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Abstract- In a multi-user system in which interference is
treated as noise, increasing the power of all transmissions
eventually makes thermal noise negligible and causes the network
to be interference-limited. This paper attempts to determine
the power level at which a random-access ad hoc network
becomes interference limited. Furthermore, when the network
is not interference-limited (i.e., when signal power does not
completely overwhelm noise), the relationship between power and
area spectral efficiency is quantified. It is shown that the key
quantity is the energy per information bit, commonly referred to
as Eb . Roughly speaking, a network becomes interference limited
for _bvalues above approximately 15 dB; increasing Eb leads to
a negligible capacity increase, but decreasing Eb below this value
does lead to a non-negligible capacity decrease. Furthermore, as
Et, approaches the Shannon limit of -1.59 dB, network capacity
is seen to be extremely sensitive to the value of Eb

I. INTRODUCTION

In a multi-user communication network with simultaneous
and interfering transmissions, the two fundamental impedi-
ments to reliable communication are thermal noise and multi-
user interference. If the power of each simultaneous trans-
mission is increased, signal and interference power increase
proportionally while thermal noise power remains constant.
Thus, at some point thermal noise becomes approximately
negligible, i.e., the network becomes interference-limited, and
any further increase in transmission power provides essentially
no benefit. On the other hand, thermal noise is not negligible
when the transmission power is not so large relative to the
noise power. The objective of this paper is to (a) determine the
power level at which an ad hoc network becomes interference-
limited, and (b) quantify the relationship between transmission
power and network capacity.

To allow for analytical tractability, we analyze a random-
access based ad-hoc network consisting of transmitter-receiver
pairs distributed on the two-dimensional plane. More specifi-
cally, the network we consider has the following key charac-
teristics:

. Transmitter locations are a realization of a homogeneous
spatial Poisson process.

* Each transmitter communicates with a single receiver that
is a distance d meters away.

. All transmissions occur at power p and rate R bits/sec,
and the noise spectral density is No.

. Each receiver treats multi-user interference as noise.

By considering such a network, the transmission capacity
framework, which was first developed in [1] and quantifies
the probability of successful transmission in terms of the
transmission density and SINR threshold, can be utilized.

At a basic level, the objective of the work is to determine the
relationship between p, transmission power, and the capacity
(i.e., density of transmissions) of such a network. Rather than
fixing all operating parameters and then varying p, we find it
more meaningful to optimize the network for each value of
p. In the random access setting considered here, the relevant
design variable is the fraction of the total bandwidth that each
rate R bits/sec communication occupies. We consider the case
where the system bandwidth ofW Hz is divided into N equal
sub-bands of w Hz, with each transmission occurring on a
randomly chosen sub-band. The number of sub-bands N is
optimized (separately) for each value of p, and the optimized
capacity is then studied as a function of transmission power.
By posing the problem of sub-band optimization in terms

of the spectral efficiency of each communication (equal to
RW/N)' we are able to derive simple expressions for the optimal

operating point that depend only on the path-loss exponent
of the network and the energy per information bit of each
transmission [2] (i.e., Eb = N where P is the receivedN0 NoR
power, No is the noise spectral density, and R is the rate).
Furthermore, this perspective shows that the value of Eb

No
determines whether a network is interference-limited or not.
When thermal noise is negligible relative to the received

signal power (i.e., Eb xoo), the network becomes purelyNo
interference-limited and the optimal spectral efficiency is a
function of the path loss exponent (a) alone. Furthermore, for
reasonable path loss exponents the optimal spectral efficiency
lies between the low-SNR and high-SNR regimes. For exam-
ple, the optimal is 1.3 bps/Hz and 2.3 bps/Hz for a = 3 and
a = 4, respectively.
When thermal noise is not negligible (i.e., Eb is moderate),No

the optimal spectral efficiency is shown to be a fraction of
the maximum spectral efficiency achievable in the absence
of interference (i.e., the AWGN capacity at that El) For
example, if Eb = 0 dB and a = 4, the maximum spectralNo
efficiency is 1 bps/Hz [2] but the optimal operating point is
0.5 bps/Hz; for a = 3 the optimal is 3 bps/Hz.

Furthermore, a network is seen to become interference-
limited when El is in the range of 15 -20 dB; increasing Eb

No No
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beyond this value provides only a negligible capacity increase,
while decreasing Eb below this range does lead to a non-No
negligible capacity reduction. Furthermore, as Eb approaches
the interference-free limit of -1.59 dB, capacity is seen to be
extremely sensitive to the value of EbNo'
The remainder of this paper is organized as follows. In Sec-

tion II the network model and relevant transmission capacity
results are described. In Section III the sub-band optimization
is performed for all values of E6, while Sections IV and V
contains detailed analyses of the interference-limited (large
E6) and energy-limited (E6 -1.59 dB) regimes. For the
sake of brevity results are stated without proofs, although full
proofs are available in [3].

II. PRELIMINARIES

A. Network Model

We consider a set of transmitting nodes at an arbitrary
snapshot in time with locations specified by a homogeneous
Poisson point process (PPP) of intensity A on the infinite 2-
D plane. We assume that all nodes simultaneously transmit
with the same power p, and that the noise spectral density is
No. Moreover, nodes decide to transmit independently and
irrespective of their channel conditions, which corresponds
roughly to slotted ALOHA (i.e., no scheduling is performed).
The stationarity ofthe PPP allows us to analyze the behavior of
a single reference receiver (RX 0). The reference transmitter
(TX 0) is placed a fixed distance d away, and Xi denotes
the distance of the i-th transmitting node to the reference
receiver. By the properties of the PPP, the locations of the
other transmitting nodes (i.e., the interfering nodes) form a
homogeneous PPP. Received power is modeled by path loss
with exponent a > 2.

If the transmit signal of the i-th transmitter is denoted as
Ui, the reference received signal is:

Y0 = Uod-a/2 + E U,X a/2 + Z,
iEJl(A)

where Zi is additive Gaussian noise with power r1. The
resulting SINR therefore is:

SINRo pd-
1'+ ZiEr(A) PXi

where I1(A) indicates the point process describing the (ran-
dom) interferer locations. If Gaussian signaling is used by
all nodes, the mutual information between input Uo and
channel output Yo conditioned on the transmitter locations is
I(Uo; Yo Il(A))= log2(1 + SINRo). As discussed in more
detail below, we consider an outage setting where a commu-
nication is successful if and only if the mutual information is
larger than the transmitted information.
A few comments in justification of the above model are in

order. Although the model contains many simplifications to
allow for tractability, it contains many of the critical elements
of a real decentralized network. First, the spatial Poisson
distribution means that nodes are randomly and independently

located; this is reasonable particularly in a network with
indiscriminate node placement or substantial mobility [4],
[5]. The fixed transmission distance of d is clearly not a
reasonable assumption; however our prior work [1], [6] has
shown rigorously that variable transmit distances do not result
in fundamentally different capacity results, so a fixed distance
is chosen because it is much simpler analytically and allows
for crisper insights. Our model does not include fading, but
our past work has shown that the effect of fading in the
interference-limited regime is only a multiplicative constant;
the effect of fading in the energy-limited regime is of interest
but it beyond the scope of this work. Finally, scheduling
procedures (e.g., using carrier sensing to intelligently select a
sub-band) may significantly affect the results and are definitely
of interest, but this opens many more questions and so is left
to future work.

B. Transmission Capacity Model
In the outage-based transmission capacity framework, an

outage occurs whenever the SINR falls below a prescribed
threshold 3, or equivalently whenever the instantaneous mu-
tual information falls below log2 (1+-3). Therefore, the system-
wide outage probability is:

} + Eijr(A) PX < )

This quantity is computed over the distribution of transmitter
positions and clearly is an increasing function of the intensity
A. The SINR threshold 3 and the noise power r1 are treated
as external constants here, but are related to R, W, and N in
the following section.

If A, is the maximum intensity of attempted transmissions
such that the outage probability (for a fixed 3) is no larger than
c, the transmission capacity is then defined as C = A (1- c) b,
which is the maximum density of successful transmissions
times the spectral efficiency b of each transmission. In other
words, transmission capacity is like area spectral efficiency
(ASE) subject to an outage constraint. Using tools from
stochastic geometry, in [1] it is shown that the maximum
spatial intensity A, is upper bounded by the quantity A6, which
is defined as:

A ln(1-e) I
(1)

pd-a

Furthermore, this bound is asymptotically tight for small
values of c:

(2)

and in [1][6] A, is seen to be quite accurate for values of
c below approximately 20% for path loss exponents not too
close to 2.

III. SUB-BAND OPTIMIZATION

We now address the problem of determining the number
of sub-bands that maximize the density of transmissions such
that the outage probability is no larger than c. If the system
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bandwidth is not split (N = 1), each node utilizes the entire
bandwidth of W Hz. The SINR required (3) to achieve a
rate of R bps is determined by inverting the AWGN capacity
expression:

R Wlog2(1 +-3),

which gives d = 2w 1. The maximum intensity of transmis-
sions can be determined by plugging in this value of 3 along
with r1 = NoW into (1).

If the system bandwidth is split into N > 1 orthogonal sub-
bands each of width WN, and each transmitter-receiver pair uses
one randomly selected sub-band, the required SINR 3(N) is
determined by inverting the rate expression:

R H 10g2( -1+- (N)) 3(N) = 2 w -1.(3)

Because each transmitter randomly chooses a sub-band, the
users on each sub-band are still a PPP and are independent
across bands. As a result, the maximum intensity of trans-
missions per sub-band is A, as defined in Section I1-B with
SINR threshold 3(N) and noise power r1 = Now0. Since
the N sub-bands are statistically identical, the maximum total
intensity of transmissions, denoted by AT, is the per sub-band
intensity A, multiplied by N. Therefore, from (1) we have
AT(N) <A(N) with

AT(N) =N( ln(1 ) (1N
2

No(W) A
pd-

The only design parameter is N, the number of sub-bands,
and thus transmission density is maximized by choosing the
N that maximizes AT(N). To allow for analytical tractability
we maximize the upper bound, i.e., we solve the following
one-dimensional optimization:

N* = arg max AT (N) (5)
N

Rather than maximizing with respect to N, it is more con-
venient to maximize with respect to the operating spectral
efficiency, which is equal to the transmission rate divided by
the bandwidth of each sub-band (not the total bandwidth):

b-W/N bps/Hz. (6)
WIN

It is important to note that the operating spectral efficiency b
is a design parameter even though the per-transmission rate R
and system bandwidth W are fixed'.

With this substitution we can write the transmission density
as a function of b:

AT(b) = (W+) ( n( ) b I( 1
1 NoR a
b pd-J

1If we consider only bandwidth optimization, b should be limited to integer
multiples of R. However, if we consider a more general scenario where we
are designing the sub-band structure as well as the length of transmission
(e.g., in a packetized system), then these two parameters allow us to operate
at any desired b. We therefore consider arbitrary b > 0 for the remainder of
the paper, although it is not difficult to see the effect of constraining N to be
an integer.

Noting that the constant pd-, A Eb is the received en-NoR -isteNeeveon
ergy per information bit [2] and defining the constant k A

(WR ) ( il(d2 )), this can be further simplified this as:

AT(b) =kb 2I _t
b

(8)

The optimal spectral efficiency b* is therefore the solution to
the following optimization:

b= argmax b 1
b>0 2b-I

2

bEb J
No

(9)

Note that the optimal b* depends only on the path loss
exponent a and El, and thus any dependence on power and
rate is completely captured by E6. By posing the problemNo
in terms of spectral efficiency, we are also able to remove
any direct dependence on W. Furthermore, the problem is
independent of the outage constraint c, assuming the bound in
(1) is accurate.
The problem in (9) is only feasible for b satisfying 2 1

1 > 0, which corresponds to the SINR threshold 3 2b- 1

being no larger than the interference-free SNR Npd- . SomeNoWT
simple manipulation shows that this condition is equivalent
to b < CQgb), where C (E6 is the maximum spectral
efficiency o an AWGN channe and thus is the solution to
[2, Equation 23]:

2C( Eo)12 N( _)
C rEl,VNo

Eb
NO

(10)

The domain of the maximization is thus 0 < b < C (El) . If

Eo < In2 =-1.59 dB the problem is infeasible for any bNo-
because this corresponds to operating beyond interference-free
capacity.

If a = 2 we have AT (b) = k (b2 1 Eb) and it is

easy to verify that this is a decreasing function of b for
any value of Eb > -1.59 dB. As a result, transmission

No
density is maximized by choosing b as small as possible, which
corresponds to always selecting N = 1 (universal frequency
reuse). However, for a > 2, the optimum value of b is always
strictly positive. Thus, the remainder of the paper deals with
the non-trivial case of a > 2.
By taking the derivative of AT(b) and setting it equal to

zero, we are able to characterize b* in terms of a fixed point
equation parameterized by only a and Eo:No'

Theorem 1: The optimum operating spectral efficiency b*
is the unique positive solution of the following equation:

Eb b22bln2
No a

Eb b (2b 1) + (I 2 (2b 1)2

Proof: See [3].

= 0.

(11)

U
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Optimum Spectral Efficiency
(bps/Hz)
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Eb/NO (dB)

Fig. 1. Optimal Spectral Efficiency/Density vs. Eb for a, = 4
N0

Theorem 1 characterizes the optimal number of sub-bands
(N RIw), i.e., the optimal operating point as a function of

No and the most relevant capacity characterization is the area

spectral efficiency (ASE). Since each communication occurs

at rate R bps and a total of W Hz are used, the upper bound to
the system-wide ASE (assuming operation at b*) is a function
only of El and is given by:

No

(Eb AASE - A (b*) () (12)
No0o

cb* 2b*
1 1

1- b* Ebl
No

where b* is characterized in Theorem 1 and c ln(d2)
Because c is only a multiplicative constant, for simplicity we
assume c = 1 for the remainder of the paper.

Although we are not able to find a general closed-form
expression for (11) or (12), these expressions are easily
solved numerically and we can find analytical solutions in the
asymptotic regimes (E -) oc and E- , -1.59 dB). In Fig.No ~~No
1 the numerically computed optimum spectral efficiency b*

and ASE (Eo) are plotted versus Eo for a = 4, along withNo ~~~~N0

the capacity of an interference-free AWGN channel C (0)
Also plotted is the ASE achieved if spectral efficiency 1=

(which corresponds to N = W) is used at all values of Eb
R ~~~~~~No

rather than b*. For large values of El this quantity is relatively
No

close to the optimal ASE, but notice that it is much smaller
than the optimal for smaller values of E6. From this figure,
we can identify two different asymptotic regimes of interest:

. Interference-Limited Networks: When Eb is suffi-
No

ciently large, thermal noise becomes negligible and per-

formance depends only on multi-user interference. As a

result, the optimal b* and ASE (E) both converge to

constants as Eo o.
No

Energy-Limited Networks: When E6 is close to its
No

minimum value of -1.59 dB, scales linearly with Eb,
No

0

2.5 3 3.5 4
Path loss exponent

4.5 5

Fig. 2. Optimal Spectral Efficiency/Density for Interference-Limited Net-
works.

(dB) and shows characteristics very similar to the AWGN
wideband capacity [2]. In this regime performance is
determined by interference and thermal noise, and b* and
ASE (El) go to zero as Eo decreases towards -1.59
dB.

In Section IV the interference-limited regime is explored
and a closed form expression for the optimal value of b* is
derived. Once a system is in this regime, ASE is virtually unaf-
fected by further increasing transmission power. In Section V
the energy-limited regime is explored and simple expressions
for b* and ASE, in terms of a and Eo, are given that are

accurate as Eo 1.59 dB. Although intuition might suggest
that noise becomes dominant and thus interference becomes
negligible, this is not the case as evidenced by the fact that
the optimum spectral efficiency b* is considerably smaller than
the interference-free spectral efficiency C ( ). Furthermore,
increasing transmission power does significantfy increase ASE
in this regime. Between these two regimes (approximately
from 2-3 dB to 15-20 dB), b* increases sub-linearly with Eb

No
(dB). Although we do not have a closed-form expression for

bN for this range of Eo values, the intuition is a combination
of the insights derived for the interference- and energy-limited
regimes.

It should be noted that Fig. 1 provides numerical an-

swers to the two basic questions posed earlier: the optimized
ASE essentially hits its asymptotic value for El values be-

N0

tween 15 and 20 dB, and thus this marks the beginning
of the interference-limited regime, and the the slope of the
ASE (Eb) curve quantifies the marginal benefit of increas-

ing/decrease the value of El,. Although not shown here, the

shape of the ASE (E) curve is very similar for all path loss
exponents between 2.5 and 5, although the magnitude is larger
for large exponents.

IV. INTERFERENCE-LIMITED NETWORKS

In systems with sufficiently powered devices (i.e., large Ei),

thermal noise is essentially negligible. In the limiting case
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where No = 0 (i.e., Eo -, o) the density is given by:

AT(b) = kb (2b 1)

In this limiting regime, a closed-form solution for b* can be
reached.

Theorem 2: The optimum operating spectral efficiency b*

in the absence of thermal noise (No = o +, Eo = oc) is the
No

unique solution to:

b* (l eb(1 2- b*)
2

(14)

which can be written in closed form as:

b=1og2e[ HW+V-2e 2)] (15)

where W(z) is the principle branch of the Lambert )WV function
and thus solves W(z)eW(Z) = z.

Proof: See [3].
The optimum depends only on the path loss exponent a,

and it is not difficult to show that bV is an increasing function
of a, bV is upper bounded by °2 log2 e, and that b*h( log2 e)
converges to 1 as a grows large. In Fig. 2 the optimal spectral
efficiency bV is plotted (in units of bps/Hz) as a function of
the path-loss exponent a, along with the optimized ASE.

V. ENERGY-LIMITED NETWORKS

The opposite extreme of interference-limited networks are

energy-limited networks for which Eb is close to its minimum
No

value of -1.59 dB. We can obtain a simple solution for bV
that is accurate up to a quadratic term by solving the fixed
point equation given in Theorem 1:

Theorem 3: The optimum operating spectral efficiency bV
in the energy-limited regime (El slightly larger than -1.59
dB) is given by:

b8= I
2 C NEb +0 (b2)

where C (Eo) is the AWGN spectral efficiency at EN as

defined in (10). Furthermore, the ASE is characterized as:

ASE (Eb)
~NoJ ((1 -0(1 66) 2 6) (Eb) + (b )

where-A and(1 - )(1 6)d2 <lforall a> 2.
Proof: See [3].

Fig. 3 contains plots of the numerically computed optimal
spectral efficiency b*, denoted as optimal, the approximation
(1 -)C( f), and AWGN capacity C ( ) versus E6 for
a 3 an a 4. Fig. 4 contains plots of the numerically
computed optimal ASE (El), denoted as optimal, the ap-

proximation from (17), and AWGN capacity C (E) versus

E6 for a = 2.01 and a 3 (the curve for a = 4 is nearly
No
indistinguishable from a-v 3, and thus is not shown). Note
that the approximations to b* and AT(b*) are both accurate.

In addition to decreasing the operating spectral efficiency b*

to a fraction of C (El), multi-user interference also decreases

I 07
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(,05 / Approximation
w Optimal

0.4
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01! p t i m a ApproximationcL3 Optimal

-1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 t

Eb/No (dB)

Fig. 3. Optimal Spectral Efficiency for Energy-Limited Networks.
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Eb/N0 (dB)

Fig. 4. Optimal ASE for Energy-Limited Networks.

the marginal benefit (in terms of ASE) of increased E6
No

as compared to an interference-free channel. In an AWGN
channel, spectral efficiency increases at a slope of 2 bps/Hz per

3 dB in the wideband regime (S0 = 2) [2], while (17) implies
that ASE increases only at a rate of 216 ((1 - )(1 6)5)

(< 2) bps/Hz per 3 dB. For example, ASE increases at rates
2 and X bps/Hz per 3 dB when a = 3, 4, respectively.

REFERENCES

[1] S. Weber, X. Yang, J. G. Andrews, and G. de Veciana, "Transmission
capacity of wireless ad hoc networks with outage constraints," IEEE
Trans. on Info. Theory, vol. 51, no. 12, pp. 4091-4102, Dec. 2005.

[2] S. Verdu, "Spectral efficiency in the wideband regime," IEEE Trans.
Inform. Theory, vol. 48, no. 6, pp. 1319-1343, June 2002.

[3] N. Jindal, J. Andrews, and S. Weber, "Bandwidth partitioning in decen-
tralized wireless networks," submitted to IEEE Trans. Wireless Commun.,
Nov. 2007. Available for download: arXiv:0711.0277.

[4] F. Baccelli, M. Klein, M. Lebourges, and S. Zuyev, "Stochastic geometry
and architecture of communication networks," J Telecommunication
Systems, vol. 7, no. 1, pp. 209-227, 1997.

[5] C. C. Chan and S. V Hanly, "Calculating the outage probability in

a CDMA network with spatial poisson traffic," IEEE Transactions on

Vehicular Technology, vol. 50, no. 1, pp. 183-204, 2001.
[6] S. Weber, J. Andrews, and N. Jindal, "The effect of fading, channel

inversion, and threshold scheduling on ad hoc networks," IEEE Trans.
Inform. Theory, vol. 53, no. 11, pp. 4127-4149, Nov. 2007.

152

(13)
0.9

0.8
AWGN

Authorized licensed use limited to: University of Minnesota. Downloaded on September 25, 2009 at 12:36 from IEEE Xplore.  Restrictions apply. 


