATION OF OPTIMIZATION

From the previous section, we see that the capacity region can
be defined as the convex hull of the union of all rate points de-
scribed in the previous section, where the union is taken over

all power allocations satisfying the average power constraint.
Since the capacity region is convex, we can fully characterize it
by maximizing the weighted sum of rates, for different weights.
We wish to find the optimal power allocation policy that maxi-
mizes the weighted sum of rates for arbitrary rates. This is given
by the following problem;

max
(R0,R1,R2)∈CBC(P )

µ1R1 + µ2R2 + µ0R0 (3)

Using standard convex optimization techniques, for the optimal
λ, this is equivalent to:

max
P(i)

µ1R1(P(i)) + µ2R2(P(i)) + (4)

µ0(min(R01(P(i)), R02(P(i))))− λ

(

N
∑

i=1

P (i) − P

)

whereR1(P(i)) andR2(P(i)) are defined as:

Rj(P(i)) =

N
∑

i=1

log

(

1 +
Pj(i)

Nj(i) + Pl(i)1[i /∈ Ai]

)

for j, l = 1, 2 andl 6= j, R0j is defined as:

R0j(P(i)) =
N
∑

i=1

log

(

1 +
P0(i)

Nj(i) + P1(i) + P2(i)

)

for j = 1, 2, andP (i) is defined asP (i) = P0(i) + P1(i) +
P2(i). This maximization can further be simplified by replacing
the minimum operation with a weighted sum of the two com-
mon rates. It can be shown (using standard convex optimization
methods) that the optimal power allocation policy solves

max
P(i)

µ1R1(P(i)) + µ2R2(P(i)) + λ1R01(P(i)) + (5)

λ2R02(P(i)) − λ

(

N
∑

i=1

P (i) − P

)

for the optimal Lagrangian multipliers(λ, λ1, λ2), which each
must be non-negative and satisfyλ1+λ2 = µ0 = (1−µ1−µ2).
Furthermore, for anyλ, the solution to (4) is equal to the solution
to (5) for λ1 andλ2 such that the optimizing power allocation
yields eitherR01 = R02 or λi = 0 for one of the users.

In the next section we describe how to solve (5) for any
(λ, λ1, λ2). In section VI we describe a simple method to find
the optimal Lagrange multipliers.

V. M AXIMIZATION OF LAGRANGIAN

In this section we describe a method to solve (5), i.e. max-
imize the weighted sum of rates given the power priceλ and
the Lagrangian’sλ1 andλ2. First note that a power allocation
solves (5) if and only if it is the solution to

max
P0(i),P1(i),P2(i)

µ1R1(P (i)) + µ2R2(P (i)) + λ1R01(P (i)) (6)

+λ2R02(P (i)) − λ (P0(i) + P1(i) + P2(i))

for eachi = 1, . . . , N . When there is no common informa-
tion (i.e. λ1 = λ2 = 0), (6) can be solved using an intuitive
utility function approach [2, 3]. In Section V-A we show that
this approach does not work in general when there is common
information, and we instead must use a less intuitive method.
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A. Utility Function Approach

In this section we attempt to use utility functions to determine
the optimal power allocation. We use the procedure developed
in [2], where it was used to find the optimal power allocation
without common information. Without loss of generality, we
consider states whereN1(i) < N2(i). We define the following
utility functions:

u1(z) =
µ1

N1(i) + z
− λ

u2(z) =
µ2

N2(i) + z
− λ

u0(z) =
λ1

N1(i) + z
+

λ2

N2(i) + z
− λ

If we let J∗ denote the solution to (6) andJ∗ is achieved by
(P0(i), P1(i), P2(i)), then we have

J∗ =

∫ P1(i)

z=0

u1(z)dz +

∫ P1(i)+P2(i)

z=P1(i)

u2(z)dz +

∫ P0(i)+P1(i)+P2(i)

z=P1(i)+P2(i)

u0(z)dz

≤

∫ ∞

z=0

[

max
i

ui(z)
]+

dz

where the argument of the final integral is a pointwise maxi-
mum of the utility functions. This upper bound is achievable
if the maximum of the utility functions is in order of decreas-
ing channel gains (i.e.u1(z) is the maximum function initially,
followed byu2(z) and thenu0(z)). When there is no common
information, then this condition is satisfied and the upper bound
is achievable [2]. Thus, the optimum power allocation can be
found by taking the pointwise maximum of the utility functions
corresponding to both users. However, for common informa-
tion, the ordering of the utility functions does not always satisfy
this condition and thus the utility function approach can not be
used in general. There are a number of interesting scenarios
where the utility function approach does work:
1. µ0 < µ1 andµ0 < µ2: If this condition is satisfied, then
u0(z) ≤ uj(z) for all z ≥ 0, where Userj is the user with the
larger noise power. Thus no common information is transmit-
ted in each state, and this simplifies to the standard independent
information BC, for which the utility function approach works.
2. µ0 ≥ µ1 andµ0 ≥ µ2: In this scenario,u0(z) ≤ uj(z) for
all z ≥ 0, where Userj is the user with the larger noise power.
Thus we are left with the common rate user and the better of two
users. In this scenario it can be shown that the utility functions
are ordered correctly such that the upper bound is achievable.
This includes the interesting case whenµ0 ≥ µ1 = µ2.

Interestingly, the utility function approach does not work
when eitherµ1 = 0 or µ2 = 0. In Fig. V-A, utility functions
are shown for a channel whereN1 = 1.5, N2 = 1, µ1 = .54,
λ1 = .1, andλ2 = .36. For0 ≤ z ≤ 1.25, u0(z) is the largest
utility function, but forz > 1.25, u1(z) is the largest function.
Therefore, the upper boundJ∗ can not be achieved, because
User 0 must be allocated power after (i.e. for largerz) User 1 is
allocated power. It is also possible to find counter-examples for
situations where all three priorities are non-zero.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

z

u i(z
)

u
0
(z) 

u
1
(z) 

Fig. 1. Utility Functions for a sample channel withµ2 = 0

B. Direct Approach

Since the utility function approach does not work in general,
we must consider a more direct approach to maximize the La-
grangian function. The most straightforward way of maximizing
a continuous function is to consider the points where the deriva-
tives of the function are zero. The only complication is thatthe
powersP0(i), P1(i), andP2(i) must all be non-negative. Thus,
for j = 1, 2, 3, the derivative of the objective function with re-
spect toPj(i) must be equal to 0 if the optimalPj(i) is strictly
positive. Additionally, ifP ∗

j (i) = 0 for some j, then the deriva-
tive with respect toPj(i) atPj(i) = 0 must be less than or equal
to zero. The simple structure of the objective function implies
that each partial derivative is equal to zero at only one point.
Thus, it is sufficient to consider the 8 different combinations of
power allocations. The maximum of the objective function is
then equal to the maximum of these 8 possible combinations.

Without loss of generality, consider a state whereN1(i) ≤
N2(i). The partial derivatives of (6) are given by:

∂J

∂P1
=

µ1

P1 + N1
+

µ2

P1 + P2 + N2
−

µ2

P1 + N2
+

λ1

P0 + P1 + P2 + N1
−

λ1

P1 + P2 + N1
+

λ2

P0 + P1 + P2 + N2
−

λ2

P1 + P2 + N2
− λ

∂J

∂P2
=

µ2

P1 + P2 + N2
+

λ1

P0 + P1 + P2 + N1
−

λ1

P1 + P2 + N1
+

λ2

P0 + P1 + P2 + N2
−

λ2

P1 + P2 + N2
− λ

∂J

∂P2
=

λ1

P0 + P1 + P2 + N1
+

λ2

P0 + P1 + P2 + N2
− λ.

Since there are three different powers to be allocated, there are
three different sets of partial derivatives to consider. First con-
sider the four cases corresponding toP0 = 0. By setting some
of these derivatives to zero (i.e. the partials corresponding to
users with non-zero power), we find the optimal allocations are
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given by the following whenP0 = 0:
1. P1 = P2 = 0
2. P1 > 0, P2 = 0: P1 = µ1

λ
− N1

3. P2 > 0, P1 = 0: P2 = µ2

λ
− N2

4. P1 > 0, P2 > 0: P1 = µ1N2−µ2N1

µ2−µ1

, P2 = µ2

λ
− N2 − P1.

WhenP0 > 0 the power allocations are given by:
1. P0 > 0, P1 = P2 = 0: P0 = Pthresh

2. P0, P1 > 0, P2 = 0: P1 = λ2N1−(µ1−λ1)N2

µ1−µ0

, P0 =
Pthresh − P1

3. P0, P2 > 0, P1 = 0: P2 = λ1N2−(µ2−λ2)N1

µ2−µ0

, P0 =
Pthresh − P2

4. P0, P1, P2 > 0: P1 = µ1N2−µ2N1

µ2−µ1

, P2 =
λ1N2−(µ2−λ2)N1

µ2−µ0

− P1, P0 = Pthresh − P1 − P2

where

Pthresh =
1

2λ
(µ0 − λ(N1 + N2) +

√

(λ(N1 + N2) − µ0)2 + 4λ(λ1N2 + λ2N1 − λN1N2)).

One of these 8 power allocations is guaranteed to achieve the
maximum of (6). Thus we can find the maximum of the La-
grangian in each state by evaluating all eight power allocations,
checking for non-negativity of powers, and then choosing the
allocation that maximizes the objective.

When there is only independent information, it can be shown
that only one of the four cases is feasible for different values
of λ (i.e. the spaceλ > 0 can be decomposed into four mu-
tually exclusive intervals corresponding to the four different al-
locations). Thus, a closed form solution for the optimal power
allocation can be given in terms ofλ. However, no such sim-
plification can be done for the situation when there is common
information. Thus, in general, the maximum amongst the eight
allocations must be performed.

VI. OPTIMAL LAGRANGE MULTIPLIERS

By the KKT conditions, the solution to the original La-
grangian characterization in (4) for the optimal(λ, λ1, λ2) will
satisfy the power constraint with equality. It is easy to seethat
the power allocation solving (4) is a decreasing function ofλ.
Thus, the optimalλ can be found by solving (4) for different
values ofλ determined by the bisection method (overλ).

To maximize the Lagrangian function in(4), we work with the
simplified maximization in (5), where the minimum is replaced
with a weighted sum of the common information rates. It can be
shown that for anyλ, the solution to (4) is equal to the solution
of (5) for λ1 andλ2 such that the optimizing power allocation
yields R01 = R02 or λi = 0 for one of the two users. This
follows intuitively because for any power allocation that yields
R01 6= R02, we can reallocateP0(i) over different channels
(without increasing the sum of power) to increase the smaller
of the two common rates slightly, and thus increase the objec-
tive function. However, this is not possible if the allocation of
powerP0(i) is already single-user optimal for the user with the
smaller common rate (i.e. no reallocation ofP0(i) increases the
common rate of the user with the smaller common rate). This
corresponds to the scenario where eitherλ1 = 0 or λ2 = 01.

1In general, the minimum of two concave functions occurs at a point where
the two functions meet, unless the minimum of the two functions is equal to the
maximum of one of the functions.

Furthermore, it can also be shown that the optimizingR01 in
(4) is a increasing function ofλ1 and the optimizingR02 is a
decreasing function ofλ2.

Thus, the following procedure can be used to find the optimal
Lagrange multipliers(λ, λ1, λ2). First choose an initial positive
value forλ. Then repeat the following algorithm:
1. Solve (4) by the following procedure:
(a) Solve (5) withλ1 = 0. If R01 ≥ R02 for the optimizing

solution, proceed to Step 2.
(b) Solve (5) withλ1 = µ0. If R02 ≥ R01 for the optimizing

solution, proceed to Step 2.
(c) Use the bisection method to findλ1 such that the optimiz-

ing solution of (5) satisfiesR01 = R02.
2. If the solution of (4) exactly meets the power constraint,then
exit. Otherwise, if the solution of (4) is strictly larger/smaller
than the power constraint, then increase/decreaseλ and return
to Step 1.
Note that the update ofλ can be performed using a one-
dimensional bisection method, and Step 1(c) can be performed
with a one-dimensional bisection method onλ1. This procedure
is implemented in order to find numerical results in section VII

VII. N UMERICAL RESULTS

In this section we present numerical results on the capacity
region of a two-user broadcast channel. In Fig. 2 the capacity
region of a two user channel is shown forN = 2. In state 1, user
1 has an average SNR of 10 dB and user 2 has an SNR of -10
dB. In state 2, the SNR’s of the users are reversed from state 1.
Notice that due to the large difference in SNR of the two users,
the capacity region whenR0 = 0 (i.e. no common information)
is far from the straight line segment connecting the maximum
single-user rate to users 1 and 2. However, ifR2 = 0 (or R1 = 0
by symmetry), the region is quite close to time-sharing between
transmitting only common information and transmitting only in-
dependent information to User 1. In Fig. 3 the capacity region of
a two-user channel is shown where in state 1, user 1 has an SNR
of 0 dB while user 2 has an SNR of -10 dB. In state 2, the roles
of the users are reversed. We again see that the capacity region
is relatively flat in the direction of common information (R0),
which implies that time-sharing between sending common in-
formation and independent information comes quite close tothe
actual capacity-achieving strategy.

VIII. MIMO C HANNELS

In this section we consider multiple-input, multiple-output
(MIMO) broadcast channels. Since MIMO broadcast channels
are not in general degraded, the capacity region with common
and independent information is unknown even for a single con-
stant channel (i.e.N = 1). In the following sections we discuss
an achievable region, followed by discussion of transmitting
only common information over a multiple-input, single-output
channel.

A. Capacity Region

An achievable region for the common and independent infor-
mation MIMO broadcast channel can be established using dirty
paper coding [4]. Dirty paper coding was shown to achieve the
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Fig. 2. Plot of capacity region channel with 20 dB SNR difference between the
two users
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Fig. 3. Plot of capacity region channel with 10 dB SNR difference between the
two users

sum rate capacity of the MIMO broadcast channel (i.e. the max-
imum ofR0+R1+R2 in the capacity region) in [5–8]. Amraoui
et. al. [9] recently considered the rates achievable using succes-
sive decoding, a technique that is practically easier to implement
than dirty paper coding.

By first encoding the common message followed by the inde-
pendent messages, the following rate triplet is achievable:

R0 = min
j=1,2

log

∣

∣

∣
I + Hj(Σ0 + Σ1 + Σ2)Hj

T
∣

∣

∣

∣

∣

∣
I + Hj(Σ1 + Σ2)Hj

T
∣

∣

∣

(7)

R1 = log

∣

∣

∣
I + H1(Σ1 + Σ2)H1

T
∣

∣

∣

∣

∣

∣
I + H1Σ2H1

T
∣

∣

∣

(8)

R2 = log
∣

∣

∣
I + H2Σ2H2

T
∣

∣

∣
(9)

for any set of positive semi-definite covariances satisfying
Tr(Σ0 + Σ1 + Σ2) ≤ P . Additionally, the ordering of users 1
and 2 can be switched so that user 1 sees no interference and user
2 viewsΣ1 as interference. This region can easily be extended to
parallel broadcast channels. However, the rate equations given
above are not concave functions of the input covariances, and
thus finding the boundary region of this achievable region (even
for N = 1) seems to be difficult from a numerical perspective.

B. Common Information Capacity

Though the above achievable region appears to be difficult
to compute, it is far easier to calculate the common information
capacity (i.e. the maximum common rate) of a MIMO broadcast
channel. Since Gaussian inputs are optimal for MIMO channels,
the common rate capacity of aK-use broadcast channel is given
by:

C0 = max
Σ≥0,Tr(Σ)≤P

min
i=1,...,K

log
∣

∣I + HiΣH
T
i

∣

∣ . (10)

The objective function of this maximization is a minimum of
concave functions, and thus is a concave function. Therefore,
standard convex optimization techniques can be applied to per-
form the maximization.

For the case of multiple-input, single-output channels (i.e.
single antennas at each of the receivers), it can be shown that
a rank-one covariance matrix (i.e. beamforming) achieves the
common information capacity when there are two users. Inter-
estingly, beamforming does not in general achieve the common
information capacity for more than two users. Consider a sys-
tem ofK unit norm users, each equally spaced around the unit
circle. For anyε > 0, we can find large enoughK such that
for any choice of a direction vectorv, mini=1,...,K |Hiv| < ε,
since any direction is nearly orthogonal to at least one user
because users are equally spaced around the unit circle. The
common rate when using covarianceΣ = P

M
vv

T is equal to
mini=1,...,K log(1+ P

M
Hivv

T
H

T
i ). Thus, using beamforming,

the common rate goes to0 asK → ∞. However, by using an
identity covariance, i.e.Σ = 1

M
IM , the mutual information of

each user islog(1+ 1
M
||Hi||

2) = log(1+ 1
M

) which is indepen-
dent ofK. Thus, common information capacity is not achieved
by beamforming for large enoughK. We have seen this to be
true in general forK > 2, but there are exceptions for which
beamforming does achieve capacity.

IX. CONCLUSION

Broadcast channels have been heavily studied by informa-
tion theorists during the past three decades. However, the over-
whelming majority of work has concentrated on only indepen-
dent information. In this paper we considered Gaussian broad-
cast channels with both independent and common information
rate. We first recast the expression for the capacity region in a
more traditional manner, and found the optimal power and rate
allocation policies that achieve the boundary of the capacity re-
gion. Interestingly, the simple approaches that worked in the ab-
sence of common information no longer work in general when
common information is added to the picture. However, some
intuition can still be gleamed from the optimal power allocation
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policy. Finally, we considered MIMO broadcast channels and
proposed an achievable rate region based on dirty paper coding.
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