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Abstract—Opportunistic routing is a multi-hop routing scheme
which allows for selection of the best immediately available relay.
In blind opportunistic routing protocols, where transmitt ers
blindly broadcast without knowledge of the surrounding nodes,
two fundamental design parameters are the node transmission
probability and the transmission spectral efficiency. In this
paper these parameters are selected to maximize end-to-end
performance, characterized by the product of transmitter density,
hop distance and rate. Due to the intractability of the problem
as stated, an approximation function is examined which proves
reasonably accurate. Our results show how the above design pa-
rameters should be selected based on inherent system parameters
such as the path loss exponent and the noise level.

I. I NTRODUCTION

Ad hoc networks operate on the basis of multi-hop rout-
ing, which allows information to be communicated across
the network over a series of hops. End-to-end performance
depends critically on the quality of the multi-hop routes used,
but choosing good routes in a dynamic network (e.g. one
where nodes are moving quickly) is a particularly difficult
task. Opportunistic routing (e.g [1] - [6]) is well suited tosuch
dynamic settings, as it can be performed with low overhead
while also exploiting spatial diversity (in terms of fadingand
topology).

In this paper we focus on a purely opportunistic routing
protocol, in which nodes broadcast packets in a completely
blind manner (i.e. without any knowledge of surrounding
nodes). More specifically, the protocol is described as follows:

1) In each time slot, each node randomly decides, with
some fixed probability, to either transmit or receive.

2) A transmitting node will blindly broadcast a packet at
some fixed spectral efficiency, whereas receivers listen
for any transmission.

3) All receiver nodes that successfully decode the packet
will send an ACK back to the transmitting node during
an acknowledgement period. The ACK packets contain
absolute geographic information about the RX location.

4) The transmitter selects the successful receiver which
offers the most progress towards the packet’s final des-
tination and sends a message to that node electing it to
become the next forwarder.

This protocol allows for the instantaneous choice of the
best next hop, at the cost of an acknowledgement period and
with the requirement for geographical information. Withinthis

algorithm, the key adjustable parameters are thetransmission
probability and the transmissionspectral efficiency.

The transmission probability, denoted byp, determines the
proportion of transmitters to receivers in each slot. Whenp
is large, there is a large amount of interference between the
nodes. This interference will cause only receivers close to
transmitters to be potential forwarders. When the transmission
probability is low, there are fewer simultaneous transmissions
and thus less interference and more available relays. Thus
longer hops are possible, but in fewer numbers. As a result, the
trade-off with transmission probability is essentially between
many simultaneous short hops, or fewer long hops.

When the spectral efficiency is high, a large signal-to-
interference ratio (SIR) is required to decode. Thus, only relays
which are close to the transmitter are likely to decode. On the
other hand, a lower spectral efficiency allows nodes that are
farther away to decode. Therefore, the trade-off with spectral
efficiency is between shorter hops at higher data rate or longer
hops at a lower data rate.

The objective of this paper is determining the transmission
probability and spectral efficiency that optimally balancethese
trade-offs. We study blind opportunistic routing in a spatial
model, as in [1]. In this model, end-to-end performance is
characterized by the forward-rate-density, which is the prod-
uct of average transmitter density, average hop distance and
transmission rate (spectral efficiency). This is a functionof
measured network properties (e.g. path-loss exponent) and
adjustable parameters (spectral efficiency and transmission
probability). Our objective is to find the transmission prob-
ability and transmission spectral efficiency that maximizethis
metric. Studying this quantity directly is intractable, however
we derive a reasonably accurate approximation and reinforce
the conclusions with Monte Carlo simulations.

II. PRELIMINARIES

A. Network Model

Consider an infinite set of transmit/receive nodesΦ dis-
tributed according to a homogeneous 2-D Poisson point
process (PPP) with densityλ m−2. We consider a slotted
transmission scheme. In each slot a node elects to become a
transmitter with probabilityp, independent across users and
slots. The set of locations of the transmitters (TX1, TX2,
..) denotedΦt and the set of locations of the receiversΦr
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Fig. 1. Example network: TX node 1 has a message to be sent along dashed
line. Among successful message receivers, RX node 2 offers the most forward
progress and will forward the packet in the next slot.

then form independent PPP’s of intensityλp and λ(1 − p)
respectively.

B. Channel Model

We consider a path-loss model with exponentα > 2 and
Rayleigh fading coefficientshi,j from TX i to RX j. Denoting
the signal transmitted by TXi (located atXi) as ui, the
received signal of RXj (at locationXj) is given by:

Yj =
∑

i

hi,j |Xi −Xj |−α/2ui + z. (1)

For the time being, consider the network is interference
limited, so thermal noise (z) is negligible. The case of a
channel with thermal noise is considered in Sec IV.

Assuming the transmit powers are all equal, the SIR (signal
to interference ratio) from TXi to RX j is defined:

Si,j ,
|hi,j |2|Xi −Xj|−α

∑

k 6=i |hk,j |2|Xk −Xj |−α
. (2)

We assume that all users transmit at rate equal toR(β) =
log2(1 + β); thus a communication is successful if and only
if the received SIR is larger than a threshold valueβ.

III. PROGRESS-RATE PRODUCT

Although we are interested in the network-wide perfor-
mance of the protocol, by the homogeneity of the PPP this
is statistically equivalent to the performance of any transmit-
ter. Thus, without loss of generality we can focus on TX0
located at the origin. From the perspective of TX0, all the
other TX nodes form a homogeneous PPP with intensityλp
(by Slivnyaks Theorem [7], the distribution is unaffected by
conditioning on the presence of TX0). The transmitters and
receivers are ordered by their distance to the origin i.e. TX1
is closest to the origin, TX2 the next, etc. For the sake of
simplicity, the SIR from TX0 to RXj is denotedSj and is
given bySj = S0,j .

A. Forward progress density

We assume that the transmitter located at the origin has
a packet to be sent to a receiver a very large distance away
(e.g., fig. 1). Specifically, we assume the final destination is
located an infinite distance away along thex-axis. Thus, the
relay offering the most progress is the one with the maximum
x-coordinate amongst the set of receivers that successfully
decode TX0’s packet. The corresponding progress, for a given
network realization, is:

D(Φr,Φt, β) ,

max
Xj∈Φr

[

1(Sj ≥ β|Φt)
(

|Xj | · cos
(
θ (Xj)

))]

(3)

where1(Sj ≥ β|Φt) is the indicator function that the SIR at
RXj (at pointXj) relative to TX0 (at the origin) is greater than
the threshold. The expectation of this function with respect to
the node process and fading isd(p, β).

d(p, β) , E
Φ,|h|2

[
D(Φr,Φt, β)

]
(4)

This quantity is the expected progress (towards the destination)
made in each hop. The forward progress densityf(p, β) then
is:

f(p, β) , d(p, β)λp. (5)

Finally, the forward progress-rate-density functionK(p, β) is

K(p, β) , (λp) · E[D(Φr ,Φt, β)] · log2(1 + β)

= f(p, β) · R(β). (6)

Assuming each node in the network wishes to send data to
another node a distanceL away, at mostp · d(p, β)/L packets
can originate at each node in each slot [1]. Translating to
bits/sec/Hz, this means that the maximum end-to-end data rate
(per node) is

p · d(p, β) · log2(1 + β)/L [bps/Hz]. (7)

Thus,K(p, β) is directly proportional to end-to-end rate.
The quantityK(p, β), which is deterministic, is a function

of transmission probabilityp and SIR thresholdβ. We seek
the optimal values ofβ andp which maximize this product:

(p∗, β∗) = argmax
p,β

K(p, β). (8)

A closed-form expression forK(p, β) cannot be found in
general, so we rely on an approximation which is developed
in the following section.

B. SIR Cell-Based Approximation

The basis of our approximation toK(p, β) is the concept of
an SIR cell [8], [9]. In the absence of fading, any RX within a
particular region (i.e., the SIR cell) around a TX can decode,
and the best forwarder is the RX in this region with the largest
x-coordinate. Therefore, the forward progress is determined by
the SIR cell – which is completely determined by the interferer
locations and thus is a function only of the interferer process
– and by the receiver locations (i.e.,Φr). To reach a tractable
approximation forK(p, β), we remove the randomness in the



SIR cell and assume it is a deterministic region that is a
function of p andβ, while retaining the randomness inΦr.

We consider the average size of the SIR cell. This quantity
is clearly defined in the absence of fading. On the other hand,
the SIR cell is not well defined with fading because the SIR
depends on independent fading RV’s (specific to each receiver
location) in addition to the interferer locations. However, we
can derive a quantity analogous to the SIR cell area, denoted
by v0, by integrating the point-wise success probability over
all space. From [9], the success probability for a RX a distance
y from the TX is:

p0(y) = P
Φt

[Sj ≥ β]

= exp

(

−πλp|y|2β 2
α

G(α)

)

. (9)

Thus,v0 is given by:

v0 =

∫

y∈R2

p0(y)dy =
G(α)

λpβ
2
α

. (10)

where
G(α) =

α

2Γ( 2
α )Γ(1− 2

α )
(11)

andΓ(z) is the gamma functionΓ(z) =
∫∞

0 tz−1e−tdz.
We will then assume the SIR cell has area equal to its mean.

We now approximate the SIR cell by a square centered on TX0
with side

√
v0. In other words, we assume that all RX within

this square are able to decode (ref. fig. 2).V +
0 is the positive

half of that square with areav0/2. Under these assumptions,
the expected forward progress is:

d̃sq(p, β)

= E

[

max
Xj∈V +

0

xj

]

= E

[

E

[

max
Xj∈V +

0

xj

∣
∣
∣#
(
{Xj ∈ V +

0 }
)
= j

]]

=

∞∑

j=0

E

[

max
Xi∈V +

0

xi

∣
∣
∣#
({

Xi ∈ V +
0

})
= j

]

×
(

e−λ·(1−p)·
v0
2

(λ · (1− p) · v0
2 )

j

j!

)

=

∞∑

j=0

(√
v0
2

j

j + 1
· e−λ·(1−p)·

v0
2

(λ · (1 − p) · v0
2 )

j

j!

)

=

√
v0

2

(
e−c − (1− c)

c

)

, (12)

where#(·) gives the cardinality of a set and

c =
λ · (1− p) · v0

2
=

(1 − p)

p

G(α)

2β2/α
. (13)

Note that the valuec is the expected number of receivers in
the half-squareV +

0 ; it is also equal to half the average number
of successful outgoing transmissions from a TX as in [4].

√
v0

x
√
v0/2− x

Fig. 2. SIR cell is assumed to be a squareV0 of side length
√

v0. The
probability that the forward progress isx is the probability there are no RX
in the dark shaded area.

Thus, our approximation to the progress-rate-density is:

f(p, β) ≈ f̃sq(p, β) = d̃sq(p, β)(λp) (14)

K(p, β) ≈ K̃sq(p, β) = f̃sq(p, β) log2(1 + β). (15)

The optimal values then are the solution to the equation

∂

∂p

∂

∂β
K̃sq(p, β) = 0. (16)

Although there is no closed form solution to this equation,
the approximation nonetheless yields valuable insight. Byrear-
ranging the terms in (12), we can interpret the forward progress
approximation as the product of the maximum possible relay
distance (i.e., half the side-length of the SIR cell) and a
fractional term that captures how much of the maximum is
attained by the best receiver.

d̃sq(p, β) =

√
v0

2
︸︷︷︸

max. relay dist.

(

1− 1− e−c

c

)

︸ ︷︷ ︸

frac. of max.

(17)

The valuev0 is decreasing inp: as p increases, the amount
of interference between transmitters is increasing, giving each
transmitter a smaller expected SIR cell size. The value ofc is
also decreasing inp as a result of decreasedv0 and smaller
receiver density.

The valueK̃sq(p, β) can be written:

K̃sq(p, β)

=
1

2
log2(1 + β)

√

λpG(α)β
−2

α

(

1− 1− e−c

c

)

(18)

which lends the intuition that the end-to-end performance is
increasing withp until the1− 1−e−c

c fractional term becomes
too small. When the value ofc (expected potential forwarders)
is greater than 3, this fractional term is greater than2/3. When
p is large enough to causec to go below 3, the performance
drops off sharply.

IV. N UMERICAL RESULTS

For numerical results, Monte-Carlo simulations were per-
formed. Locations of receivers and transmitters were realized
using the properties of the PPP (c.f. [10]). SIR was calculated
at each receiver and the largest progress offered was averaged.



A. Accuracy, Path-loss and Fading

Fig. 3 shows the accuracy of the approximation of the
spatial density of progress (5), (14) forp and β. While the
approximation is not absolutely accurate, it does correctly
capture the dependence onp andβ.

Fig. 4 shows the bestp or β maximizing the progress-
rate-density (15) for a fixedβ or p, respectively. Again, the
approximation helps to answer the essential question of what
parameter choices are optimal.1

In Fig. 5 the jointly optimal(p, β) are plotted for different
values of the path loss exponent. Note that the optimal value
of p is essentially the same forα = 3 and 4, but that
the optimizing SIR threshold increases with the path loss
exponent. This increase is similar to [11], where the optimizing
SIR threshold is found for a slightly different, but related,
problem.

B. Sensitivity to parameter variation

Fig. 6 shows the normalized approximation of Eqn. (15) for
path lossα = 3 defined by

K̃sq,norm(p, β) ,
K̃sq(p, β)

max(p,β) K̃sq(p, β)
. (19)

This figure shows how the performance decreases with differ-
ent values ofp andβ. Observe that there exist a wide range of
(p, β) pairs that are near optimal (within 90%). If there exists
a strong reason to choose a particularβ (e.g., limited code
rates & modulations), or a particularp (e.g., power cycling,
energy saving from different TX and RX powers), end-to-end
performance does not suffer as long as the other parameter is
appropriately chosen (to figs. 4, 6)

C. Robustness to Noise

In order to simulate the effect of noise on the forward
progress, we modify the SIR (2) to include noise powerσ2.

Si,j =
|hi,j |2|Xi −Xj |−α

∑

k 6=i |hk,j |2|Xk −Xj |−α + σ2
(20)

The metric for comparison is the average SNR to a node
located at the average nearest-neighbor distance (dNN ).

SNRNN =
E
[
d2NN

]−α
2

σ2
=

(λπ)α/2

σ2
(21)

Fig. 7 shows the maximum forward-rate-density is decreasing
with increasing channel noise. Also, the number of potential
forwarders is decreasing with increased channel noise.

Fig. 8 shows the effects of channel noise power on optimal
p and β. The value ofp∗ is increasing and the value ofβ∗

is decreasing with higher noise floor. The maximum possible
spectral efficiency is expected to drop with increasing noise
power. As explored in IV-B, whenβ is fixed to some value
(in this case as a result of the noise floor), the transmission
probability can increase to compensate.

1Simulation results are similar for a non-fading environment.
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Fig. 3. Spatial density of progress: approximation (thick curves) and
simulation forλ = 1, α = 3, varying SIR thresholdβ.
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V. CONCLUSION

We studied the case of opportunistic routing in an ad hoc
wireless network with the goal of maximizing the product of
forward progress density and the rate of data transmission.We
developed an approximation using the concept of SIR cells
and found forα = 3 the optimal spectral efficiency is near
1.3 bps/Hz and the optimal probability of transmission is near
0.06. The results give the intuition that having a low transmis-
sion probability ensures a low amount of interference and a
relatively high SIR threshold ensures only local transmissions
are received.
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