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Dirty-Paper Coding Versus TDMA for MIMO
Broadcast Channels
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Abstract—We compare the capacity of dirty-paper coding (DPC) to that
of time-division multiple access (TDMA) for a multiple-antenna (multiple-
input multiple-output (MIMO)) Gaussian broadcast channel (BC). We find
that the sum-rate capacity (achievable using DPC) of the multiple-antenna
BC is at most min( ) times the largest single-user capacity (i.e.,
the TDMA sum-rate) in the system, where is the number of transmit
antennas and is the number of receivers. This result is independent
of the number of receive antennas and the channel gain matrix, and is
valid at all signal-to-noise ratios (SNRs). We investigate the tightness of
this bound in a time-varying channel (assuming perfect channel knowledge
at receivers and transmitters) where the channel experiences uncorrelated
Rayleigh fading and in some situations we find that the dirty paper gain is
upper-bounded by the ratio of transmit-to-receive antennas. We also show
thatmin( ) upper-bounds the sum-rate gain of successive decoding
over TDMA for the uplink channel, where is the number of receive an-
tennas at the base station and is the number of transmitters.

Index Terms—Broadcast channel (BC), channel capacity, dirty-paper
coding (DPC), multiple-input multiple-output (MIMO) systems, time-
division multiple access (TDMA).

I. INTRODUCTION

In this correspondence, we consider a broadcast channel (downlink
or BC) in which there are multiple antennas at the transmitter (base
station) and possibly multiple antennas at each receiver (mobile).
Dirty-paper coding (DPC) [1], [2] is a promising new transmission
technique that allows a base station to efficiently transmit data to
multiple users at the same time. DPC has been shown to achieve the
sum-rate capacity (maximum throughput) of the multiple-antenna
broadcast channel [1], [3]–[5], and furthermore, it was recently shown
that DPC in fact achieves the full capacity region of the Gaussian mul-
tiple-input multiple-output (MIMO) broadcast channel [6]. However,
DPC is a rather new and complicated scheme which has yet to be
implemented in practical systems. Current wireless systems such as
Qualcomm’s High Date Rate (HDR) system [7] use the much simpler
technique of time-division multiple-access (TDMA) in which the base
transmits to only one user at a time.

Considering the difficulty in implementing DPC, a relevant question
to ask is the following: How large of a performance boost does DPC
provide over TDMA in terms of sum-rate? If DPC is used in aK-user
broadcast channel, any rate vector in the K-dimensional DPC achiev-
able region can be achieved. Similarly, if TDMA is used, any rate vector
in theK-dimensional TDMA rate region can be achieved. It is easy to
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see that the DPC achievable region is larger than the TDMA rate re-
gion. However, defining a meaningful metric that quantifies the differ-
ence between twoK-dimensional regions forK � 2 is quite difficult.
Viswanathan, Venkatesan, and Huang [8] first investigated the above
question by considering different operating points (i.e., rate vectors in
the DPC and TDMA rate regions) that are reasonable for cellular sys-
tems, and numerically comparing the rates achievable with DPC and
TDMA.

In this correspondence, we focus exclusively on the sum-rate ca-
pacity, or maximum throughput, achievable using DPC and TDMA.
This operating point is quite reasonable when users have channels with
roughly equivalent quality (i.e., no large signal-to-noise ratio (SNR)
imbalances), but may not be as fair for asymmetric channels because
users with higher SNRs receive a disproportionate fraction of the total
data rate. However, the sum capacity is in general an important figure
of merit because it quantifies how much total data flow is possible in a
broadcast channel. Furthermore, comparing the maximum throughput
achievable with DPC and TDMA gives a reasonable estimate of how
much “larger” the DPC rate region is relative to the TDMA rate re-
gion. It should be noted that we only consider systems where both the
transmitter and receiver have perfect and instantaneous channel state
information (CSI).

By establishing upper and lower bounds to the DPC sum-rate ca-
pacity and the maximum TDMA sum-rate, respectively, we are able
to analytically upper-bound the ratio of sum-rate capacity to the max-
imum TDMA sum-rate. Furthermore, we characterize the DPC gain at
asymptotically high and low SNR. We also investigate the DPC gain in
a time-varying, Rayleigh-fading channel in which the transmitter and
receiver have perfect channel knowledge. Using the same techniques
as for the downlink, we also upper-bound the sum-rate gain that suc-
cessive decoding provides over TDMA on the uplink (multiple-access)
channel.

The remainder of this correspondence is organized as follows. In
Section II, we define our system model, and in Section III, we give
definitions of the sum-rate capacity. In Section IV, we develop an ana-
lytical bound on the DPC gain, and we investigate the asymptotic be-
havior of the DPC gain at low and high SNR in Section V.We study the
behavior of the DPC gain in Rayleigh-fading channels in Section VI. In
Section VIII, we consider the DPC gain in a frequency-selective broad-
cast channel and in Section IX, we briefly compare DPC to transmitter
beamforming, another suboptimal transmission strategy for the broad-
cast channel. We end by applying our analytical bounds to the mul-
tiple-antenna multiple-access channel in Section X and by stating some
conclusions in Section XI.

II. SYSTEM MODEL

We consider a broadcast channel withK receivers,M > 1 transmit
antennas, andN � 1 receive antennas at each receiver. The transmitter
sends independent information to each of theK receivers. The system
is pictured in the left half of Fig. 1.

Let xxx 2
M�1 be the transmitted vector signal and let HHHk 2

N�M be the channel matrix of receiver k whereHHHk(i; j) represents
the channel gain from transmit antenna j to antenna i of receiver k.
The circularly symmetric complex Gaussian noise at receiver k is rep-
resented by nnnk 2 N�1 where nnnk � N(0; III). Let yyy

k
2

N�1 be
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Fig. 1. System models of the MIMO BC (left) and the dual MIMO MAC
(right).

the received signal at receiver k. The received signal is mathematically
represented as

yyyk = HHHkxxx+ nnnk; k = 1; . . . ; K: (1)

The covariance matrix of the input signal is ���x [xxxxxxy]. The
transmitter is subject to an average power constraint P , which implies
Tr(���x) � P . Throughout the correspondence, we refer to P as the
SNR of the system, though the true received SNR is a function of the
channel matrix and the transmission strategy. We let HHH 2 NK�M

refer to the concatenation of all channels, i.e.,HHH [HHHT
1 � � �HHHT

K ]
T . In

the first half of this correspondence, we assumeHHH1; . . . ;HHHK are fixed
and known perfectly at the transmitter and at all receivers. We explain
the time-varying channel model in Section VI.

In terms of notation, we useHHHy to indicate the conjugate transpose
of matrixHHH and kHHHk to denote the matrix norm ofHHH , defined by

kHHHk = �max(HHH
y
HHH):

We also use boldface to indicate vector and matrix quantities.

III. SUM-RATE CAPACITY

For the single-antenna broadcast channel, the sum-rate capacity is
equal to the largest single-user capacity in the system [9]. Equiva-
lently, throughput is maximized by transmitting only to the user with
the largest channel gain. In fact, the single-antenna Gaussian broadcast
channel falls into the class of degraded broadcast channels [10], for
which the sum-rate capacity is always equal to the largest single-user
capacity in the system. A broadcast channel is degraded if users can be
ordered in terms of the quality of received signal. In a degraded broad-
cast channel, there is always one user who has a stronger channel than
every other user. For a single-antenna Gaussian broadcast channel, this
is the user with the largest channel norm. Since this user has a stronger
channel than any other user, he can decode any codeword intended for
any other user, and thus sum-rate is maximized by only transmitting to
this user in a degraded broadcast channel.

The multiple transmit antenna broadcast channel, however, is in gen-
eral (but not always) a nondegraded broadcast channel. The fact that
matrices can only be partially ordered, as opposed to the full ordering
possible on scalars, is an intuitive explanation of the nondegraded
nature of the multiple-antenna broadcast channel. For example, in a
K = 2,M = 2,N = 1 channel withHHH1 = [1 0:5] andHHH2 = [0:5 1],
it should be apparent that neither channel is absolutely stronger, since
kHHH1k = kHHH2k but clearlyHHH1 6= HHH2. It is also not a priori clear how
sum capacity should be achieved. It turns out that the sum capacity of
multiple-antenna broadcast channels is generally strictly larger than
the single-user capacity of any of the users in the system, and the

sum capacity is achieved by using DPC to simultaneously transmit to
several users [1], [3]–[5].

DPC is a technique that can be used to pre-subtract interference at the
transmitter. In a broadcast channel, the transmitted signal xxx generally
contains information formultiple receivers.While receiver 1 is trying to
decode his intended message, the portion of xxx not intended for receiver
1 is a form of interference. However, by using DPC, this interference
can be reduced or completely eliminated. Furthermore, it turns out that
this transmission strategy is in fact sum-rate capacity-achieving.

From the results in [1], [3]–[5], the sum-rate capacity of the BC,
denoted by CBC(HHH1; . . . ;HHHK ; P ), can be expressed in terms of the
following maximization:

CBC(HHH1; . . . ;HHHK ; P )

= max
��� �0; Tr(��� )�P

K

i=1

log
jIII +HHHi( j�i���j)HHH

y
i j

jIII +HHHi( j<i
���j)HHH

y
i j

(2)

where the maximization is over the set of M �M positive semidefi-
nite covariance matrices (���1; . . . ;���K). The objective function of the
maximization is not a concave function of the covariancematrices. This
makes the expression in (2) both numerically and analytically difficult
to deal with. Fortunately, we are able to workwith an alternative expres-
sion for the sum-rate capacity that comes from the dual multiple-access
channel, as explained below.

In [3], the dirty paper rate region is shown to be equal to the capacity
region of the dual Gaussian MIMO multiple-access channel (MAC or
uplink) with sum power constraint P . The dual uplink is formed by
reversing the roles of transmitters and receivers, i.e., converting the
transmitter into an M -antenna receiver and converting each receiver
into an N -antenna transmitter.1 The dual MAC is shown in the right-
hand side of Fig. 1. The received signal in the dual MAC is given by

yyyMAC =

K

i=1

HHH
y
ixxxi + nnn (3)

wherexxxi 2 N�1 is the ith transmitter signal,HHHy
i is the channel of the

ith transmitter, and the noise is the same as in the downlink (i.e., each
component is a circularly symmetric unit variance complex Gaussian).
Notice that the dual uplink channel matrix of each user is equal to the
conjugate transpose of the downlink channel matrix.

Due to the MAC-BC duality, the sum-rate capacity of the MIMO
BC is equal to the sum-rate capacity of the dual MAC with sum power
constraint P

CBC(HHH1; . . . ;HHHK ; P )

= CMAC(HHH1; . . . ;HHHK ; P )

= max
fQQQ :QQQ �0; Tr(QQQ )�Pg

log III +

K

i=1

HHH
y
iQQQiHHHi (4)

where each of the matrices QQQi is an N � N positive semidefinite
covariance matrix. The expression in (4) is the sum-rate capacity of
the dual uplink subject to sum power constraint P . Note that (4) is a
maximization of a concave function of the covariance matrices, for
which efficient numerical algorithms exist. In this correspondence,
we use the specialized algorithm developed in [11] to calculate
CBC(HHH1; . . . ;HHHK ; P ).

1The dual MAC channel can be thought of as the uplink channel in a time-
division duplex system, in which the channel coefficients are the same in both
uplink and downlink mode. However, it is crucial to note that duality is only
used as a mathematical tool in this work and it is not necessary for the actual
system to be time-division duplexed for duality to be used.
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Fig. 2. DPC and TDMA rate regions for a two-user system with two transmit antennas.

The time-division rate region RTDMA is defined as the set of av-
erage rates that can be achieved by time sharing between single-user
transmissions using constant power P

RTDMA(HHH1; . . . ;HHHK ; P ) (R1; . . . ; RK) :

K

i=1

Ri

C(HHHi; P )
�1

(5)

whereC(HHHi; P ) denotes the single-user capacity of the ith user subject
to power constraint P . The single-user capacity of a MIMO channel is
given by the following expression:

C(HHHi; P ) = max
fQQQ :QQQ �0;Tr(QQQ )�Pg

log III +HHHiQQQiHHH
y
i : (6)

The maximum is achieved by choosing the covariance matrixQQQi to be
along the eigenvectors of the channel matrix HHHy

iHHHi and by choosing
the eigenvalues according to the water-filling procedure [12].

It is easy to see that the maximum sum-rate inRTDMA, denoted as
CTDMA(HHH1; . . . ;HHHK ; P ), is the largest single-user capacity of theK
users

CTDMA(HHH1; . . . ;HHHK ; P ) max
RRR2R (HHH ;...;HHH ;P )

K

i=1

Ri

= max
i=1;...;K

C(HHHi; P ) (7)

and is achieved by transmitting only to the user with the largest ca-
pacity. We will refer to this quantity as the TDMA sum-rate.

In this correspondence, we are interested in quantifying the advan-
tage that DPC gives over TDMA in terms of total throughput. Thus, the
performance metric analyzed in this correspondence is the DPC gain
G(HHH1; . . . ;HHHK ; P ), which we define to be the ratio of sum-rate ca-
pacity to TDMA sum-rate

G(HHH1; . . . ;HHHK ; P )
CBC(HHH1; . . . ;HHHK ; P )

CTDMA(HHH1; . . . ;HHHK ; P )
: (8)

Since CBC(HHH1; . . . ;HHHK ; P ) � CTDMA(HHH1; . . . ;HHHK ; P ) by defini-
tion, the DPC gain is always greater than or equal to one. Notice that the
DPC gain is a function of the channelsHHH1; . . . ;HHHK and the SNR P .

In Fig. 2, the DPC and TDMA rate regions are shown for a two-
user broadcast channel with two transmit antennas and single receive
antenna. In this symmetric channel, the TDMA sum-rate is equal to
the single-user capacity of either user (3.75 b/s), while the sum-rate
capacity is equal to 4.79 b/s. Thus, the DPC gain is equal to 1:28. In
Section IV, we develop an analytical upper bound to the DPC gain.

IV. BOUNDS ON SUM-RATE CAPACITY AND DPC GAIN

In this section, we develop a precise analytical upper bound to the
DPC gain defined in (8). In order to do so, we upper-bound the sum-rate
capacity of the MIMO BC and lower-bound the TDMA sum-rate.

Theorem 1: The sum-rate capacity of the multiple-antenna down-
link is upper-bounded by

CBC(HHH1; . . . ;HHHK ; P ) �M log 1 + P

M
kHHHk2max (9)

where kHHHkmax = maxi=1;...;K kHHHik.
Proof: We prove this result using the fact that the BC sum-rate

capacity is equal to the dual MAC sum-rate capacity with power con-
straint P . The received signal in the dual MAC is

yyyMAC =

K

i=1

HHH
y
ixxxi + nnn:

The received covariance is given by

���y = E[yyyyyyy] = E[nnnnnny] +

K

i=1

HHH
y
iE xxxixxx

y
i HHHi

= III +

K

i=1

HHH
y
iQQQiHHHi:

Notice that the argument of the maximization in the expression of the
sum-rate capacity of the dual MAC in (4) is log j���yj.

The received signal power is given by

E[yyyyyyy] =

K

i=1

E xxx
y
iHHHiHHH

y
ixxxi + E[nnnynnn]:
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Since xxxyiHHHiHHH
y
ixxxi � kHHHy

ik
2kxxxik

2 = kHHHik
2kxxxik

2 by the definition
of matrix norm, we have

E[yyyyyyy] �

K

i=1

kHHHik
2
E xxx

y
ixxxi +E[nnnynnn] (10)

�kHHHk2max

K

i=1

E xxx
y
ixxxi +M (11)

�kHHHk2maxP +M (12)

where (11) follows from the definition of kHHHkmax and the fact that
E[nnnynnn] = M and (12) follows from the sum power constraint on the

transmitters in the dual MAC (i.e., K

i=1
E xxx

y
ixxxi � P ). Since

E[yyyyyyy] = Tr(E[yyyyyyy]) = Tr(���y)

this implies thatTr(���y) � PkHHHk2max+M . By [10, Theorem 16.8.4],
for any positive definite M �M matrixKKK ,

jKKKj �
Tr(KKK)

M

M

:

Therefore,

j���yj � 1 +
P

M
kHHHk2max

M

from which we get

CBC(HHH1; . . . ;HHHK ; P ) = max
���

log j���yj �M log 1 +
P

M
kHHHk2max

The upper bound is equal to the sum-rate capacity of a system with
M spatially orthogonal eigenmodes (distributed in any manner be-
tween the K users), each with norm equal to kHHHkmax. Interestingly,
users need not be spatially orthogonal for the bound to be achieved with
equality. IfN = 1 and there are more receivers than transmit antennas
(K > M), then if the users’ channels are Welch-bound equality se-
quences [13] (i.e., kHHHik = 1 for all i and HHHy

HHH = K

M
III), then the

bound is also met with equality by allocating equal power (choosing
QQQi = P

K
in (4)) for each user in the dual MAC. Since K > M , it

is not possible for the K channels (which are the 1 �M rows of the
matrixHHH) to be mutually orthogonal. However, the Welch-bound con-
dition requires theMcolumns ofHHH to be orthogonal. The ith column
of HHH refers to the channel gains from the ith base station antenna to
each of the K mobiles.2

We now proceed by lower-bounding the TDMA sum-rate.

Theorem 2: The TDMA sum-rate is lower-bounded by the rate
achieved by transmitting all power in the direction of the largest
eigenmode

CTDMA(HHH1; . . . ;HHHK ; P ) � log 1 + PkHHHk2max : (13)

Proof: For each user, C(HHHi; P ) � log(1 + PkHHHik
2) because

single-user capacity is achieved by water-filling over all eigenmodes

2Note that if N > 1 and KN > M , the upper bound in Theorem 1 is
also achieved without having spatially orthogonal channels (i.e., eigenvectors)
if each rowHHH has unity norm andHHH HHH = III by choosingQQQ = III in
(4)) for each user in the dual MAC.

instead of allocating all power to the best eigenmode. Since the
TDMA sum-rate is the maximum of the single-user capacities, the
result follows.

This bound is tight whenN = 1, but is generally not tight forN > 1
because each user has min(M;N) eigenmodes to water-fill over.

By combining Theorems 1 and 2, we can upper-bound the DPC gain

CBC(HHH1; . . . ;HHHK ; P )

CTDMA(HHH1; . . . ;HHHK ; P )
�
M log 1 + P

M
kHHHk2max

log (1 + PkHHHk2max)
(14)

�M (15)

where we used Theorems 1 and 2 to get (14). Furthermore, since each
user’s rate in a broadcast channel can be no larger than his respective
single-user capacity

CBC(HHH1; . . . ;HHHK ; P ) �

K

i=1

C(HHHi; P )

�K � CTDMA(HHH1; . . . ;HHHK ; P ): (16)

Combining the upper bounds in (15) and (16) gives the following result.

Theorem 3: The DPC gain is upper-bounded byM , the number of
transmit antennas, and K , the number of users

G(HHH1; . . . ;HHHK ; P ) � min(M;K): (17)

This bound is valid for any set of channelsHHH1; . . . ;HHHK , any number
of receive antennasN , any number of usersK , and any SNR P . When
we consider DPC and TDMA from the perspective of signal space di-
mensions, the upper bound is very intuitive. In the lower bound on
TDMA in Theorem 2, only one spatial dimension (corresponding to the
largest eigenmode among all users) is used. DPC, on the other hand,
can utilize up toM dimensions3 (Theorem 1). Since the TDMA lower
bound uses the strongest eigenmode, the quality of each of these M
spatial dimensions can be no better than the quality of the dimension
used in the TDMA lower bound. Thus, the rate on each of the M di-
mensions can be no larger than the TDMA lower bound, which implies
that DPC gives a sum rate no larger thanM times the TDMA capacity.

Note: A bound similar to Theorem 1 for the single receive antenna
((N = 1) downlink when users have the same channel norm and are
mutually orthogonal was independently derived in an earlier paper by
Viswanathan and Kumaran [14, Proposition 2].

V. ASYMPTOTIC DPC GAIN

In the regimes of high and low SNR, we are able to show tight re-
sults regarding convergence of the DPC gain. At asymptotically high
SNR, the DPC gain converges tomax min M

N
; K ; 1 , while at low

SNR, the DPC gain converges to unity. We present these results in the
following theorems (proofs are given in Appendices I and II).

3The term “dimensions” is used rather loosely when applied to DPC. In a
single-user non-time-varying MIMO channel, spatial dimensions correspond
to purely orthogonal signaling directions (generally corresponding to the right
eigenvectors of the channel gain matrix). When using DPC, signaling dimen-
sions are generally not orthogonal because orthogonal signaling generally leads
to much lower data rates. Thus, the number of spatial dimensions is more ac-
curately interpreted as the rank of the transmit covariance matrix when using
DPC.
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Fig. 3. Plots of DPC gain and sum rate for a two-user, two transmit antenna, one receive antenna channel. (a) DPC gain. (b) Sum-rate plots.

Theorem 4: If the concatenated channel matrix HHH is full-rank and
at least one of the channel matrices HHHi is full-rank, as P ! 1 we
have

lim
P!1

G(HHH1; . . . ;HHHK ; P ) = max min
M

N
;K ; 1 : (18)

Theorem 5: For any channel matrixHHH , DPC and TDMA are equiv-
alent at asymptotically low SNR

lim
P!0

G(HHH1; . . . ;HHHK ; P ) = 1: (19)

If there are more transmit antennas than receive antennas (M �
N), then the high-SNR DPC gain is min M

N
; K . If there are more

receive antennas than transmit antennas (N �M), however, the DPC
gain converges to unity at high SNR. The high-SNR DPC gain can be
intuitively explained from a dimension counting argument as follows.
At high SNR, it is easy to show that the capacity of a MIMO channel
grows as L log(P ) (to first order), where L is the number of spatial
dimensions available in the channel, which is equal to the rank of the
channel matrix. Therefore, only the number of spatial dimensions is
important at high SNR and the quality of these spatial dimensions (i.e.,
the channel gain) is unimportant. This is expected since as P becomes
large, log(1+�P ) � log(P )+log(�) � log(P ).When using TDMA,
there aremin(M;N) dimensions available. This is equal to the number
of dimensions available in anM -transmit, N -receive antenna MIMO
channel. When using DPC, each linearly independent row (i.e., each
received signal that is not equal to a linear combination of some other
received signals) gives a spatial signaling dimension. IfHHH is full-rank,
the matrix hasmin(M;NK) linearly independent rows and thus DPC
can utilizemin(M;NK) spatial dimensions. WhenM � N , the ratio
of spatial dimensions using DPC versus TDMA is given by

min(M;NK)

N
= min

M

N
;K

and thus, DPC gives a sum-rate equal to min M

N
; K times the sum

rate in TDMA. IfM < N , then DPC and TDMA can both utilizeM
spatial dimensions and thus, the DPC gain converges to unity at high
SNR.

Since the sum-rate capacity grows asmin(M;NK) log(P ) for large
P , it is also easy to show that the sum-rate capacity upper bound given
in Theorem 1 is asymptotically tight whenM � NK , or that

lim
P!1

CBC(HHH1; . . . ;HHHK ; P )

M log 1 + P

M
kHHHk2max

= 1: (20)

Interestingly, the TDMA sum capacity lower bound in Theorem 2 is a
factor of N times smaller than the actual TDMA sum capacity in the
asymptotic limit

lim
P!1

CTDMA(HHH1; . . . ;HHHK ; P )

log (1 + PkHHHk2max)
= N: (21)

However, this factor of N does not preclude the general upper bound
of min(M;K) on the DPC gain.

We can also compare the high-SNR behavior of the sum-rate ca-
pacity with that of the cooperative-receiver channel. Since receiver co-
operation can only increase the capacity of the broadcast channel, the
sum capacity CBC(HHH1; . . . ;HHHK ; P ) is upper-bounded by the capacity
of the system in which the K receivers fully cooperate, i.e., the ca-
pacity of theM transmit,NK receive antenna MIMO channel, which
is given by C(HHH;P ) as defined in (6). The cooperative upper-bound
MIMO channel also has min(M;NK) spatial dimensions. Thus, at
high SNR, the ratio of sum capacity of the broadcast channel to the ca-
pacity of the cooperative channel converges to unity. In fact, an even
tighter result shows that the difference between the sum-rate capacity
and the cooperative upper bound converges to zero as SNR goes to in-
finity [1, Theorem 3].

The intuition behind the low-SNR result in Theorem 5 is exactly the
opposite of the high-SNR scenario. At low SNR, only the quality of
the best signaling dimension is important and the number of available
signaling dimensions is unimportant. To see this, note that for P small

CBC(HHH1; . . . ;HHHK ; P ) �M log 1 +
P

M
kHHHk2max

�M
P

M
kHHHk2max = PkHHHk2max

� CTDMA(HHH1; . . . ;HHHK ; P ):

DPC allows for simultaneous transmission over all of the different spa-
tial dimensions. Since only the best signaling dimension is of impor-
tance at low SNR, this option is of no use and DPC and TDMA are
equivalent at low enough SNR.

In Fig. 3(a), the DPC gain G(HHH1; . . . ;HHHK ; P ) is plotted as a func-
tion of SNR for a two-user channel with two transmit antennas and
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Fig. 4. Plots of DPC gain and sum rate for a two-user, two transmit antenna, two receive antenna channel. (a) DPC gain. (b) Sum-rate plots.

single receive antennas. The upper bound (= M = 2) on the DPC
gain is also included. Notice the monotonicity of the DPC gain and
convergence of the gain at both low and high SNR. When N = 1,
we conjecture thatG(HHH1; . . . ;HHHK ; P ) is in fact a monotonically non-
decreasing function of P . Showing that CBC(HHH1; . . . ;HHHK ; P ) and
CTDMA(HHH;P ) are increasing functions of P is trivial, but it appears
difficult to show the monotonicity of the ratio of these quantities for
even the two-user, N = 1 scenario for which an exact expression for
CBC(HHH1; . . . ;HHHK ; P ) is known [1, Theorem 1]. In Fig. 3(b), the DPC
and TDMA sum rate (CBC(HHH1; . . . ;HHHK ; P ) and CTDMA(HHH;P ), re-
spectively) are plotted for the same system, along with the sum-rate
capacity upper boundM log 1 + P

M
kHHHk2max from Theorem 1. Note

that the sum-rate capacity upper bound becomes tight in the ratio sense
as P !1. Furthermore, notice that the slope of the sum-rate capacity
curve is approximately twice the slope of the TDMA sum rate curve,
leading to the convergence of the DPC gain to two.

In Fig. 4(a), the DPC gain is plotted as a function of SNR for a
two-user channel with two transmit antennas and two receive antennas
per user. Notice that the DPC gain converges to M

N
= 1 at both ex-

tremes, but takes its maximum at a finite SNR. When M = N > 1,
G(HHH1; . . . ;HHHK ; P ) is generally not monotonically nondecreasing and
actually achieves its maximum at a finite SNR.WhenM = N as in the
figure, both TDMA (min(M;N) = M) and DPC (min(M;NK) =
M) can useM spatial dimensions. When using TDMA, the transmitter
must choose to use one of the K user’s M spatial dimensions. When
using DPC, the transmitter can chooseM spatial dimensions from all
NK available dimensions instead of being forced to choose one of the
K sets (corresponding to each user) of N dimensions. This is not im-
portant at high SNR, where only the number of dimensions is relevant,
or at low SNR, where only the strongest spatial dimensions are rel-
evant. However, this improvement in the quality of dimensions leads
to a strict DPC gain at finite SNR. In Fig. 4(b), the DPC and TDMA
sum-rate are plotted for the same system, along with the sum-rate ca-
pacity upper bound from Theorem 1. In this channel, it is easy to see
that all three curves have the same growth rate, i.e., are asymptotically
equivalent in the ratio sense.

VI. TIGHTNESS OF BOUND IN RAYLEIGH FADING

In this section, we consider the downlink sum-rate capacity in uncor-
related Rayleigh fading, i.e., where each entry ofHHHk is independently
and identically distributed as a complex circularly symmetric Gaussian

with unit variance. Here we consider a time-varying system, but we as-
sume the transmitter and receiver have perfect and instantaneous CSI,
and thus can adapt to the channel in each fading state. We also assume
that the transmitter (the base station) is subject to a short-term power
constraint, so that the base station must satisfy power constraint P in
every fading state. This implies that there can be no adaptive power al-
location over time.4 Assuming that the fading process is ergodic, the
sum-rate is equal to the expected value of the sum-rate in each fading
state. Therefore, a reasonable performance metric is the ratio of the av-
erage sum rate using DPC to the average sum rate using TDMA, i.e.,

HHH [CBC(HHH1; . . . ;HHHK ; P )]

HHH [CTDMA(HHH1; . . . ;HHHK ; P )]
:

Note that this is not the same as the quantity HHH [G(HHH1; . . . ;HHHK ; P )],
which is not as meaningful when considering average rates achievable
in a fading channel.

In the previous sections, we were able to establish bounds and
asymptotic limits for the DPC gain for a fixed channel HHH . In this
section, we attempt to gain some intuition about the “average” DPC
gain, where we average rates over Rayleigh-fading channels and then
calculate the ratio. By Theorem 3, we have

CBC(HHH1; . . . ;HHHK ; P ) � min(M;K) � CTDMA(HHH1; . . . ;HHHK ; P )

for each instantiation ofHHH . By taking the expectation of both sides, we
get

HHH [CBC(HHH1; . . . ;HHHK ; P )]

HHH [CTDMA(HHH1; . . . ;HHHK ; P )]
� min(M;K): (22)

In this section, we show that this bound can be tightened to
min M

N
; K in the limit of high SNR, in the limit of a large

number of transmit antennas, and in the limit of a large number of
users. Note that the same limiting behavior occurs for the DPC gain of
each channel instantiation in the limit of high SNR (Theorem 4). We
also provide numerical results that show the DPC gain for nonasymp-
totic systems. To compute the sum-rate capacity for each channel
instantiation, we use the algorithm provided in [11]. Furthermore, we
use the standard Monte Carlo method to approximate the expected
value of sum-rate over the distribution ofHHH .

4If the transmitter is subject to an average power constraint instead of a
peak power constraint, the fading channel is theoretically equivalent to the
frequency-selective broadcast channel model discussed in Section VIII. In the
frequency-selective scenario, we show that the DPC gain is also upper-bounded
by min(M;K).
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A. High SNR

We first consider the scenario where M , N , and K are fixed, but
the SNR P is taken to infinity. Furthermore, we assumeM � N and
M � KN , which is quite reasonable for practical systems. In this
scenario, the DPC gain is shown to asymptotically equal M

N

lim
P!1

HHH [CBC(HHH1; . . . ;HHHK ; P )]

HHH [CTDMA(HHH1; . . . ;HHHK ; P )]
=
M

N
: (23)

We show convergence by establishing upper and lower bounds on
TDMA and DPC sum-rate.5

Using Theorem 1 on the single-user (K = 1) broadcast channel
HHH
y
i , we can upper-bound the single-user capacity C(HHHi; P ) by

N log 1 + P

N
kHHHik

2 . Then, using Jensen’s inequality, the TDMA
sum-rate can be bounded as

HHH [CTDMA(HHH1; . . . ;HHHK ; P )] � N HHH log 1 +
P

N
kHHHk2max

� N log 1 +
P

N
HHH kHHHk2max :

Since CTDMA(HHH1; . . . ;HHHK ; P ) � C(HHH1; P ), we can lower-bound
the TDMA capacity as

HHH [CTDMA(HHH1; . . . ;HHHK ; P )] � HHH [C(HHH1; P )]

� HHH log III +
P

N
HHH
y
1HHH1

= N HHH log 1 +
P

N
�i

� N log
P

N
+ HHH [log (�i)]

where �i is an unordered eigenvalue of the Wishart matrixHHH1HHH
y
1 and

the single-user capacity is lower-bounded by transmitting equal power
(as opposed to the optimal water-filling power allocation) on each of
the N eigenmodes of User 1.

Using Theorem 1 and Jensen’s inequality, we can upper-bound the
sum-rate capacity as

HHH [CBC(HHH1; . . . ;HHHK ; P )] �M HHH log 1 +
P

M
kHHHk2max

�M log 1 +
P

M
HHH kHHHk2max :

We can also lower-bound the sum-rate capacity by choosing QQQi =
P

KN
III in (4) for each user

HHH [CBC(HHH1; . . . ;HHHK ; P )] � HHH log III +
P

KN
HHH
y
HHH

= M HHH log 1 +
P

KN
�i

�M log
P

KN
+ HHH [log(�1)]

where �i is distributed as an unordered eigenvalue of the M � M

Wishart matrix HHHyHHH . Using these bounds, as P becomes large, we
can upper- and lower-bound the ratio

HHH [CBC(HHH1; . . . ;HHHK ; P )]

HHH [CTDMA(HHH1; . . . ;HHHK ; P )]

5Note that the high-SNR result in Theorem 4 cannot be extended in a straight-
forward manner here because the theorem only gives convergence for each in-
stantiation ofHHH and we require some uniformity of convergence for the result
to hold in an expected value sense across instantiations.

Fig. 5. DPC gain as a function of SNR for a system with 10 users.

by M

N
. It then follows that

HHH [CBC(HHH1; . . . ;HHHK ; P )]

HHH [CTDMA(HHH1; . . . ;HHHK ; P )]

converges to M

N
in the limit of high SNR. This result is intuitively

closely related to Theorem 4.
In Fig. 5, the ratio of sum-rate capacity to the TDMA sum-rate (i.e.,

[C (HHH ;...;HHH ;P )]
[C (HHH ;...;HHH ;P )]

) is plotted for a system with 10 users. The
ratio is plotted for M = 4 and N = 1, N = 2, and N = 4. In each
case the DPC gain converges to M

N
, though it does so quite slowly for

the N = 1 case.

B. LargeM

In this subsection, we examine the scenario where the number of
users (K), number of receive antennas (N), and SNR (P ) are fixed
but the number of transmit antennas (M) is taken to be large. We will
show that the DPC gain converges toK in this case, i.e.,

lim
M!1

HHH [CBC(HHH1; . . . ;HHHK ; P )]

HHH [CTDMA(HHH1; . . . ;HHHK ; P )]
= K: (24)

As in the previous section, we lower-bound the sum-rate capacity
by choosingQQQi =

P

KN
III in (4) for each user and in each fading state.

Since the identity covariance is optimal for point-to-point MIMO chan-
nels in Rayleigh fading [12], with the above choice of QQQi the lower
bound is equal to the point-to-point capacity of aKN transmit,M re-
ceive MIMO channel where only the receiver has channel knowledge.
If the number of receive antennas in this point-to-point link is allowed
to become large (i.e.,M !1) but the number of transmit antennas in
this point-to-point model (KN) is kept fixed, then the capacity of the
point-to-point system grows as KN log 1 + MP

KN
[16].

As in the previous section, the TDMA sum-rate is upper-bounded as

HHH [CTDMA(HHH1; . . . ;HHHK ; P )] � N HHH log 1 +
P

N
kHHHk2max :

Using standard probability arguments, we can upper-bound

HHH [CTDMA(HHH1; . . . ;HHHK ; P )]

byN log 1 + P

N
M(1 + �) , where � is any strictly positive number.
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Fig. 6. DPC gain as a function ofM for a system with three users at 10 dB.

If we now take the ratio of DPC sum-rate capacity to TDMA sum-
rate as M ! 1, we get

lim
M!1

HHH [CBC(HHH1; . . . ;HHHK ; P )]

HHH [CTDMA(HHH1; . . . ;HHHK ; P )]

� lim
M!1

KN log 1 + MP

KN

N log 1 + P

N
M(1 + �)

= K: (25)

By Theorem 3, this ratio is also upper-bounded byK for allM , Thus,
in the limit of many transmit antennas and with a fixed number of re-
ceivers, the DPC gain goes toK . Intuitively, asM becomes large, the
NK rows of HHH become mutually orthogonal because each row is a
random vector in M . Using TDMA, signaling can be done over N
roughly orthogonal dimensions, whereas DPC allows signaling over
NK dimensions. Thus, DPC can use K times as many signaling di-
mensions. Furthermore, the received SNR increases linearly with M
because the transmitter has perfect knowledge of the channel and the
gain of each antenna element is assumed to have a variance that is in-
dependent ofM . Thus, we are effectively in the high-SNR regime (in
terms of received SNR, but not in terms of P , which is fixed) when
considering asymptotically large M , which implies that the factor of
K increase in the number of spatial dimensions gained by using DPC
translates to a factor of K increase in rate.

In Fig. 6, the DPC gain is plotted as a function of the number of
transmit antennas for a system with three users, each with 10-dB av-
erage SNR. Notice that for bothN = 1 andN = 2, slow convergence
to K = 3 is observed asM becomes large.

C. Large K

If the number of antennas and the SNR are kept fixed and the number
of users is taken to be large, it is shown in [17] that the dirty paper gain
converges to M

N
, i.e.,

lim
K!1

HHH [CBC(HHH1; . . . ;HHHK ; P )]

HHH [CTDMA(HHH1; . . . ;HHHK ; P )]
= max

M

N
; 1 : (26)

More specifically, the authors show that the sum-rate capacity and the
TDMA sum-rate grow asM log log(K) and min(M;N) log log(K),
respectively. The intuition in this scenario is that as the number of users
grows large, you can find a roughly orthogonal set (of size M or N )
of channels to transmit over. Furthermore, the quality of these channels
(i.e., the channel gain) grows roughly as log(K) because the maximum

Fig. 7. DPC gain as a function of # of users for a system with four transmit
antennas and one receive antenna.

Fig. 8. DPC gain as a function of SNR for a system with 10 users and one
receive antenna.

of independent exponential random variables grows logarithmically.
Thus, the approximate rate is equal to (# of dimension) � log log(K).

D. Numerical Results

In this subsection, we provide plots and analysis of the DPC gain
in Rayleigh fading for more realistic system parameters. In Fig. 7, the
DPC gain is plotted as a function of the number of users for a system
with four transmit antennas and one receive antenna. Plots are provided
for different average SNR values. The DPC gain converges to four in
the limit of a large number of users (i.e., each SNR curve converges
to four), but convergence occurs extremely slowly, particularly for the
lower SNR values. However, a factor of 2 to 3 increase in sum rate is
possible for systems with 20 users and average SNRs ranging from 5
to 20 dB.

In Fig. 8, the DPC gain is plotted against SNR for systemswith single
receive antenna and differing numbers of transmit antennas. Each curve
converges to M at very high SNR, and convergence occurs relatively
quickly, unlike in the previous figure. Notice that at 0 dB, the DPC
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gain is larger than two only when there are eight transmit antennas.
However, at 10 to 20 dB, gains of 2 to 5 are feasible if four or more
antennas are used.

In general, note that the largest DPC gain occurs in systems with
a large number of users relative to the number of transmit antennas
operating at a high average SNR. Cellular systems typically have a
large number of users per cell (i.e., 20–30), which is large compared to
reasonable base station antenna deployments, but SNRs are typically
quite low.

VII. RATE REGION BOUNDS

Given that the sum-rate gain of DPC over TDMA can be elegantly
upper-bounded by min(M;K), a natural question to ask is whether
the entire DPC rate region can be upper-bounded by the same factor
min(M;K) times the TDMA rate region, i.e., is

RDPC(HHH1; . . . ;HHHK ; P )�min(M;K)�RTDMA(HHH1; . . . ;HHHK ; P )?

We have thus far investigated the gain DPC provides when all users’
rates are weighted equally, but a general rate region upper bound would
bound the total gain DPC can provide for anyweighting of transmission
rates.

By single-user capacity bounds, we know that

RRR 2 RDPC(HHH1; . . . ;HHHK ; P )

implies

RRRi � C(HHHi; P ); for i = 1; . . . ; K:

Thus,

1

K

K

i=1

RRRi �

K

i=1

1

K
C(HHHi; P )

which by the definition of RTDMA(HHH1; . . . ;HHHK ; P ) in (5) implies
1

K
RRR 2 RTDMA(HHH1; . . . ;HHHK ; P ). Thus, it follows that

RDPC(HHH1; . . . ;HHHK ; P ) � K � RTDMA(HHH1; . . . ;HHHK ; P ):

However, it is in fact surprisingly simple to show that it is not always
true that

RDPC(HHH1; . . . ;HHHK ; P ) �M � RTDMA(HHH1; . . . ;HHHK ; P ):

Consider a single transmit and single receive antenna broadcast channel
(M = N = 1). As long as each of the channel gains are not equal,
the capacity region (which is equal to the DPC region for the scalar
broadcast channel) of the scalar broadcast channel is strictly larger than
the TDMA region [10], i.e.,

RDPC(HHH1; . . . ;HHHK ; P ) � RTDMA(HHH1; . . . ;HHHK ; P ):

Interestingly, for symmetric channels (i.e., single-user capacities of all
users are equal C(HHH1; P ) = C(HHH2; P ) = � � � = C(HHHK ; P )), the
min(M;K) bound on the DPC gain implies that for anyRRR in the DPC
region,

K

i=1

Ri � CBC(HHH1; . . . ;HHHK ; P ) � min(M;K) � C(HHH1; P ):

Therefore, it follows that

RDPC(HHH1; . . . ;HHHK ; P ) � min(M;K) � RTDMA(HHH1; . . . ;HHHK ; P )

for symmetric channels. However, this result is not true in general. The
implication of this is that DPC can provide a multiplicative gain of
larger than min(M;K) for non-sum-rate points for certain channels.

VIII. FREQUENCY-SELECTIVE BROADCAST CHANNELS

A frequency-selective multiple-antenna broadcast channel can be
decomposed into a set of parallel, independent flat-fading multiple-
antenna broadcast channels [18]. In practical systems, orthogonal fre-
quency division multiplexing (OFDM) can be used to reduce a fre-
quency-selective channel into a finite number of parallel, frequency-flat
MIMO broadcast channels (corresponding to each frequency tone).
Either DPC or TDMA (i.e., transmit to only a single user on each
tone) could be used on each tone. By Theorem 3, the gain of DPC
over TDMA on each tone is upper-bounded by min(M;K). There-
fore, the aggregate gain of DPC across all tones versus TDMA is also
upper-bounded by min(M;K). This is true if there is a power con-
straint on each tone, or a total sum power constraint across all tones.
In fact, the upper bound also holds if there is time-selective fading in
addition to the frequency-selective fading. However, if only one user is
selected for transmission across all tones, which implies that this user
may not be the best user for each tone, the gain of using DPC on each
tone is no longer upper-bounded by M , but is still upper-bounded by
K , the number of users.

IX. TRANSMITTER BEAMFORMING

Transmitter beamforming6 is a suboptimal technique that supports
simultaneous transmission to multiple users on a broadcast channel.
Each active user is assigned a beamforming direction by the transmitter
and multiuser interference is treated as noise. Transmit beamforming
is actually quite similar to DPC, but with DPC some multiuser inter-
ference is “pre-subtracted” at the transmitter, thus increasing the rates
of some users. In [5], it is shown that transmitter beamforming for the
broadcast channel without precoding is dual to receiver beamforming
in the multiple-access channel without successive interference cancel-
lation. As a result, when N = 1, the maximum sum rate using beam-
forming can be written as [19]

CBF (HHH1; . . . ;HHHK ; P )

= max
P : P �P

K

j=1

log
III + K

i=1
HHH
y
iPiHHHi

III +
i6=j HHH

y
iPiHHHi

: (27)

This optimization cannot be cast in a convex form, and does not lend
itself to numerical computation. However, we are able to analytically
show that beamforming and DPC are equivalent at low and high SNR.

Theorem 6: If HHH has at least M independent rows, beamforming
performs as well as DPC in the ratio sense at both asymptotically low
and high SNR

lim
P!1

CBC(HHH1; . . . ;HHHK ; P )

CBF (HHH1; . . . ;HHHK ; P )
= lim

P!0

CBC(HHH1; . . . ;HHHK ; P )

CBF (HHH1; . . . ;HHHK ; P )

= 1: (28)

Proof: By Theorem 1, we have

CBC(HHH1; . . . ;HHHK ; P ) �M log 1 +
P

M
kHHHk2max :

6Transmitter beamforming is also referred to as SDMA, or space-division
multiple access.
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RTDMA(HHH1; . . . ;HHHK ; PPP )

� �0; � =1

�1C HHH1;
P1

�1
; . . . ; �KC HHHK ;

PK

�K
:

For simplicity, assume that the firstM rows ofHHH are linearly indepen-
dent. In the proof of Theorem 4, we show that the sum-rate achievable
using channel inversion is at least as large as

M

i=1

log 1 + �
2
i

P

M
:

Channel inversion is a particular method of transmitter beamforming
(zero-forcing beamforming), and thus,

CBF (HHH1; . . . ;HHHK ; P ) �

M

i=1

log 1 + �
2
i

P

M
:

Therefore, we have

lim
P!1

CBC(HHH1; . . . ;HHHK ; P )

CBF (HHH1; . . . ;HHHK ; P )
� lim
P!1

M log 1 + P

M
kHHHk2max

M

i=1 log 1 + �2i
P

M

= 1:

The low-SNR result follows directly from Theorem 5 and the fact that
CBF (HHH;P ) � CTDMA(HHH1; . . . ;HHHK ; P ).

The equivalence of transmitter beamforming and DPC at high SNR
follows from the fact that both DPC and transmitter beamforming can
use min(M;NK) signaling dimensions. However, the use of DPC
reduces interference seen at the receivers and therefore improves the
quality of each of the signaling dimensions, leading to an increase in
sum-rate at finite SNR. Thus, an interesting open problem is to analyti-
cally bound the gain that DPC provides over transmitter beamforming.
We conjecture that the ratio C (HHH ;...;HHH ;P )

C (HHH ;...;HHH ;P )
is bounded by a con-

stant (< M) independent of the number of antennas and the channel
HHH for all P , but we have been unable to prove this due to the diffi-
culty of working with the beamforming sum-rate expression in (27).
Viswanathan and Venkatesan [20] recently characterized the perfor-
mance of downlink beamforming and DPC as M and K both grow
to infinity at some fixed ratio M

K
= �. In this asymptotic regime, the

ratio C (HHH ;...;HHH ;P )
C (HHH ;...;HHH ;P )

is bounded by 2 for all values of � and P .

X. BOUND ON SUM-RATE GAIN OF SUCCESSIVE

DECODING FOR UPLINK

Successive decoding is a capacity-achieving scheme for the MAC
(uplink) in which multiple users simultaneously transmit to the base
station and the receiver successively decodes and subtracts out the sig-
nals of different users. This technique achieves the sum-rate capacity of
the MIMO MAC [10, Ch. 14], but is difficult to implement in practice.
The sum-rate capacity of the MAC with transmitter power constraints
PPP = (P1; . . . ; PK) is given by

CMAC(HHH1; . . . ;HHHK ; PPP ) = max
fTr(QQQ )�P 8ig

log III +

K

i=1

HHH
y
iQQQiHHHi :

Notice that the sum-rate capacity of the MAC is identical to the BC
sum-rate capacity expression in (4) except that the MAC expression
has individual power constraints instead of a sum constraint.

Using the proof technique of Theorem 1 on the dual uplink (K trans-
mitters with N antennas each and a single receiver withM antennas)
modified for individual power constraintsPPP = (P1; . . . ; PK), it is easy
to see that the following holds:

CMAC(HHH1; . . . ;HHHK ; PPP ) �M log 1 +
K

i=1 PikHHHik
2

M
: (29)

A suboptimal transmission scheme is to allow only one user to transmit
at a time. Since each user in the uplink has an individual power con-
straint, users are allocated orthogonal time slots in which they transmit.
Thus, the TDMA rate region is defined asshown in the equation at the
top of the page. As before, the TDMA sum-rate is defined as the max-
imum sum of rates in this region. As used in the proof of Theorem 2,
for each user

C HHHi;
Pi

�i
� log 1 +

Pi

�i
kHHHik

2

for any �i. Thus,

CTDMA(HHH1; . . . ;HHHK ; PPP )

� max
� �0; � =1

K

i=1

�i log 1 +
Pi

�i
kHHHik

2
:

The right—hand side of this expression corresponds to the TDMA re-
gion of a scalarMAC with channel gains kHHH1k; . . . ; kHHHKk. This ex-
pression is maximized by choosing

�i =
PikHHHik

2

K

j=1 PjkHHHjk2

because this choice of �i yields a sum-rate equal to the sum-rate ca-
pacity of the scalar MAC [10, Sec. 14.3.6]. With this choice of �i, we
get the following upper bound:

CTDMA(HHH1; . . . ;HHHK ; PPP ) � log 1 +

K

i=1

PikHHHik
2

: (30)

Combining (29) and (30) we get

CMAC(HHH1; . . . ;HHHK ; PPP )

CTDMA(HHH1; . . . ;HHHK ; PPP )
�M

As before, the single-user capacity of each user also upper bounds this
ratio by K . Thus, we finally get

C (HHH ;...;HHH ;PPP )
C (HHH ;...;HHH ;PPP )

� min(M;K) (31)

or that performing optimal successive decoding at the base station of-
fers a gain of at most min(M;K) over TDMA.

XI. CONCLUSION

We have established that the sum-rate capacity of a multiple-antenna
broadcast channel, achievable using DPC, is at mostmin(M;K) times
larger than the maximum achievable sum rate using TDMA, where
M is the number of transmit antennas (base station antennas) and K
is the number of users. This bound applies at any SNR and for any
number of receive antennas, and also generalizes to frequency-selective
and time-selective channels. For Rayleigh-fading channels, the bound
tightens tomax min M

N
; K ; 1 at high SNR, for a large number of

transmit antennas, or for a large number of users. Using the same tech-
niques for the uplink, we found that the performance gain using suc-
cessive decoding on the uplink versus TDMA is also upper bounded by
min(M;K), whereM is the number of receive antennas (at the base
station) and K is the number of mobiles (i.e., transmitters). Thus, it
seems that for systems with many users that operate at relatively high
SNRs, DPC can provide a significant performance gain if additional
antennas are added only at the base station without the extra expense
associated with adding additional antennas at each mobile. In contrast,
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if the number of mobile antennas is the same as the number of base
station antennas or if the system is operating at low SNR, the benefit
of using DPC on the downlink or successive decoding on the uplink is
rather limited.

APPENDIX I
PROOF OF THEOREM 4

The basic premise is to show that CBC(HHH1; . . . ;HHHK ; P ) grows
as min(M;NK) log(P ) and CTDMA(HHH1; . . . ;HHHK ; P ) grows as
min(M;N) log(P ). Let L min(M;NK). Since HHH is full-rank
by assumption, it has L linearly independent rows. We form a matrix
(denoted by HHHL;L) consisting of any set of L linearly independent
rows ofHHH . By the linear independence of the rows,HHHL;L is invertible.
Therefore, we can invert the channel at the transmitter (i.e., perform
zero-forcing, whereby the transmitted signal is xxx = (HHHL;L)�1uuu,
and uuu is the L � 1 data vector) to give L independent and parallel
nonzero channels. The result is L independent and parallel channels
with strictly nonzero channel gains �1; . . . ; �L. The channel gain �i
is equal to the norm of the projection of the ith row ofHHHL;L onto the
other rows of HHHL;L. Due to the invertibility of HHHL;L, each of these
channel gains is strictly positive. Thus, we have

CBC(HHH1; . . . ;HHHK ; P ) �

L

i=1

log 1 + �
2
i

P

L

because allocating equal power on the parallel channels is sub-
optimal. Furthermore, it is easy to see that the sum capacity of
the broadcast channel is upper-bounded by the capacity of the
point-to-point MIMO channel where all K receivers cooperate,
i.e., CBC(HHH1; . . . ;HHHK ; P ) � C(HHH;P ). From single-user MIMO
theory, it is well known that C(HHH;P ) � L log 1 + P

L
kHHHk2 .

Thus, CBC(HHH1; . . . ;HHHK ; P ) is upper-bounded above and below by
L log(P ) as P ! 1.

To show the order growth of CTDMA, without loss of generality,
we assume HHH1 is full-rank. Since HHHiHHH

y
i has min(M;N) nonzero

eigenvalues, we have C(HHHi; P ) � min(M;N) log(1 + PkHHHk2max).
Therefore,

CTDMA(HHH1; . . . ;HHHK ; P ) � min(M;N) log(1 + PkHHHk2max)

by the definition of the TDMA capacity. Furthermore, we clearly have
CTDMA(HHH1; . . . ;HHHK ; P ) � C(HHH1; P ). Due to the water-filling
structure of the capacity-achieving input for a single-user MIMO
channel and becauseHHHiHHH

y
i has min(M;N) nonzero eigenvalues, we

have

C(HHH1; P ) �

min(M;N)

i=1

log 1 + �i
P

min(M;N)

where (�1; . . . ; �min(M;N)) are the nonzero eigenvalues of HHH1HHH
y
1.

Therefore, we have that CTDMA is bounded above and below by
min(M;N) log(P ) as P ! 1.

Combining these bounds, we can establish that

lim
P!1

CBC(HHH1; . . . ;HHHK ; P )

CTDMA(HHH1; . . . ;HHHK ; P )

is bounded above and below by min(M;NK)
min(M;N)

. WhenM � N , we have

min(M;NK)

min(M;N)
= min

M

N
;K

which is clearly greater than or equal to unity. When M < N , the
quantity is equal to one. Thus, we have the result.

APPENDIX II
PROOF OF THEOREM 5

Without loss of generality, assume that kHHH1k�kHHH2k � � ��kHHHKk.
First notice that on the dual MAC we have

log III +

K

i=1

HHH
y
iQQQiHHHi = I(X1; . . . ; XK ;Y ) (32)

=

K

i=1

I(Xi;Y jX1; . . . ; Xi�1) (33)

�

K

i=1

I (Xi;Y jX1; . . . ; Xi�1;

Xi+1; . . . ; XK) (34)

=

K

i=1

log III +HHH
y
iQQQiHHHi (35)

where we have used the chain rule for mutual information in (33) and
the fact that X1; . . . ; XK are independent to get

I(Xi;Y jX1; . . . ; Xi�1;Xi+1; . . . ; XK) � I(Xi;Y jX1; . . . ; Xi�1)

in (34). Thus, we can upper-bound the sum capacity of the dual MIMO
MAC by the sum capacity of a multiple-access channel where each
transmitter has an independent channel HHH

y
i to the receiver. By diag-

onalizing eachHHHi, we can write the sum capacity of this upper bound
as

max
P �0: P �P

i;j

log(1 + Pi;j�i;j) (36)

where �i;j is the jth eigenvalue ofHHHiHHH
y
i . Assume that �i;j � �i;k for

all k > j. Notice that the optimal power allocation maximizing (36)
is found by the standard water-filling procedure for parallel Gaussian
channels [10, Ch. 10.4].

We must separately consider two different cases: kHHH1k > kHHH2k
and kHHH1k = kHHH2k. First consider kHHH1k > kHHH2k, which implies
�1;1 > �2;1. From the water-filling procedure, we know that for P �
1

�
� 1

�
, there is not enough power to fill any of the channels of

Users 2; . . . ; K . Therefore, the maximum in (36) is achieved by only
allocating power to User 1, i.e., TDMA is optimal, for small enough
P . Thus, for P � 1

�
� 1

�
, we have

CBC(HHH1; . . . ;HHHK ; P ) = CTDMA(HHH1; . . . ;HHHK ; P ):

Now consider the scenario where kHHH1k = kHHH2k = � � � = kHHHLk,
i.e., where L users have the same largest eigenvalue. Let mi be
the multiplicity of the largest eigenvalue of the ith user, and assume

L

i=1mi = J . Then for P � J 1
�

� 1
�

, where �� is the second
largest eigenvalue among all users, the maximum in (36) is achieved
by allocating equal power to the J eigenmodes with the largest
eigenvalue. The corresponding capacity is J log 1 + kHHH1k

2 P
J

. In
this case, note that

lim
P!0

J log 1 + kHHH1k
2 P
J

log (1 + kHHH1k2P )
= 1: (37)

Thus, in the limit of smallP , the ratio of the sum capacity to the TDMA
capacity goes to one.
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Computing the Capacity of a MIMO Fading Channel
Under PSK Signaling

Wenyan He and Costas N. Georghiades, Fellow, IEEE

Abstract—We study the constrained capacity of a multiple-input mul-
tiple-output (MIMO) fading channel with a phase-shift keying (PSK) input
alphabet and show a uniform prior distribution is capacity achieving. An
expression for the capacity is derived which requires a single expectation
and can be evaluated easily through simulation. The simulations are fa-
cilitated by analytical expressions for the eigenvalues and eigenvectors of a
required covariance matrix. The derived expression is used to provide good
approximations to the capacity at low signal-to-noise ratios (SNRs) as well
as to compare the input-constrained MIMO capacity to the unconstrained
MIMO capacity.

Index Terms—Capacity-achieving distribution, constrained input, mul-
tiple-input multiple-output (MIMO) capacity, phase-shift keying (PSK)
signaling.

I. INTRODUCTION

Since the work on multiple-input multiple-output (MIMO) systems
by Telatar [1] and Foschini and Gans [2], MIMO capacity has be-
come a subject of significant research. Foschini [3] pointed out that the
MIMO capacity could be substantially higher than that of a single-an-
tenna system. He went further to establish the relationship between
theM -dimensional architecture andM one-dimensional architectures.
The many currently available results on MIMO capacity are based on
three exclusive assumptions: the channel known at both the transmitter
and receiver, the channel known only at the receiver, and the channel
known at neither the transmitter nor the receiver. In the first category,
the water-filling power allocation on the singular values of the channel
matrix is shown to be optimal at the transmitter [1], [4]. In the second
category, when the channel matrix entries are independent and iden-
tically distributed (i.i.d.), uniform power allocation is assumed at the
transmitter since it has no knowledge of the channel state. Compared
to the first two cases, the third is mathematically more difficult to deal
with and interest in it is relatively new. Marzetta and Hochwald [5]
shed some light on this case by showing, for instance, that increasing
the number of transmit antennas beyond the number of symbol periods
in a coherence interval does not increase capacity. Zheng and Tse [6]
also did some original work that falls into this category. They focused
on the asymptotic capacity at high signal-to-noise ratio (SNR) and tried
to give a geometric interpretation to the problem as sphere packing in
the Grassmann manifold [7].

A brief overview of MIMO capacity can be found in [8]. Gold-
smith et al. [9] gave a more detailed overview of recent results on
single-user and multiuser MIMO capacity, in which multiple defini-
tions of time-varying channel capacity are listed, i.e., outage capacity,
ergodic capacity, and minimum-rate capacity. Since a closed-form ex-
pression for theMIMOcapacity is unavailable, the asymptotic behavior
naturally becomes a primary topic of interest. When the number of
transmit and receive antennas is large, the instantaneous MIMO ca-
pacity, as a random variable, can be well approximated by Gaussian
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