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Abstract—In this correspondence, we deal with noncoherent commu-
nications over multiple-input–multiple-output (MIMO) wireless links.
For a Rayleigh flat block-fading channel with M transmit- and N re-
ceive-antennas and a channel coherence interval of length T , it is well
known that for T � M , or, at high signal-to-noise-ratio (SNR) � � 1
and M � minfN; bT=2cg, unitary space–time modulation (USTM) is
capacity-achieving, but incurs exponential demodulation complexity in
T . On the other hand, conventional training-based schemes that rely on
known pilot symbols for channel estimation simplify the receiver design,
but they induce certain SNR loss. To achieve desirable tradeoffs between
performance and complexity, we propose a novel training approach where
USTM symbols over a short length T (< T ) are used as pilots which
carry information to the receiver, and coherent communication is used for
the remainder of the block. This new approach considerably reduces the
receiver complexity when T is a small fraction of T , and recovers part
of the SNR loss experienced by the conventional training-based schemes.
When �!1 and T � T � 2M = 2N !1, but the ratios � =M=T ,
� = T =T are fixed, we obtain analytical expressions of the asymptotic
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SNR loss for both the conventional and new training-based approaches,
serving as a guideline for practical designs.

Index Terms—Capacity, channel estimation, coherent detection, multiple
antennas, noncoherent detection, unitary space–time modulation.

I. INTRODUCTION

Due to fading of the channel strength caused by constructive and
destructive interference of the multiple signal paths between the
transmitter and the receiver, a major challenge in wireless communi-
cations is coping with channel uncertainties.1 Pilot symbol-assisted
modulation (PSAM) is a standard training-based approach when com-
municating over time-varying channels [4], [23], [26]. In PSAM, pilot
symbols known to both the transmitter and the receiver are multiplexed
with data symbols and used as training for channel acquisition. Since
known pilot symbols carry no data information, they reduce power
and bandwidth resources during data transmission. Clearly, there is
a tradeoff in allocating these resources between pilot symbols and
data symbols. Sending more pilots with increased power improves
the quality of channel estimation as well as the reliability of commu-
nication. However, overincreasing the overhead for training reduces
the amount of channel uses and power for information-carrying data
symbols, which decreases data throughput.

A basic information-theoretic question for PSAM is how much
training is necessary when using Shannon’s capacity as the per-
formance metric. For a given channel estimation accuracy, lower
bounds on channel capacity are available for a general setting [19], for
Rayleigh flat block-fading multiple-input–multiple-output (MIMO)
wireless channels [29], [22], [9], and for perfectly interleaved MIMO
channels [2]. The optimal power allocation between pilot and data
symbols as well as the number (equal to M ) of training symbols
optimizing a lower bound on capacity were obtained in [9]. Similar
lower bounds are also available for single-antenna and multiple-an-
tenna frequency-selective fading channels, based on which the optimal
training design has been derived [16], [21], [27], [1].

Although training-based schemes like PSAM simplify trans-
ceiver design for noncoherent multiple-antenna systems, informa-
tion-theoretic studies have revealed that in general they are not
capacity-achieving. Marzetta and Hochwald [17] investigated the
capacity of a Rayleigh flat block-fading channel with M transmit, N
receive antennas and a channel coherence interval of length T , and
found that the noncoherent channel capacity is achieved when the
T � M transmitted signal matrix is expressible as a product of two
statistically independent matrices: a T � M isotropically distributed
(i.d.) unitary matrix times a real, diagonal and nonnegative M � M
random matrix. The asymptotic capacity at high SNR can be achieved
using onlyM� antennas, and increases linearly withM�(1�M�=T ),
where M� = minfM;N; bT=2cg [29]. In comparison, if the receiver
knows the channel coefficients perfectly, it is well-known that the
ergodic coherent channel capacity increases linearly with minfM;Ng
under the same channel model [6], [25].

Motivated by results in [17], a class of isotropic unitary space-time
modulation (USTM) signals was proposed in [11], [12], [15] et. al to
encode the transmitted signals using T � M isotropic unitary ma-
trices. For T � M [17], and for high SNR � � 1 with M �
minfN; bT=2cg [29], the optimal input has indeed a USTM form.
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The main drawback of USTM transmissions is that very often their
design requires numerical optimization [12], [18], [3], and because
they possess no particular algebraic structure, they incur relatively high
complexity. Furthermore, their demodulation is exponentially complex
since the constellation size grows exponentially with the block length
T (the number of signal points is 2RT for a given rate of R bits per
symbol). For this reason, USTM is practically applicable only for small
block lengths or low rates. Differential USTM’s [14], [13], [8] et. al and
alternative training-like constellations [28], [24], [5] enjoy polynomial
complexity in T ; however, they are generally not capacity-achieving
for the block-fading channel.

Compared with the case when USTM is optimal, a training-based
scheme suffers SNR degradation due to imperfect channel state infor-
mation (CSI), but gains the benefit of simplified receiver design. If T�
out of T symbols in a fading block are used to send known training
symbols for channel estimation, it has been shown that at high SNR
only M� antennas should be used for transmission, and the achiev-
able rate also increases linearly with M�(1 �M�=T ) similar to the
noncoherent case; however, due to channel estimation errors there is
an SNR loss compared with the optimal noncoherent scheme [29], [9].
A training-based scheme can be capacity-achieving at high SNR only
when T is sufficiently large, but the rate at which it attains this opti-
mality as T grows has not been quantified yet.

In this correspondence, we first analytically compute the asymptotic
SNR loss for the conventional training-based methods when � ! 1
and T � 2M = 2N !1, but the ratio � =M=T is fixed. We show
that as � decreases, the asymptotic SNR loss drops monotonically but
also slowly from 2.17 dB (� = 0:5) to zero (�! 0). Further, we intro-
duce a novel scheme that combines noncoherent and coherent detection
for the block fading channel, and offers flexibility in trading off perfor-
mance for complexity. A channel coherence interval T is divided into
two parts: the noncoherent part with T� symbols and the coherent part
with Td(= T � T� ) symbols. The noncoherent symbols carry infor-
mation unknown to the receiver and are encoded over multiple fading
blocks. A key observation is that after those T� noncoherent symbols
are correctly decoded without CSI, they can be further used to estimate
the channel coefficients in their own block, thus enabling coherent de-
tection of the remaining Td coherent symbols. There are three advan-
tages of the proposed scheme. First, unlike conventional training where
the pilots are known sequences used only for channel estimation, here
those noncoherent symbols do carry information. Second, since T� is
only a small fraction of T , the cardinality of the noncoherent constel-
lation is reduced considerably, leading to low decoding complexity.
Finally, one is flexible to control the tradeoff between complexity and
SNR loss by selecting a suitable T� .

The rest of the correspondence is organized as follows. In Section II,
we introduce the system model and provide some preliminary results.
In Section III, we dwell on the training-based scheme and compare it
with USTM. In Section IV, we introduce and analyze the novel non-
coherent–coherent hybrid scheme. Numerical examples are given in
Section V, and conclusions are drawn in Section VI.

II. SYSTEM MODEL AND PRELIMINARIES

A. System Model

We consider a single-user transmission with M transmit- and N
receive-antennas over a frequency-nonselective (flat) Rayleigh block-
fading channel, as in [17]. The channel coefficients, which are unknown
to both the transmitter and the receiver, are assumed to remain con-
stant over a block of T symbols, but are allowed to change indepen-
dently from block to block. Within a block of T symbols, given that

a signal matrix ��� 2 CT�M is transmitted,2 the received signal matrix
XXX 2 CT�N can be written as

XXX =
�T

M
���HHH +WWW (1)

where HHH 2 CM�N is the channel matrix, and WWW 2 CT�N denotes
the additive white noise matrix. BothHHH andWWW are complex Gaussian
matrices with independent and identically distributed (i.i.d.) CN (0; 1)
entries. The power constraint on the transmitted signal is assumed to
be fTr(���y���)g = M , and thus � is the average received SNR at
each receive antenna since ���,HHH andWWW are independent. Because the
receiver does not know the channel matrixHHH , the model in (1) is often
referred to as a noncoherent channel; otherwise, it is called a coherent
channel.

B. Known Results on Coherent Capacity, Noncoherent Capacity and
Mutual Information of USTM

When perfect knowledge of the channel coefficients is available at
the receiver (but not at the transmitter), the channel capacity, often
called coherent capacity, is computed in [7], [25] and is summarized
in the following.

Lemma 1: If HHH is known to the receiver but not the transmitter, the
coherent capacity in bits per symbol is given by

Ccoherent(�) = log
2
det IIIM +

�

M
HHHHHHy

= log
2
det IIIN +

�

M
HHHyHHH : (2)

When M = N , the normalized asymptotic capacity for high SNR and
large M satisfies

lim
M!1

lim
�!1

Ccoherent(�)

M
� log

2

�

e
= 0: (3)

For the noncoherent channel model described by (1), it has
been shown that at high SNR the degrees of freedom per
symbol for each noncoherent block is M�(1 � M�=T ), where
M� = minfM;N; bT=2cg [29]. This result indicates that at high
SNR, the optimal strategy is to use only M� out of M available
antennas. The capacity-achieving input matrix can be written as
��� = ���DDD, where ��� is a T �M isotropically distributed (i.d.) unitary
matrix, i.e.,���y��� = IIIM , andDDD is anM�M random real nonnegative
diagonal matrix with fTr(DDD)g = 1 [17]. The distribution of DDD is
generally unknown, except for the asymptotic case T � M [17] and
for high SNR with M � minfN; T=2g [29], where DDD becomes a
scaled deterministic identity matrix DDD = 1=TIIIM , suggesting the
so-called USTM inputs for noncoherent channels [11]. The result is
summarized in the following lemma for the case T � 2M = 2N [29,
Th. 9, Corollary 11].

Lemma 2: Assume T � 2M = 2N . If T � M and/or �� 1, the
unitary space-time modulation with ���y��� = IIIM achieves the nonco-
herent channel capacity of (1). In particular, for � � 1 the capacity is
given by

CM;M(�) = 1�
M

T
Ccoherent(�) + c(T;M) + o(1); (4)

where c(T;M) is a constant that depends only on M and T , and goes
to zero as T ! 1, and o(1) is a term that goes to zero as � ! 1. If

2Here C denotes the complex field.
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we let both T and M go to infinity but keep the ratio � =M=T fixed,
then we have3

lim
M!1

lim
�!1

CM;M(�)

M

� k(�)

ln 2
+ (1� �) log2

�

e
= 0 (5)

where

lim
M!1

lim
�!1

c(T;M)

M
� k(�)

ln 2
= 0; (6)

and

k(�) =
(1� �)2

2�
ln(1� �) +

�

2
ln� +

1� �

2
< 0 (7)

for all 0 < � � 1=2.

III. TRAINING WITH KNOWN PILOT SYMBOLS VERSUS USTM

In this section, we introduce the conventional training-based scheme
with known pilot symbols and compare it with USTM. Based on a
lower bound CL

known of the training-based schemes, we compare the
asymptotic behavior of the two options at both high and low SNR. It
is shown that in terms of achievable rates USTM outperforms training
under both situations.

A. Training-Based Schemes

In a typical training-based system, the transmitted signal matrix ���

is partitioned into a training submatrix ���� and a data submatrix ���d as
follows [9]

��� =

� T

M
����

� T

M
���d

(8)

where ���� 2 CT �M with T� � M;Tr(���y����� ) = M is the
training matrix known to both the transmitter and the receiver, and
���d 2 CT �M with fTr(���yd���d)g = M is the data matrix carrying
information from the transmitter to the receiver. The parameters ��
and �d are the SNR values during the training phase and the data
transmission phase, respectively. In addition, we have the equations of
time and energy conservation: T� +Td = T , and �T = ��T� +�dTd.

Similarly, the received signal matrix XXX and the noise matrix WWW are
also partitioned into two submatrices

XXX =
XXX�

XXXd

; and WWW =
WWW �

WWW d

(9)

where XXX� 2 CT �N , XXXd 2 CT �N(WWW � 2 CT �N ;WWW d 2 CT �N)
are the received signal (noise) matrices during the training phase and
the data transmission phase, respectively. We can thus write the signal
model for the training phase as

XXX� =
��T�
M

����HHH +WWW � (10)

and for the data phase as

XXXd =
�dTd
M

���dHHH +WWW d: (11)

3We believe that in [29, eq. (22)] the term log e should be ln 2.

The capacity in bits per symbol for the training-based scheme is
given by [9]

Cknown = sup
��� ;p(��� )

1

T
I(���� ;���d;XXX� ;���d)

= sup
��� ;p(��� )

1

T
I(���d;XXXdj���� ;XXX� ) (12)

since ���� is known to both the transmitter and the receiver and ���d is
independent of ���� and XXX� . The optimization in (12) is performed
over all choices of the deterministic training matrix ���� and the input
distributions p(���d) of the data matrix ���� , under the constraints
Tr(���y����� ) = M and fTr(���yd���d)g = M . However, such an
optimization problem is very difficult to solve.

One option is to form an explicit channel estimate Ĥ̂ĤH first and use it
as if it were correct. In this process, information may be thrown away,
which results in a suboptimal scheme. Nevertheless, this method en-
ables us to compute a tight lower bound on channel capacity Cknown.
We first compute minimum mean square error (MMSE) estimate of
the channel matrix, and then absorb the estimation error in the addi-
tive noise to obtain an equivalent noise term. Further, this new noise
term is replaced by a worst case noise, yielding a lower bound on mu-
tual information. It has been shown in [9] that the training matrix with
orthonormal columns ���y����� = IIIM simultaneously maximizes this
lower bound and minimizes MSE. If optimal power allocation between
training and information-bearing symbols can be afforded, the optimal
training interval should be T opt

� = M , and the corresponding lower
bound is

CL
known(�) = 1� M

T
Ccoherent(�e�) (13)

where

�eff =

�T

T�2M
(
p
 �p

 � 1)2; for T > 2M
�

1+2�
; for T = 2M

�T

2M�T
(
p� �p� + 1)2; for T < 2M .

 =
(M + �T )(T �M)

�T (T � 2M)
: (14)

Compared with the noncoherent capacity in (4) at high SNR for the
case T � 2M = 2N , the training-based scheme can achieve the same
degrees of freedom M(1�M=T ); however, it incurs an SNR degra-
dation which depends on �,M and T . In Section III-B1, an asymptotic
expression for SNR loss will be found.

If equal training and data power � = �� = �d is mandatory, e.g., in
order to ensure constant-modulus transmissions, then

CL
known(�) = 1� T�

T
Ccoherent(�e� ) (15)

where

�e� =
�2T�=M

1 + (1 + T�=M)�
: (16)

In this case, the optimal training interval can be found numerically.

B. Comparison Between Conventional Training-Based Schemes and
USTM

In this section, we compare the asymptotic behavior of the mutual
information of USTM and training-based schemes with optimal power
allocation, which motivates our training-based scheme with unknown
symbols in Section IV.
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Fig. 1. Noncoherent training.

Fig. 2. Asymptotic SNR loss � (�).

1) High SNR: Consider for simplicity that T � 2M = 2N .
From Lemma 2, we know that at high SNR, USTM inputs are ca-
pacity-achieving. Compared with the first term in (4), the SNR loss
in CL

known can be expressed as

� :=
�

�eff
=

T � 2M

T
(
p
 �  � 1)�2

=
T � 2M

T
(
p
 +  � 1)2; for T > 2M: (17)

Since lim�!1  = (T �M)=(T � 2M), substitution of the latter
into � and simplification leads to

�1 := lim
�!1

� = 1 + 2
M

T
1� M

T
(18)

for T � 2M , since this expression also applies when T = 2M .
Note that � is not the real SNR loss at high SNR, since there is

another term c(T;M) in (4) that does not depend on �. To account
for that, let us consider the case when both T and M go to infinity, but
the ratio � = M=T is fixed. From Lemma 2, incorporating the term
k(�) into log

2
(�) yields

lim
M!1

lim
�!1

CM;M(�)

M
� (1� �) log

2

�

e
� 2 = 0:

(19)

Also from Lemma 1, we have a similar asymptotic result forCL
known(�)

lim
M!1

lim
�!1

CL
known(�)

M
� (1� �) log

2

�

e
� ��1
1

= 0: (20)

Upon comparing (19) with(20), we obtain the following result.

Proposition 1: When �!1, M = N !1 and T !1, but the
ratio � = M=T � 1=2 is fixed, CL

known suffers an asymptotic SNR
loss relative to the noncoherent capacity

�loss(�) := �1 � 2
= 1 + 2 �(1� �) � 2 (21)

where k(�) is given in (7).

Corollary 1: It holds that �loss(0:5) = 2:1715 dB, and �loss(0) =
lim�!0 �(�) = 0 dB.

We plot �loss(�) in Fig. 2 with � in logarithmic scale. We observe
that the SNR loss decreases monotonically to zero as � ! 0, which
is consistent with the intuition that for large T training can be optimal;
however, the slope of decrease is very small. For example, the SNR
loss is 1.5980 dB at � = 10�1(T = 10 M), and drops to 0.6981 dB
at � = 10�2(T = 100 M). Even when � = 10�3(T = 1000 M),
there is still 0.2523 dB SNR loss. For the region T = 2 � 20 M,
there is always an SNR loss less than 2.17 dB, but more than 1.5 dB.
Fig. 3 compares the asymptotic SNR loss with the case � = 25 dB,
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Fig. 3. SNR loss for finite �, M and T .

M = 1; 4; 8 and T = 1 � 100. It can be seen that �loss(�) is actually
tight except when M = 1 and T < 10; therefore, �loss(�) is a good
approximation for practical scenarios.

Note that the interest in noncoherent channel models is often limited
to the case when the channel varies quickly; that is, when T is small. If
T � M , then we can allocate minimal overhead for channel estima-
tion and feed channel estimates back to the transmitter, which leads to
adaptive signaling designs with improved performance. When T is not
very large or comparable to M , which is the scenario we focus on, a
training-based scheme is not capacity-optimal, although it can achieve
the same degrees of freedom as the optimal noncoherent scheme.

2) Low SNR: We assume that T > M . We know that the optimum
training length is T opt

� = M , but at low SNR, the lower bound of the
training-based scheme is not sensitive to the length of training symbols
[9], and the lower bound is given by (up to o(�2))

CL
known(�)

NT log e

4M
�2: (22)

At low SNR, the mutual information of USTM inputs can be approx-
imated as (up to o(�2)) [20]

IUSTM(�)
N(T �M) log e

2M
�2: (23)

From (22) and(23) we obtain

IUSTM(�)

CL
known(�)

2(T �M)

T
: (24)

Proposition 2: For fixed M and T with T > M , the asymptotic
ratio of the mutual information of USTM to CL

known at low SNR is

�(�) := lim
�!0

IUSTM(�)

CL
known(�)

= 2(1� �); (25)

where � = M=T .
We can see that at low SNR, USTM is also better than training. The

reason that training-based schemes become worse is that at low SNR

the channel estimation has very low quality and thus becomes unreli-
able. Since USTM bypasses channel estimation, it achieves higher rates
than training. The complexity of USTM at low SNR can be acceptable
since the achievable rate for small � is quite low.

IV. TRAINING VIA INFORMATION-BEARING NONCOHERENT

SPACE–TIME MODULATION

In this section, we develop a novel training-based scheme where
“pilot” symbols, just like data symbols, can also carry information and
thus are unknown to the receiver. It appears impossible to estimate the
channel when the receiver does not know the transmitted pilot sym-
bols, unless some kind of blind estimation scheme is used. However,
it is certainly possible to do so after the receiver successfully decodes
them. The decoding of unknown pilot symbols, though, does not re-
quire CSI knowledge, which can be enabled by using any noncoherent
communication scheme.

A. Training Via Noncoherent Communication

The proposed system architecture is shown in Fig. 1. Information
data are first encoded and then sent to the coherent and noncoherent
modulators, respectively. The modulator outputs ���� and ���d are mul-
tiplexed for transmission. The receiver first demultiplexes the received
signal to obtain XXX� and XXXd. The received matrix XXX� carries data and
is decoded first. Since���� is noncoherently modulated, the receiver can
decode it without knowing the fading matrix HHH . Once the transmitted
signal matrix is recovered as ���� after decoding, the receiver can esti-
mate the channel using ���� . The estimated channel Ĥ̂ĤH is subsequently
sent to the coherent detector to decode the information carried byXXXd.
In practice, the data bits carried by ���� should be encoded across mul-
tiple blocks with relatively strong codes so that the channel estimation
error caused by the incorrectly decoded���� is negligible. However, here
we only focus on the information-theoretic analysis and the design of
practical coding schemes is beyond the scope of this correspondence.

The receiver structure depicted in Fig. 1 is suboptimal in general,
since information may be lost, because: 1) ���� and ���d are decoded not
jointly but separately; and 2) an explicit Ĥ̂ĤH is formed and used as if it
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were correct. In the following, we will develop a lower bound on the
channel capacity that favors this suboptimal receiver.

The capacity for the new scheme is the maximum over the distri-
bution of the transmit signals of the mutual information between the
transmitted signals ���� , ���d and the received signals XXX� , XXXd, i.e.

Cunknown = sup
p(��� ;��� )

1

T
I(���� ;���d;XXX� ;XXXd): (26)

Compared with the conventional training-based system, it is even
harder to compute the capacity for this new one. Similarly, we are only
able to calculate a lower bound on capacity. Using the chain rule of
mutual information, we have

I(���� ;���d;XXX� ;XXXd) = I(���� ;XXX� ;XXXd) + I(���d;XXX� ;XXXdj���� )

= I(���� ;XXX�) + I(���� ;XXXdjXXX� )

+ I(���d;XXX� j���� ) + I(���d;XXXdj���� ;XXX� )

� I(���� ;XXX�) + I(���d;XXXdj���� ;XXX� ) (27)

where the inequality cannot be reduced to equality, since���� is random
and may depend on ���d. Even when ���� and ���d are independent, the
term I(���� ;XXXdjXXX� ) can still be nonzero. Nevertheless, supposing that
���� and ���d are independent, we find that Cunknown satisfies

Cunknown � sup
p(��� );p(��� )

1

T
[(I(���� ;XXX� ) + I(���d;XXXdj���� ;XXX� )]:

(28)

The optimization in (28) is taken over all input distributions p(���� ),
p(���d) adhering to the power constraints that fTr(���y

����� )g = M
and fTr(���y

d���d)g = M . Note that the right-hand side (RHS) of (28)
is consistent with the receiver structure shown in Fig. 1, in which the
data stream ���� is decoded first and ���d is decoded later based on XXX�

and the reconstructed ���� (with or without using an explicit estimate of
the channel).

B. Training Via Unitary Space–Time Modulation

We do not know what inputs maximize I(���� ;XXX� ) +
I(���d;XXXdj���� ;XXX�) in the RHS of (28). Instead, we choose ���� to
be USTM for which I(���� ;XXX�) can be calculated at least by Monte
Carlo simulations [10], and then compute an analytical lower bound
on I(���d;XXXdj���� ;XXX� ) as in [29] and [9]. The reason for choosing
unitary ���� is twofold. First, the USTM inputs maximize I(���� ;XXX� )
for large T� (� M), and for large �� with M � minfN; bT�=2cg.
Second, the unitary ���� , which is used as training symbols after being
successfully decoded, minimizes channel minimum square error
(mse) and maximizes a lower bound on capacity of training-based
schemes simultaneously.

Since optimizing power between the training and nontraining parts
is difficult, we assume that equal power is used: � = �� = �d. For the
USTM part, we have

I(���� ;XXX� ) = T� � IUSTM(�) (29)

where IUSTM(�) is the mutual information in bits per symbol of
USTM inputs with block length T� .

For the part with channel estimation, due to equal transmission
power, we obtain from (15) that

I(���d;XXXdj���� ;XXX� ) � 1�
T�
T

Ccoherent(�e�) � T

=(T � T� )Ccoherent(�e� ) (30)

where �eff = � T =M
1+(1+T =M)�

:Combining (29) and (30) leads to a lower
bound on channel capacity

CL
unknown(�) :=

1

T
[T� IUSTM(�)

+ (T � T� )Ccoherent(�e� )]

=�1IUSTM(�) + (1� �1)Ccoherent(�e� )

(31)

if we define �1 = T�=T � 1.

C. High SNR

With T � T� � 2M = 2N , we have 2� � �1. We are interested
in the asymptotic behavior when �, T , T� and M go to infinity, but the
ratios �, �1 are fixed. Note that M=T� = �=�1.

Since T� � 2M , at high SNR, the first term inCL
unknown(�) satisfies

[cf. Lemma 2]
IUSTM(�)

M
!

k( �
�

)

ln 2
+ 1�

�

�1
log2

�

e
; as

�;M !1: (32)

Note that for large �, we have �eff = �
1+�=�

. Similar to (3), we
obtain

Ccoherent(�e� )

M
! log2

�

e
1 +

�

�1

�1

; as

�;M !1: (33)

Therefore
CL
unknown(�)

M
!

�1k(
�
�

)

ln 2
+ (�1 � �) log2

�

e

+ (1� �1) log2
�

e
1 +

�

�1

�1

=(1� �) log2
�

e
� 1 +

�

�1

( )

� 2 : (34)

Compared with (19), we can identify the asymptotic SNR loss, as sum-
marized in the following theorem.

Theorem 1: When �!1,M = N !1, T� !1 and T !1,
but the ratios 2� = 2M=T � �1 = T�=T � 1 are fixed,CL

unknown(�)
suffers an asymptotic SNR loss relative to the noncoherent capacity

�0loss(�;�1) = 1 +
�

�1
� 2 (35)

where k(�) is given in (7).
Fig. 4 depicts rate versus �, for fixed �1(� 2�), while Fig. 5 de-

picts rate versus �1(� 2�), for fixed �. For fixed �1, a large � leads
to a high SNR loss, while for fixed �, a large �1 yields a small SNR
loss. An interesting fact revealed by Figs. 4 and 5 is that for sufficiently
small � and �1, we find that the conventional training-based scheme
with power control is better, since �0loss(�;�1) > �loss(�). For ex-
ample, �0loss(0:05; 0:1) = 1:425 [dB] while �loss(0:05) = 1:284 dB.
The reason is that equal transmission power is used for both training
and nontraining parts in computing �0loss(�;�1). For very small � and
�1, the advantage of power control outweighs the benefits of nonco-
herent training. If optimal power allocation is used, which is a difficult
optimization problem, we conjecture that �0loss(�;�1) will be always
smaller than �loss(�). Even without power optimization though, for
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Fig. 4. Asymptotic SNR loss � (�; � ) for 2� � � � 1.

Fig. 5. Asymptotic SNR loss � (�;� ) for 2� � � � 1.

most interesting (�; �1) combinations (� > 0:05; � > 0:1), our non-
coherent training-based approach outperforms the conventional one.

V. NUMERICAL RESULTS

In this section, we present simulations for the three approaches over
noncoherent channels: USTM, training with known pilot symbols,
and training via USTM symbols. We obtain the mutual informa-
tion IUSTM(�), CL

known(�) and CL

unknown(�) through Monte Carlo
simulations for finite M = N , T and �. The results validate the
asymptotic SNR loss �loss(�) and �0

loss(�;�1). For the method used

to numerically evaluate the mutual information of USTM inputs, we
refer the reader to [10].

Fig. 6 shows the result for M = N = 1, T = 10 and T� =
4. We observe that compared with USTM, training with known pilot
symbols suffers about 1.5dB SNR loss at � = 25 dB, while training
with USTM incurs only about 0.4 dB penalty. These results are very
close to the asymptotic SNR loss given by Proposition 1 and Theorem
1: �loss(0:1) = 1:598 dB, �0

loss(0:1;0:4) = 0:438 dB.
Fig. 7 depicts the result for M = N = 2, T = 10 and T� =

5. Compared with USTM, training with known pilot symbols suffers
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Fig. 6. M = N = 1, T = 10, T = 4.

Fig. 7. M = N = 2, T = 10, T = 5.

about 1.8 dB SNR loss at � = 25 dB, while training with USTM
incurs only about 0.55 dB loss. Similarly, these results are very close
to the asymptotic SNR loss given by Proposition 1 and Theorem 1:
�loss(0:2) = 1:912 dB, �0

loss(0:2; 0:5) = 0:580 dB.

VI. CONCLUSION

We developed a new training scheme that uses information-bearing
USTM symbols as “pilots” instead of known symbols utilized by the
conventional training-based approaches. The receiver first decodes

these USTM pilot symbols without channel state information, and then
uses the decoded symbols as training to estimate the channel. While
this new method decreases complexity of the capacity-achieving ap-
proach through a short USTM block T� < T , it can also recover some
SNR loss that is inherent to conventional training-based strategies.
When T � T� � 2M = 2N ! 1 and � ! 1, but the ratios
� = M=T , �1 = T�=T are fixed, the asymptotic expressions of the
SNR loss were obtained analytically for both conventional and the
proposed schemes, and are useful as a guideline for practical MIMO
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designs. While the current work is only focused on information-theo-
retic aspects, our future work will pursue practical coding schemes for
the proposed approach.
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On the Elementwise Convergence of Continuous Functions
of Hermitian Banded Toeplitz Matrices

Pedro M. Crespo, Senior Member, IEEE, and
Jesús Gutiérrez-Gutiérrez

Abstract—Toeplitz matrices and functions of Toeplitz matrices (such as
the inverse of a Toeplitz matrix, powers of a Toeplitz matrix or the expo-
nential of a Toeplitz matrix) arise in many different theoretical and ap-
plied fields. They can be found in the mathematical modeling of problems
where some kind of shift invariance occurs in terms of space or time. R. M.
Gray’s excellent tutorial monograph on Toeplitz and circulant matrices has
been, and remains, the best elementary introduction to the Szegö distribu-
tion theory on the asymptotic behavior of continuous functions of Toeplitz
matrices. His asymptotic results, widely used in engineering due to the sim-
plicity of its mathematical proofs, do not concern individual entries of these
matrices but rather, they describe an “average” behavior. However, there
are important applications where the asymptotic expressions of interest are
directly related to the convergence of a single entry of a continuous function
of a Toeplitz matrix. Using similar mathematical tools and to gain insight
into the solutions of this sort of problems, the present correspondence de-
rives new theoretical results regarding the convergence of these entries.

Index Terms—Circulant matrices, covariance matrices, elementwise con-
vergence, functions of matrices, minimum mean square error (MMSE), sta-
tionary stochastic time series, Szegö’s theorem, Toeplitz matrices.

I. INTRODUCTION

A square Toeplitz matrix is an n � n matrix Tn = t
(n)
i;j where

t
(n)
i;j = ti�j are complex numbers. Toeplitz matrices arise in many

theoretical and applied fields. In particular, there are many signal pro-
cessing applications, where the Toeplitz matrix Tn is often Hermitian.
Generally speaking, what is really relevant in many of the associated
problems is a continuous function of the Toeplitz matrix

g(Tn) := Undiag(g(�1(Tn)); . . . ; g(�n(Tn)))U
�1
n
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