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Multi-Antenna Communication in
Ad Hoc Networks:

Achieving MIMO Gains with SIMO Transmission
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Abstract—The benefit of multi-antenna receivers is investigated
in wireless ad hoc networks, and the main finding is that network
throughput can be made to scale linearly with the number of
receive antennas 𝑛R even if each transmitting node uses only a
single antenna. This is in contrast to a large body of prior work
in single-user, multiuser, and ad hoc wireless networks that have
shown linear scaling is achievable when multiple receive and
transmit antennas (i.e., MIMO transmission) are employed, but
that throughput increases logarithmically or sublinearly with 𝑛R

when only a single transmit antenna (i.e., SIMO transmission)
is used. The linear gain is achieved by using the receive degrees
of freedom to simultaneously suppress interference and increase
the power of the desired signal, and exploiting the subsequent
performance benefit to increase the density of simultaneous
transmissions instead of the transmission rate. This result is
proven in the transmission capacity framework, which presumes
single-hop transmissions in the presence of randomly located
interferers, but it is also illustrated that the result holds under
several relaxations of the model, including imperfect channel
knowledge, multihop transmission, and regular networks (i.e.,
interferers are deterministically located on a grid).

Index Terms—Multiantenna communication, MIMO, ad-hoc
networks, fading, transmission capacity.

I. INTRODUCTION

MULTIPLE antenna communication has become a key
component of virtually every contemporary high-rate

wireless standard (LTE, 802.11n, WiMAX). The theoretical
result that sparked the intense academic and industrial in-
vestigation of MIMO (multiple-input/multiple-output) com-
munication was the finding that the achievable throughput
of a point-to-point MIMO channel scales linearly with the
minimum of the number of transmit and receive antennas [2],
[3]. Linear scaling in the number of transmit antennas can
also be achieved in point-to-multipoint (broadcast/downlink)
channels [4] even if each receiver has only a single antenna,
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or in the number of receive antennas in multipoint-to-point
(multiple access/uplink) channels even if each transmitter has
a single antenna [3]. In these two cases, the linear gains are
enabled by the simultaneous transmission and reception of
multiple data streams.

A. Overview of Main Results

In this paper we are interested in the throughput gains that
multiple antennas can provide in ad hoc networks, rather than
in channels with a common transmitter and/or receiver. If
multiple antennas are added at every node in the network and
point-to-point MIMO techniques are used to increase the rate
of every individual link (i.e., every hop in a multi-hop route)
in the network, then network-wide throughput (i.e., the sum of
data rates across all links in the network) naturally increases
linearly with the number of antennas per node. Similarly,
based on the quoted point-to-multipoint and multipoint-to-
point results, linear scaling is also expected to occur if nodes
are capable of sending or receiving multiple streams.

The main finding of this paper is that network-wide through-
put can be increased linearly with the number of receive
antennas, even if only a single transmit antenna is used
by each node (i.e., single-input, multiple-output, or SIMO,
communication), and each node sends/receives only a single
data stream. Furthermore, this gain is achievable using only
linear receive processing and does not require any transmit-
side channel state information (CSIT). This throughput gain
is achieved by linearly increasing (with the number of receive
antennas) the density of simultaneous transmissions while
keeping the per-link rate fixed, and thus requires additional
nodes to communicate as the number of receive antennas is
increased.

The main result is obtained by considering an ad hoc net-
work in which transmitters are randomly located on the plane
according to a 2-D homogeneous Poisson point process with
a particular spatial density. We consider a desired transmit-
receive pair separated by a fixed distance, and experiencing
interference (assumed to be treated as noise) from all other
active transmitters. The received signal and interference are
functions of path-loss attenuation and fading, and we assume
that for a transmission to be successful, it must be detected
with an SINR larger than a defined threshold 𝛽. The primary
performance metric is the maximum spatial density of trans-
mitters/interferers that can be supported such that the outage
probability ℙ[SINR < 𝛽] is no larger than an outage constraint
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𝜖, and our particular interest is in quantifying how quickly
this maximum density increases with the number of receive
antennas 𝑛R (with 𝛽 and 𝜖 fixed).

If receive beamforming is performed, the receive degrees
of freedom can be used to either increase the power of the
desired signal (i.e., for array gain) or suppress interference,
and these competing objectives are optimally balanced by
the SINR-maximizing MMSE (minimum mean-square error)
filter. Using the MMSE outage probability lower bound in
[5], we develop an upper bound on the maximum density
allowable with an MMSE receiver. In conjunction, we develop
a density lower bound by analyzing the performance of a novel
suboptimal partial zero forcing (PZF) receiver, which uses an
explicit fraction of the degrees of freedom for array gain and
the remainder for interference cancellation. By showing that
both the lower and upper bound are linear in 𝑛R, we can
conclude that the maximum transmit density is Θ(𝑛R) – this
result applies only to linear techniques, and thus non-linear
techniques such as successive interference cancellation could
conceivably improve upon this – and we demonstrate that
this allows well known metrics like the transmission capacity
[6], [7], transport capacity [8], [9], and the expected forward
progress [10] to all increase as Θ(𝑛R) as well.1

B. Related Work

In addition to the large body of work on point-to-point
and multiuser MIMO systems, this paper is also related to
several prior works that have studied the use of multiple
receive antennas in ad hoc networks with Poisson distributed
transmitters. References [11] and [12] considered precisely
the same model as this paper, but studied the performance
of slightly different receiver designs that turn out to yield
very different performance. In [11] the receive filter is chosen
according to the maximal ratio criterion (MRC) and thus only
provides array gain,2 while [12] considers the other extreme
where the 𝑛R antennas are used to cancel the strongest 𝑛R−1
interferers but no array gain is obtained. Both receiver designs
achieve only a sublinear density increase with 𝑛R, with MRC
scaling as 𝑛R

2/𝛼 and full interference cancellation scaling as
𝑛R

1−2/𝛼, where 𝛼 is the path-loss exponent. On the other
hand, we show that linear density scaling is achieved if a
fraction of the receive degrees of freedom are used for array
gain and the other fraction for interference cancellation, or an
MMSE receiver is used.

In [13] the performance of the MMSE receiver is inves-
tigated in the same setting as in this paper, but for a fixed
density network in which additional receive antennas are used
to increase the per-link SINR/rate. It is shown that the average
per-link SINR increases with 𝑛R as 𝑛R

𝛼/2 which translates
into only a logarithmic increase in per-link rate and overall
system throughput. In contrast, we study the rather different
setting in which the per-link rate is fixed and the density
increases with 𝑛R, and we show that exploiting the antennas

1We user the standard convention that a function 𝑓(𝑛) is Θ(𝑛R) if and
only if there exist strictly positive constants 𝑘1 and 𝑘2 such that 𝑛 ⋅ 𝑘1 ≤
𝑓(𝑛) ≤ 𝑛 ⋅ 𝑘2 for sufficiently large 𝑛.

2Although reference [11] also considers strategies involving multiple trans-
mit antennas, here we have mentioned only the directly relevant single
transmit/multiple-receive scenario results

to increase density instead of rate provides a significantly
larger (i.e., linear versus logarithmic in 𝑛R) end-to-end benefit
(c.f. Section IV-B). The MMSE receiver was also studied in
[14], although under the additional assumption of transmit
beamforming in the direction of the maximum eigenmode, and
in particular the mean and variance of the receiver SINR was
computed under an accurate Gamma approximation. The nu-
merical results in [14] hint at the very large density increases
that additional receive antennas provide, and our results rigor-
ously show that the density of simultaneous transmissions can
be increased linearly with the number of antennas. (Transmit
beamforming does not change how density scales with the
number of antennas.)

Early work on characterizing the throughput gains from
MIMO in ad hoc networks includes [15]–[18] although these
generally primarily employed simulations, while more recently
[19]–[21] used tools similar to those used in the paper and
developed by the present authors. Amongst these [17] is most
relevant, as it considers mutually interfering multi-antenna
transmit-receive pairs, albeit without an explicit spatial model.
In that setting the number of receive antennas is also seen to
be a performance bottleneck that can only be overcome if the
number of antennas is increased in proportion to the number
of interferers. This has some connection to our result showing
that the number of antennas should be linearly proportional to
the interferer density, although the results differ fundamentally
in that there are always an infinite number of interferers in our
spatial model.

The remainder of the paper is organized as follows. The
system model and key metrics are described in Section II.
The main results are derived in Section III, and then various
extensions and relaxations of the model are considered in
Section IV: in all of these diverse permutations we observe
that the linear scaling result still holds. We conclude in Section
V.

II. SYSTEM MODEL AND METRICS

We consider a network in which the set of active trans-
mitters are located according to a 2-D homogeneous Poisson
point process (PPP) of density 𝜆 (transmitters/m2). Each
transmitter communicates with a receiver a distance 𝑑 meters
away from it, where it is assumed that each receiver is
randomly located on a circle of radius 𝑑 centered around
its associated transmitter. (Although meters are used here,
this could be substituted with any other distance unit). Note
that the receivers are not a part of the transmitter PPP. Each
transmitter uses only one antenna, while each receiver has 𝑛R

antennas. The Poisson model is reasonable for uncoordinated
networks, such as those using ALOHA. In Section IV-C we
briefly examine a regular interferer geometry that is a more
appropriate model for networks employing more sophisticated
random access techniques.

By the stationarity of the Poisson process we can consider
the performance of an arbitrary TX-RX pair, which we refer
to as TX0 and RX0. From the perspective of RX0, the
set of interferers (which is the entire transmit process with
the exception of TX0) also form a homogeneous PPP due
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Fig. 1. Example transmit-receive pair with four nearby interferers shown.
In addition to the distances 𝑑 (desired) and 𝑋𝑖 (interferer 𝑖) shown, there is
a channel vector h𝑖.

to Slivnyak’s Theorem; see [7] for additional discussion of
this point and further explanation of the basic model. As
a result, network-wide performance is characterized by the
performance of a single TX-RX pair, separated by 𝑑 meters
and surrounded by an infinite number of interferers located on
the infinite 2-D plane according to a homogeneous PPP with
density 𝜆 interferers/m2. This setup is depicted in Fig. 1.

Assuming a path-loss exponent of 𝛼 (𝛼 > 2) and a
frequency-flat channel, the 𝑛R-dimensional received signal y0

at RX0 is given by:

y0 = 𝑑−𝛼/2h0𝑢0 +
∑

𝑖∈Π(𝜆)

∣𝑋𝑖∣−𝛼/2h𝑖𝑢𝑖 + z (1)

where ∣𝑋𝑖∣ is the distance to the 𝑖-th transmitter/interferer (as
determined by the realization of the PPP), h𝑖 ∈ 𝒞𝑛R×1 is the
vector channel from the 𝑖-th transmitter to RX0, z ∈ 𝒞𝑛R×1

is complex Gaussian noise with covariance 𝜂I, and 𝑢𝑖 is the
data symbol of transmitter 𝑖 with 𝔼[∣𝑢𝑖∣2] = 𝜌. Consistent
with a rich scattering environment, we assume that each of the
vector channels h𝑖 have iid unit-variance complex Gaussian
components, independent across transmitters.

A. Performance Metrics

If a unit norm receive filter v0 is used, the resulting signal-
to-interference-and-noise ratio is:

SINR =
𝜌𝑑−𝛼∣v†

0h0∣2
𝜂 +

∑
𝑖∈Π(𝜆) 𝜌∣𝑋𝑖∣−𝛼∣v†

0h𝑖∣2
. (2)

Without loss of generality, we index the distances ∣𝑋𝑖∣ in
increasing order in order to take advantage of the property that
the ordered squared-distances ∣𝑋1∣2, ∣𝑋2∣2, . . . follow a 1-D
Poisson point process with intensity 𝜋𝜆 [22]. To simplify no-
tation we define the constant SNR ≜ 𝜌𝑑−𝛼

𝜂 as the interference-
free signal-to-noise ratio, which allows us to write:

SINR =
∣v†

0h0∣2
1

SNR + 𝑑𝛼
∑

𝑖∈Π(𝜆) ∣𝑋𝑖∣−𝛼∣v†
0h𝑖∣2

. (3)

The received SINR depends on the interferer locations and
the vector channels, both of which are random. The outage
probability with respective to an SINR threshold 𝛽 is:

Pout(𝜆) = ℙ [SINR ≤ 𝛽] , (4)

which clearly is increasing in 𝜆. The implicit assumption
is that the channels and the set of active interferers are
constant for the duration of a packet transmission but generally
vary across transmissions. As a result, the outage probability
accurate approximates the packet error probability experienced
by each node; by the stationarity of the process, it also
approximates the network-wide packet error probability.

It is often desirable from a system perspective to maintain
a constant outage level 𝜖 (e.g., to ensure that higher-layer
reliability mechanisms are appropriately utilized), and thus the
performance metric of interest is 𝜆𝜖, the maximum interferer
density such that the outage does not exceed 𝜖:

𝜆𝜖 ≜ max
𝜆

{𝜆 : Pout(𝜆) ≤ 𝜖}. (5)

The transmission capacity is the number of successful
transmissions per unit area, and can be defined as 𝜆𝜖(1− 𝜖)𝑏,
where 𝑏 = log2(1+𝛽) is the data rate assuming a good channel
code; this definition is akin to area spectral efficiency (ASE).
Discussion of how this metric translates to end-to-end metrics
such as transport capacity is provided in Section IV-B.

Although 𝜆𝜖 depends on the design parameters 𝜖, 𝛽, and
𝑛R, in this work we are interested in the behavior of 𝜆𝜖 with
respect to 𝑛R while the other parameters are kept fixed. (A
justification for keeping 𝜖 fixed has already been put forth,
and justification for not increasing 𝛽 is provided in Section
IV-B.) Thus, we henceforth denote 𝜆𝜖 as a function of 𝑛R.

B. Receive Filters

The SINR and maximum density depend critically on the re-
ceive filter that is used. The receive filter can be used to either
boost the power of the desired signal (by choosing v0 in the
direction of h0) or to cancel interference, or some combination
of the two. In this paper we consider the MMSE receiver,
which optimally balances signal boosting and interference
cancellation and maximizes the SINR, as well as a sub-
optimal partial zero-forcing receiver, which uses a specified
number of degrees of freedom for signal boosting and the
remainder for cancellation. We assume that the receive filter
is chosen based upon knowledge of the signal channel h0 and
the interfering channels {h𝑖}∞𝑖=1; this optimistic assumption of
perfect receiver channel state information (CSI) is scrutinized
in Section IV-A.

MMSE Receiver. From basic results in estimation theory,
the MMSE receive filter is given by:

v0 =
Σ−1h0

∥Σ−1h0∥
. (6)

where Σ is the spatial covariance of the interference plus noise

Σ ≜ 1

SNR
I+ 𝑑𝛼

∑
𝑖∈Π(𝜆)

∣𝑋𝑖∣−𝛼h𝑖h†
𝑖 . (7)

Note that Σ is the covariance matrix conditioned on the
interferer channels and distances {h𝑖}∞𝑖=1 and {∣𝑋𝑖∣}∞𝑖=1.
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Amongst the set of all possible receive filters v0, the MMSE
filter maximizes the received SINR. Its corresponding value
is:

SINRmmse = h†
0Σ

−1h0. (8)

The corresponding outage probability and maximum density
are denoted as Pmmse

out (𝜆) and 𝜆mmse
𝜖 (𝑛R).

Partial Zero Forcing Receiver. We also study a subopti-
mal receiver that explicitly cancels interference from nearby
transmitters while using the remaining degrees of freedom to
boost the power of the desired signal. More specifically, the
filter v0 is chosen orthogonal to the channel vectors of the 𝑘
nearest interferers h1, . . . ,h𝑘. The parameter 𝑘 must be an
integer and satisfy 𝑘 ≤ 𝑛R − 1. Although performance could
conceivably be improved by choosing 𝑘 on the basis of the
channel realizations, it is sufficient for our purposes to choose
𝑘 in an offline fashion. The value of 𝑘 is left unspecified for
the time being. Amongst the filters satisfying the orthogonality
requirement ∣v†

0h𝑖∣2 = 0 for 𝑖 = 1, . . . , 𝑘, we are interested
in the one that maximizes the desired signal power ∣v†

0h0∣2.
By simple geometry, this corresponds to choosing v0 in the
direction of the projection of vector h0 on the nullspace of
vectors (h1, . . . ,h𝑘). More precisely, if the columns of the
𝑛R × (𝑛R − 𝑘) matrix Q form an orthonormal basis for the
nullspace of (h1, . . . ,h𝑘), then the receive filter is chosen as:

v0 =
Q†h0

∣∣Q†h0∣∣ . (9)

The corresponding outage probability and maximum density
are denoted Ppzf−𝑘

out (𝜆) and 𝜆
pzf−𝑘
𝜖 (𝑛R), respectively. Notice

that 𝑘 = 0 and 𝑘 = 𝑛R − 1 correspond to the extremes of
MRC (v0 = h0/∣∣h0∣∣) and interference cancellation of the
maximum number of interferers (full zero forcing), respec-
tively. Because the MMSE receiver is SINR-maximizing, we
clearly have

Pmmse
out (𝜆) ≤ Ppzf−𝑘

out (𝜆) and 𝜆mmse
𝜖 (𝑛R) ≥ 𝜆pzf−𝑘

𝜖 (𝑛R) (10)

for all 𝑘 and any set of system parameters.
Although suboptimal, it is beneficial to study the PZF

receiver because it is generally more amenable to analysis
than the MMSE filter and because its simple structure allows
us to clearly understand why linear scaling is achievable. Note,
however, that an MMSE filter should be used in practice
because it also is linear and its CSI requirements are less
stringent (PZF requires knowledge of individual interferer
channels, whereas MMSE only requires knowledge of the
spatial covariance of the aggregate interference). Furthermore,
note that after the submission of this paper a closed-form
expression for the outage probability with an MMSE receiver
was derived in [23], [24].

III. MAIN RESULTS: DENSITY SCALING WITH RECEIVE

ANTENNAS

In this section we prove the main result of the paper, which
is that 𝜆mmse

𝜖 (𝑛R) and 𝜆pzf−𝑘
𝜖 (𝑛R) both scale linearly with 𝑛R.

We prove this result in two parts: we first show that a lower
bound to 𝜆

pzf−𝑘
𝜖 (𝑛R), and thus to 𝜆mmse

𝜖 (𝑛R), increases linearly
with 𝑛R, and then show that an upper bound on 𝜆mmse

𝜖 (𝑛R) also
increases linearly with 𝑛R.

A. Lower Bound: Achievability of Linear Scaling with Partial
Zero Forcing

First, we show that linear scaling is achievable by finding
a lower bound on 𝜆

pzf−𝑘
𝜖 (𝑛R) that is linear in 𝑛R. In order to

develop the bound, we first statistically characterize the signal
and interference coefficients when the PZF receiver is used.
These characterizations are a consequence of the basic result
that the squared-norm of the projection of a 𝑛R-dimensional
vector with iid unit-variance complex Gaussian components
onto an independent 𝑠-dimensional subspace is a 𝜒2

2𝑠 random
variable. 3 4

We denote the signal and interference coefficients as

𝑆 ≜ ∣v†
0h0∣2 (11)

𝐻𝑖 ≜ ∣v†
0h𝑖∣2 𝑖 = 1, 2, . . . (12)

and characterize the statistics of these coefficients in the
following lemma.

Lemma 1: For PZF-𝑘, the signal coefficient 𝑆 is 𝜒2
2(𝑛R−𝑘),

the interference terms 𝐻1, . . . , 𝐻𝑘 are zero, and coefficients
𝐻𝑘+1, 𝐻𝑘+2, . . . are iid unit-mean exponential (i.e., 𝜒2

2). Fur-
thermore, 𝑆,𝐻𝑘+1, 𝐻𝑘+2, . . . are mutually independent.

Proof: See Appendix A.
Using this statistical characterization and the definitions in

(11)-(12) the received SINR is

SINRpzf−𝑘 =
𝑆

1
SNR + 𝑑𝛼

∑∞
𝑖=𝑘+1 ∣𝑋𝑖∣−𝛼𝐻𝑖

(13)

where the 𝑆 and 𝐻𝑖 terms are characterized in Lemma 1,
the quantities ∣𝑋𝑘+1∣2, ∣𝑋𝑘+2∣2, . . . are the 𝑘 + 1, 𝑘 + 2, . . .
ordered points of a 1-D PPP with intensity 𝜋𝜆, and the ordered
points are independent of the signal and interference terms.
The aggregate interference power for PZF-𝑘 is denoted as:

𝐼𝑘 ≜ 𝑑𝛼
∞∑

𝑖=𝑘+1

∣𝑋𝑖∣−𝛼𝐻𝑖. (14)

and the expectation of this interference power is characterized
in the following lemma:

Lemma 2: For 𝑘 > 𝛼
2 − 1, the expected interference power

is characterized as:

𝔼[𝐼𝑘] =
(
𝜋𝑑2𝜆

)𝛼
2

∞∑
𝑖=𝑘+1

Γ
(
𝑖− 𝛼

2

)
Γ(𝑖)

(15)

<
(
𝜋𝑑2𝜆

)𝛼
2

(𝛼
2
− 1

)−1 (
𝑘 −

⌈𝛼
2

⌉)1−𝛼
2

, (16)

where Γ(⋅) is the gamma function and ⌈⋅⌉ is the ceiling
function, with the upper bound valid for 𝑘 >

⌈
𝛼
2

⌉
.

Proof: See Appendix B.
To derive the main result for PZF, we use Lemma 2 to upper

bound 𝔼[1/SINRpzf−𝑘] and then combine this with Markov’s

3This result is shown for real-valued vectors/matrices in [25], and easily
extends to the complex setting. Because the subspace is independent of the
vector and because the vector is spatially isotropic, without loss of generality
one can assume that the projection is performed on the space spanned by the
first 𝑠 elementary basis vectors. As a result, the projection operation zeroes
all but the first 𝑠 elements of the vector, from which the result follows.

4Throughout the paper we abide by communications literature convention
and define a 𝜒2

2𝑠 random variable to have PDF 𝑓(𝑥) = 𝑥𝑠−1𝑒−𝑥

(𝑠−1)!
, which

may differ slightly from the definition in probability literature.
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inequality to reach an outage probability upper bound, and,
inversely, a density lower bound:

Theorem 1: The outage probability with PZF-𝑘 is upper
bounded by:

Ppzf−𝑘
out (𝜆) ≤

𝛽
((

𝜋𝑑2𝜆
)𝛼

2
(
𝛼
2 − 1

)−1 (
𝑘 − ⌈

𝛼
2

⌉)1−𝛼
2 + 1

SNR

)
𝑛R − 𝑘 − 1

(17)
for

⌈
𝛼
2

⌉
< 𝑘 < 𝑛R − 1. In turn, the maximum density

𝜆
pzf−𝑘
𝜖 (𝑛R) is lower bounded by:

𝜆pzf−𝑘
𝜖 (𝑛R) ≥

(
𝜖

𝛽

) 2
𝛼
(
𝛼
2 − 1

) 2
𝛼

𝜋𝑑2

(
𝑛R − 𝑘 − 1− 𝛽

𝜖 SNR

) 2
𝛼

×
(
𝑘 −

⌈𝛼
2

⌉)1− 2
𝛼

(18)

for any 𝑘 satisfying
⌈
𝛼
2

⌉
< 𝑘 < 𝑛R − 1− 𝛽

𝜖 SNR .
Proof: The outage upper bound is derived by rewriting the

outage probability as the tail probability of random variable
1/SINR and then applying Markov’s inequality as follows:

PPZF−𝑘
out (𝜆) = ℙ

[
1

SINRpzf−𝑘 ≥ 1

𝛽

]
(𝑎)

≤ 𝛽 ⋅ 𝔼
[

1

SINRpzf−𝑘

]
(𝑏)
= 𝛽 ⋅ 𝔼

[
𝐼𝑘 +

1

SNR

]
𝔼

[
1

𝑆

]

(𝑐)
<

𝛽
((

𝜋𝑑2𝜆
)𝛼

2
(
𝛼
2 − 1

)−1 (
𝑘 − ⌈

𝛼
2

⌉)1−𝛼
2 + 1

SNR

)
𝑛R − 𝑘 − 1

,

where (a) is due to Markov’s inequality, (b) is due to (13) and
the independence of 𝐼𝑘 and 𝑆, and (c) follows from Lemma
2 and because 𝑆 is 𝜒2

2(𝑛R−𝑘) and 𝔼[1/𝜒2
2𝑙] = 1/(𝑙 − 1) for

𝑙 > 1. Setting this bound equal to 𝜖 and then solving for 𝜆
yields the associated lower bound to 𝜆𝜖.

It is worthwhile to note that the
(
𝑛R − 𝑘 − 1− 𝛽

𝜖 SNR

)2/𝛼
term in the 𝜆𝜖 lower bound is the density increase due to array
gain (i.e., increased signal power), while the

(
𝑘 − ⌈

𝛼
2

⌉)1−2/𝛼

term is the density increase due to interference cancellation.
Thus, the bound succintly illustrates the tradeoff between array
gain and interference cancellation.

In order to show the achievability of linear scaling, we
need only appropriately increase 𝑘 with 𝑛R. If we choose the
number of cancelled interferers 𝑘 = 𝜃𝑛R for some constant
0 < 𝜃 < 1, the density lower bound becomes:

𝜆pzf−𝜃𝑛R
𝜖 (𝑛R) ≥

(
𝜖

𝛽

) 2
𝛼
(
𝛼
2 − 1

) 2
𝛼

𝜋𝑑2
(1 − 𝜃)

2
𝛼 𝜃1−

2
𝛼

×
(
𝑛R − 1 + 𝛽

𝜖 SNR

1− 𝜃

) 2
𝛼 (

𝑛R − 𝜃−1
⌈𝛼
2

⌉)1− 2
𝛼

.

(19)

Because the conditions for Theorem 1 are satisfied for
sufficiently large 𝑛R if 𝑘 = 𝜃𝑛R with 0 < 𝜃 < 1 (for any
𝜖 > 0 and 0 < 𝛽 < SNR), the lower bound scales linearly
with 𝑛R. This result is formally stated as follows:

Lemma 3: For any 𝜃 satisfying 0 < 𝜃 < 1,

𝜆pzf−𝜃𝑛R
𝜖 (𝑛R)

𝑛R

≥
(
𝜖

𝛽

) 2
𝛼
(
𝛼
2 − 1

) 2
𝛼

𝜋𝑑2
(1− 𝜃)

2
𝛼 𝜃1−

2
𝛼 , (20)

for sufficiently large 𝑛R.
This perhaps surprising scaling result can be intuitively

understood by examining how the expected signal and inter-
ference power increase with 𝑛R. Choosing 𝜃 < 1 ensures that
the signal power, which is 𝜒2

2(1−𝜃)𝑛R
, increases linearly with

𝑛R. Based on the upper bound in Lemma 2 we can see that the
condition 𝜃 > 0 ensures that the interference power increases
only linearly with 𝑛R if 𝜆 is linear in 𝑛R. These linear terms
are offsetting, and thus allow an approximately constant SINR
to be maintained as 𝜆 is increased linearly with 𝑛R.

On the other hand, linear scaling does not occur if 𝑘 is
kept constant. Specifically, if 𝑘 = 𝜅 for any constant 𝜅, then
the signal power increases linearly with 𝑛R as desired but the
interference power increases too quickly with the density (as
𝜆𝛼/2), thereby limiting the density growth to 𝑛R

2/𝛼. Linear
scaling also does not hold at the other extreme where all but a
fixed number of degrees of freedom are used for cancellation:
if 𝑘 = 𝑛R − 𝜅 for any constant 𝜅, then the interference power
scales appropriately with the density but the signal power is
𝜒2
2𝜅 and thus does not increase with 𝑛R, thereby limiting the

density increase to 𝑛R
1−2/𝛼. These results are consistent with

the findings of [11] and [12].

B. Upper Bound: The MMSE Receiver

While the earlier result showed that a lower bound to
𝜆mmse
𝜖 (𝑛R) scales linearly with 𝑛R, we make our scaling

characterization more precise by finding an upper bound to
𝜆mmse
𝜖 (𝑛R) that also scales linearly with 𝑛R. In order to obtain

such a bound, we utilize the MMSE performance outage
probability lower bound from [5]. Extended to the model in
this paper, the bound states:

Pmmse
out (𝜆) ≥ ℙ

[
𝑑−𝛼∣∣h0∣∣2∑∞
𝑖=𝑛R

∣𝑋𝑖∣−𝛼𝐻𝑖
≤ 𝛽

]
(21)

where h0 and ∣𝑋1∣, ∣𝑋2∣, . . . are defined as before, and the
random variables 𝐻1, 𝐻2, . . . are iid, unit-mean exponential
random variables (independent of all other random variables).
The bound in [5] is for fixed interferer distances and no
thermal noise. However, by averaging over the interferer
locations (according to the PPP) and using the fact that outage
probability is increasing in the noise power 𝜂, we obtain (21)
and see that it also holds in the presence of noise.

The SIR expression in (21) is closely related to the SINR
characterization for PZF-𝑘 in (13). The denominator of the
SIR in (21) is precisely as if a PZF receiver with 𝑘 = 𝑛R − 1
is used (i.e., the nearest 𝑛R−1 interferers are cancelled, and the
effective fading coefficients from the uncancelled interferers
are iid exponential), while the numerator corresponds to PZF
with 𝑘 = 0. Thus, the bound in (21) corresponds to an
idealized setting where the receive filter cancels the nearest
𝑛R − 1 interferers but still is in the direction of h0.

We translate this outage lower bound into a density upper
bound in a manner that is complementary to Theorem 1:
we upper bound the expected SIR and then apply Markov’s
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inequaltiy to the success probability to obtain the following
result:

Theorem 2: The outage probability with an MMSE receiver
is lower bounded by:

Pmmse
out (𝜆) ≥ 1− 𝑑−𝛼

𝛽

(
2𝑛R + 1 +

𝛼
2

𝜋𝜆

)𝛼/2
(22)

and, in turn, 𝜆mmse
𝜖 (𝑛R) is upper bounded by:

𝜆mmse
𝜖 (𝑛R) ≤

2𝑛R + 1 +
𝛼
2

𝜋𝑑2𝛽2/𝛼(1− 𝜖)2/𝛼
. (23)

Proof: See Appendix C.
This upper bound, which by (10) also applies to PZF, scales

linearly with 𝑛R. Combining Theorems 1 and 2, it is clear that
𝜆mmse
𝜖 (𝑛R) and 𝜆pzf

𝜖 (𝑛R) both scale linearly with 𝑛R, although
numerical results in III-E will confirm that MMSE is better
by a non-negligible constant factor.

Because the SINR with a PZF receiver differs only slightly
from the expression in (21), we can use precisely the argument
of Appendix C to derive an upper bound on 𝜆pzf−𝑘

𝜖 (𝑛R). While
in the proof of Theorem 2 we retained the contribution of the
nearest 𝑛R + 1 uncancelled interferers in (21), for PZF we
retain the contribution of the nearest 𝑙 uncancelled interferers.
This results in the following bound:

𝜆pzf−𝑘
𝜖 (𝑛R) ≤ 𝑘 + 𝑙+ 𝛼/2

𝜋𝑑2𝛽2/𝛼(1− 𝜖)2/𝛼

(
𝑛R − 𝑘

𝑙 − 1

)2/𝛼

(24)

which, unlike the PZF density lower bound in Theorem 1,
applies for any 0 ≤ 𝑘 ≤ 𝑛R − 1, and furthermore holds for
any integer 𝑙 > 1.

For 𝑘 = 0 (MRC), if we choose 𝑙 = 2 the upper bound
becomes

𝜆pzf
𝜖 (0) ≤

2 + 𝛼/2

𝜋𝑑2𝛽2/𝛼(1− 𝜖)2/𝛼
𝑛R

2/𝛼, (25)

while for 𝑘 = 𝑛R − 1 (full ZF) we choose 𝑙 = 𝑛R + 1 to get

𝜆pzf
𝜖 (𝑛R − 1) ≤ 2 + 𝛼/(2𝑛R)

𝜋𝑑2𝛽2/𝛼(1− 𝜖)2/𝛼
𝑛R

1−2/𝛼. (26)

For MRC the upper bound is 𝑂(𝑛R
2/𝛼) while for full zero-

forcing it is 𝑂(𝑛R
1−2/𝛼). These upper bounds complement

the matching lower bounds in [11] and [12], respectively.

C. Array Gain v. Interference Cancellation

Because the MMSE receiver implicitly balances, through
(6), array gain and interference cancellation, it is not evident
how the MMSE utilizes the receive degrees of freedom.
For the sake of simplicity we limit the discussion in this
section to the case where thermal noise is negligible, while
keeping in mind that the MMSE filter considers the balance
between noise power and interference power through (6). If
the eigenvalues of the interference covariance Σ are roughly
equal then the MMSE filter is nearly in the direction of h0;
on the other hand, if the eigenvalues are very disparate then
the MMSE filter is (approximately) in the direction of the
projection of h0 on the subspace orthogonal to the directions
of the strong interfering eigenmodes. Thus, the fraction of
degrees of freedom used for array gain instead of interference

cancellation depends critically on the spread of the eigenvalues
of Σ, which turns out to depend on the path loss exponent 𝛼.

The MMSE receiver can be understood by studying the
PZF receiver, and in particular by finding the value of 𝜃 that
maximizes the PZF density. Based on Lemma 3 it is clear that
the PZF density lower bound depends on 𝜃 only through the
term (1− 𝜃)

2
𝛼 𝜃1−

2
𝛼 for large 𝑛R.

To determine the dependence of the PZF upper bound
in (24), we first minimize the bound with respect to 𝑙, for
large 𝑛R and 𝑘 = 𝜃𝑛R. A simple calculation finds that
𝑙 =

(
2/𝛼

1−2/𝛼

)
𝜃𝑛R is the minimizer, and with this choice of 𝑙

the dependence of the density upper bound also occurs only
through the term (1 − 𝜃)

2
𝛼 𝜃1−

2
𝛼 .

Thus, the upper and lower bounds depend on 𝜃 only through
the term (1−𝜃)

2
𝛼 𝜃1−

2
𝛼 . By taking the derivative (w.r.t. 𝜃) and

solving, we find that the maximizing value of 𝜃 is:

𝜃∗ = 1− 2

𝛼
. (27)

As 𝛼 → 2 the degrees of freedom should be used to boost
signal power rather than to cancel interference (i.e., 𝜃∗ → 0),
because far-away interference is significant and so cancelling
a few nearby interferers provides a smaller benefit than using
the antennas for array gain. At the other extreme, 𝜃∗ → 1
as the path loss exponent increases because the power from
nearby interferers begins to dominate and thus the antennas are
more profitably used for interference cancellation than array
gain.

As it turns out, the optimizing value 𝜃∗ and the above
intuition are also consistent with the MMSE receiver. Fig. 2
contains a plot of 𝔼

[
∣v†

0h0∣2/(∣∣h0∣∣2∣∣v0∣∣2)
]
, the expectation

of the squared correlation between the normalized MMSE
filter and channel vector, versus 𝛼 for 𝑛R = 8 (no thermal
noise). This quantity effectively measures the fraction of
degrees of freedom used for array gain. For the PZF receiver
this metric is precisely equal to 𝑛R − 𝑘, and thus would
be equal to 1 − 𝜃∗ = 2/𝛼 if 𝑘 was chosen as 𝑘 = 𝜃∗𝑛R.
Although the MMSE receiver implicitly balances array gain
and cancellation (as opposed to the explicit balance for the
PZF receiver), the plot shows that the MMSE receiver also
utilizes (approximately) a fraction 2/𝛼 of its receive degrees
of freedom for array gain. Similar to the intuition stated for
the behavior of 𝜃∗ for PZF, the eigenvalues of Σ become more
disparate as 𝛼 is increased, and the MMSE receiver takes
advantage of this by performing more interference cancellation
(and thus providing less array gain) when 𝛼 is larger.

D. Improved Lower and Upper Bounds

Although the bounds developed in Sec. III-A and III-B
are sufficient to show linear scaling, both of them are quite
loose. This looseness is primarily due to the use of Markov’s
inequality, and the following more accurate bounds are instead
derived through application of Chebychev’s inequality:

Theorem 3: The outage probability for the PZF filter is
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upper bounded by

𝑃 pzf−𝑘
out (𝜆) ≤ ℙ (𝑆 ≤ 𝜎∗)+

𝛽2Varub(𝐼𝑘)

∫ ∞

𝜎∗

1(
𝑠− 𝛽

SNR − 𝛽𝔼[𝐼𝑘 ]
)2 𝑓𝑆(𝑠)𝑑𝑠.

(28)

where 𝑆 ∼ 𝜒2
2(𝑛R−𝑘), 𝐼𝑘 is defined in (14), 𝜎∗ =

𝛽

(
𝔼[𝐼𝑘] +

1
SNR +

√
Varub(𝐼𝑘)

)
, and

Varub(𝐼𝑘) = (𝜋𝑑2𝜆)𝛼

( ∞∑
𝑖=𝑘+1

(
𝔼[𝑇−𝛼

𝑖 ] + Var(𝑇
−𝛼

2
𝑖 )

))
.

+2
∞∑

𝑖=𝑘+1

√
Var

(
𝑇

−𝛼
2

𝑖

) ∞∑
𝑗=𝑖+1

√
Var

(
𝑇

−𝛼
2

𝑗

)⎞⎠
Theorem 4: The outage probability for the MMSE filter is

lower bounded by

𝑃mmse
out (𝜆) ≥ 1− Varub (𝑆/𝐼𝑛R)

(𝛽 − 𝔼lb [𝑆/𝐼𝑛R ])
2 (29)

where 𝑆 ∼ 𝜒2
2𝑛R

, 𝐼𝑛R is defined in (14), and

𝔼
lb [𝑆/𝐼𝑛R ] = 𝑛R/(𝜋𝑑

2𝜆)
𝛼
2

∞∑
𝑖=𝑛R

𝔼[𝑇
−𝛼

2

𝑖 ] (30)

Varub (𝑆/𝐼𝑛R) =
𝑛R(𝑛R + 1)

(𝜋𝑑2𝜆)𝛼
(∑∞

𝑖=𝑛R
𝑒−(𝛾+

𝛼
2 𝜓0(𝑖))

)2
− 𝑛R

2

(𝜋𝑑2𝜆)𝛼
(∑∞

𝑖=𝑛R

Γ(𝑖−𝛼
2 )

Γ(𝑖)

)2 , (31)

and 𝛾 is the Euler-Mascheroni constant and 𝜓0(𝑖) is the poly-
Gamma function.

In the two theorems the random variables 𝑇𝑖 are each chi-
square with 2𝑖 degrees of freedom, and have moments char-
acterized by:

𝔼[𝑇 𝑏𝑖 ] =
Γ(𝑖+ 𝑏)

Γ(𝑖)
(32)

Var(𝑇 𝑏𝑖 ) =
Γ(𝑖+ 2𝑏)

Γ(𝑖)
−
(
Γ(𝑖+ 𝑏)

Γ(𝑖)

)2

, if 𝑖+ 𝑏 > 0. (33)

Although space constraints preclude inclusion of the proofs,
they can be found in the online version of this paper [26]. By
equating these bounds to 𝜖 and solving (numerically) for 𝜆, the
PZF and MMSE densities can be lower and upper bounded,
respectively.

E. Numerical Results

In Figures 3 and 4 the numerically computed maximum
densities for the MMSE receiver 𝜆mmse

𝜖 (𝑛R) and the PZF
receiver 𝜆pzf-k

𝜖 (𝑛R) with 𝑘 = 𝜃∗𝑛R are plotted on a log-log
scale versus 𝑛R for 𝛼 = 3 and 𝛼 = 4, along with the
PZF lower bounds (from Theorems 1 and 3), the MMSE
upper bounds (from Theorems 2 and 4), and the densities
for MRC and full zero-forcing (𝜆pzf-k

𝜖 (𝑛R) with 𝑘 = 0 and
𝑘 = 𝑛R − 1, respectively). In each plot, the tighter of the
upper and the tighter of the lower bounds correspond to the
Chebychev-based bounds in the previous section. The bounds
and numerically computed densities are representative of the
linearly increasing density for PZF and MMSE, whereas MRC
and full zero forcing both exhibit much poorer scaling. Figures
5 and 6 provide linear plots of the maximum density versus 𝑛R

for more realistic numbers of antennas. Even a few antennas
allow for very large density gains, and thus the asymptotic
scaling results also are indicative of performance for small
values of 𝑛R. The plots also make it clear that MMSE and PZF
are strongly preferred to MRC or full zero forcing, and also
that a non-negligible benefit is afforded by using the optimal
MMSE filter rather than PZF.

IV. GENERALIZATIONS AND EXTENSIONS OF THE MODEL

In this section, we explore three of the potentially controver-
sial aspects of our model to show that the linear scaling result
is not an artifact of our model and assumptions: we remove
the assumption of perfect CSI at the receiver, we evaluate the
benefit of antennas from an end-to-end perspective, and we
consider the importance of the interferer geometry.

A. Effect of Imperfect CSI

The objective of this section is to illustrate that reasonable
performance is achieved even if the receiver has to estimate the
CSI, instead of assuming this information is a priori provided
to the receiver. In order to design the optimal MMSE filter,
the receiver requires an estimate of h0, the signal channel,
and Σ, the interference (plus noise) covariance. The desired
channel can be estimated at the receiver via pilot symbols and
the effects of such training error are well understood [27]. On
the other hand, it is not as clear how the receiver can estimate
Σ and what effect estimation error has on performance.

Recall that the covariance Σ depends on the interferer
locations, and thus on the active interferers, as well as
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the instantaneous channel realizations. Although coordinated
transmission of pilots seems infeasible in a decentralized
network, the receiver can estimate the covariance by listening
to interferer transmissions, in the absence of desired signal.
If the desired transmitter remains quiet for 𝐾 symbols, the
receiver can use the 𝐾 observations of noise plus interference
to form the sample covariance

Σ̂ ≜ 1

𝐾

𝐾∑
𝑖=1

r𝑖r
†
𝑖 (34)

where r𝑖 represents the 𝑖-th observation of the noise plus
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interference. Assuming, for simplicity, knowledge of h0, the
receiver can then use the filter Σ̂

−1
h0 and the corresponding

SINR is

SINR =

(
h†
0Σ̂

−1
h0

)2
h†
0Σ̂

−†
ΣΣ̂

−1
h0

. (35)

This SINR was analyzed in [28] assuming that all interferers
transmit independent Gaussian symbols, and it was shown
that for every Σ, the expected SINR using filter Σ̂

−1
h0

(expectation w.r.t the distribution of Σ̂), and the SINR using
the correct filter Σ−1h0 are related according to:

𝔼Σ̂

⎡
⎢⎣
(
h†
0Σ̂

−1
h0

)2
h†
0Σ̂

−†
ΣΣ̂

−1
h0

⎤
⎥⎦ =

(
1− 𝑛R − 1

𝐾 + 1

)
h†
0Σ

−1h0, (36)

where from (8), h†
0Σ

−1h0 is the SINR when the proper
MMSE filter is used. By taking an additional expectation with
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respect to Σ (which is determined by the interferer locations
and channels), we see that the expected SINR using an MMSE
filter based upon the sample covariance Σ̂ is precisely a factor
of 1 − 𝑛R−1

𝐾+1 smaller than the expected SINR with perfect
knowledge of Σ. As expected, this factor is increasing in
𝐾 and converges to one as 𝐾 → ∞, because Σ̂ → Σ as
𝐾 → ∞. If 𝐾 = 2𝑛R − 3, the expected SINR is decreased
by 3 dB.

Although the result of [28] applies to the expected SINR,
numerical results confirm that the results also apply to the
outage scenario considered here. Therefore, a system using
the sample covariance from 𝐾 observations and SINR thresh-
old 𝛽 has, approximately, the same maximum density as a
system with perfect CSI and SINR threshold 𝛽/

(
1− 𝑛R−1

𝐾+1

)
.

From the various bounds, we see that the maximum density
depends on the SINR threshold as 𝛽−2/𝛼. Thus, using the
𝐾-observation sample covariances instead of the true co-
variance reduces the density, approximately, by a factor of(
1− 𝑛R−1

𝐾+1

)2/𝛼
. If we choose 𝐾 = 2𝑛R − 3 then the loss

factor is 22/𝛼 for all 𝑛R; therefore, by appropriately scaling
𝐾 linearly with 𝑛R performance within a constant factor of
the perfect CSI benchmark is achieved.

To solidify these conclusions, in Fig. 7 the maximum
density is plotted versus 𝐾 for a 6 antenna system with
SNR = 10 dB. The curves correspond to perfect knowledge
of h0, estimation of h0 on the basis of two interference-free
pilots (each at 10 dB), and the approximation of the perfect

CSI density (0.41 in this case) multiplied by
(
1− 𝑛R−1

𝐾+1

)2/𝛼
.

From the figure we see that estimation of h0 does not signif-
icantly reduce density, the approximate density expression is
reasonably accurate, and that choosing 𝐾 on the order of 10
or 20 leads to a density reasonable close to the perfect CSI
benchmark. Indeed, even if such estimation must be performed
for every transmission, the overhead is reasonable in light of
the fact that packets are typically on the order of hundreds of
symbols.

B. End-to-End Throughput

The transmission capacity quantifies per-hop performance,
whereas end-to-end throughput depends on the range and
rate of each transmission and the spatial intensity of such
transmissions. Thus, a legitimate question is whether the linear
scaling of transmission capacity translates into linear scaling
of end-to-end throughput? In the context of the transport
capacity [8], which is a widely accepted end-to-end metric,
this question can be answered in the affirmative. Transport
capacity is the product of rate and distance summed over all
transmissions and thus is proportional to 𝜆𝜖(1−𝜖)𝑑 log2(1+𝛽),
i.e., the product of the successful transmission density, per-hop
distance, and per-hop rate. Since the transport capacity is lin-
early proportional to 𝜆𝜖, the linear density scaling established
in Theorems 1 and 2 also translates into linear scaling of the
transport capacity.

Although increasing the density with 𝑛R leads to linear
scaling of the transport capacity, it is not a priori clear if the
antennas should instead be used to increase the transmission
rate and/or range. Based on the scaling results in Theorems 1
and 2, we see that 𝜆𝜖𝑑2𝛽2/𝛼 ∝ 𝑛R. Thus, if the density and
rate (i.e., SINR threshold 𝛽) are kept constant, then the range
can be increased at order 𝑑 ∝ √

𝑛R. Alternatively the SINR
threshold can be increased at order 𝛽 ∝ 𝑛R

𝛼
2 , which translates

to increasing per-hop rate approximately as 𝛼
2 log2(1 + 𝑛R).

Because transport capacity is proportional to 𝜆𝜖𝑑 log2(1+𝛽),
using the receive antennas to increase per-hop range only
increases transport capacity at order

√
𝑛R while increasing

per-hop rate leads to an even poorer logarithimic increase
(consistent with [13]). Therefore, the most efficient use of the
receive array, from an end-to-end perspective, is to increase
the density of simultaneous transmissions rather than the per-
transmission rate or distance.

These points can be argued concretely within the framework
of expected forward progress (EFP), a metric introduced in
[10] that is defined as

EFP = 𝜈𝑝 ⋅ 𝔼[𝑋0] ⋅ log2(1 + 𝛽), (37)

where 𝜆 = 𝜈𝑝 is the density of transmitters subject to
an ALOHA protocol where the entirety of nodes in the
network (that have density 𝜈) transmit with probability 𝑝 and
act as receivers (and hence relays) with probability 1 − 𝑝,
where 𝑝 is a design parameter that is optimized offline. An
opportunistic routing protocol is employed through which
the successful receiving node (i.e., relay) offering the most
geographic progress towards a defined destination direction is
selected to forward each transmitter’s packet, and the quantity
𝔼[𝑋0] is the expected progress offered by such relay. The
expected distance is inversely proportional to the transmitter
density 𝑝, and by understanding how the optimum 𝑝 changes
with respect to 𝑛R we can determine if receive antennas
are more effectively used for increasing transmit density (𝑝
increasing rapidly with 𝑛R) or for increasing per-hop range (𝑝
approximately constant).

Fig. 8 contains plots of EFP versus transmission probability
𝑝 for 𝑛R = 1 to 𝑛R = 8 and the optimum value of 𝑝 is
seen to increase approximately linearly with 𝑛R, confirming
that it is more effective to use the antennas to increase
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Fig. 8. Expected forward progress vs. transmission probability (𝑝) for 𝑛R

ranging from 1 (bottom) to 8 (top), for 𝛼 = 3, 𝛽 = 0 dB, and no noise. The
optimizing values of 𝑝 are denoted with an X.

density. (Closer examination shows that the expected distance
per communication, i.e. the per-hop range, is approximately
constant with respect to 𝑛R for the optimizing value 𝑝.) The
plot also illustrates that the EFP itself is linear with 𝑛R,
confirming that linear scaling holds for multihop wireless
networks. To see that increasing the rate rather than density
also is suboptimal, if 𝑝 is kept fixed to the small value of
0.075 when 𝑛R = 8 and the spectral efficiency log2(1 + 𝛽) is
set to 4 (this value leads to the same expected per-hop range
as the optimizing 𝑝), then the resulting EFP is 0.3 instead of
the 0.4 achievable if rate is kept fixed and 𝑝 (i.e. the density)
is increased.

C. Effect of Interference Geometry

In this paper we have assumed a homogeneous Poisson
distribution for the node locations, which is a realistic model
if the users take up random locations and do not coordinate
their transmissions. One might reasonably wonder, however,
if the linear scaling result is an artifact of this model, since
in a Poisson field the nearest interferers dominate and so
interference cancellation might be far more profitable in
this setup than in a more regular network. A “good” MAC
protocol would seemingly space out the active transmitters
at any instance, to avoid dominant interference. As a simple
manifestation of such a MAC, we consider a regular network
where the interferers take up positions on a square grid with
edges of length 1/

√
𝜆 and study the performance of such a

network through Monte Carlo simulation (the regular interferer
spacing makes analysis very difficult). From Fig. 9 we see that
a regular network allows for a larger density of simultaneous
transmissions, but only by a constant factor that is independent
of 𝑛R. Based on this, we conjecture that the linear scaling
result holds for any network geometry in which nodes are
reasonably scattered in space.
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Fig. 9. The optimal density for both Regular and Poisson networks increases
linearly with 𝑛R, which regular networks having a slightly higher achievable
density since nearby (dominant) interferers do not exist.

V. CONCLUSION

The main takeaway of this paper is that very large through-
put gains can be achieved in ad hoc networks using only
receive antennas in conjunction with linear processing. In a
point-to-point link receive antennas only provide array gain,
which translates into a linear SNR and thus logarithimic rate
increase (in the number of receive antennas). In an ad hoc
network, however, receive antennas can also be used to cancel
interference and this possibility turns out to yield much more
significant benefits. In particular, the main result of the paper
showed that using receive antennas to cancel interference and
obtain some array gain allows the density of simultaneous
transmissions to be increased linearly with the number of
receive antennas when nodes transmit using only a single
antenna. This result only requires channel state information
at the receiver, which can be reasonably estimated, and the
conclusion was seen to be robust to the particular interferer
geometry.

From an end-to-end perspective, this linear increase in the
density of simultaneous transmissions naturally translates into
a linear increase in network-wide throughput. In addition, our
analysis showed that receive antennas are in fact best utilized
by increasing the density of simultaneous transmissions rather
than increasing the per-hop rate or range. Finally, although the
single-transmit/multiple-receive antenna setting may appear
artificial, subsequent work on this model has shown that it
can be detrimental to employ multiple transmit antennas when
channel state information is not available to the transmitter
[24], [29]. As a result, the single transmit/multiple receive
antenna setting is indeed very relevant.

APPENDIX A
PROOF OF LEMMA 1

By the definition of v0, the quantity ∣v†
0h0∣2 is the squared-

norm of the projection of vector h0 on Null(h1, . . . ,h𝑘). This
nullspace is 𝑛R−𝑘 dimensional (with probability one) by basic
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properties of iid Gaussian vectors and is independent of h0

by the independence of the channel vectors, and thus ∣v†
0h0∣2

is 𝜒2
2(𝑛R−𝑘) [25]. The second property holds by the definition

of the PZF-𝑘 receiver. To prove the third property, note that
v0 depends only on h0,h1, . . . ,h𝑘 and thus is independent
of h𝑘+1,h𝑘+2, . . .. Because the distribution of each channel
vector is rotationally invariant (i.e., the distributions of Wh𝑖
and h𝑖 are the same for any unitary matrix W), we can
perform a change of basis such that v0 = [1 0 ⋅ ⋅ ⋅ 0]𝑇 . After
this change of basis, each v†

0h𝑖 (for 𝑖 ≥ 𝑘+1) is simply equal
to the first component of h𝑖. As a result v†

0h𝑘+1,v
†
0h𝑘+2, . . .

are iid complex Gaussians; thus the squared norms are iid
exponentials, and furthermore these terms are independent of
𝑆.

APPENDIX B
PROOF OF LEMMA 2

First we have

𝔼

[ ∞∑
𝑖=𝑘+1

∣𝑋𝑖∣−𝛼𝐻𝑖

]
=

∞∑
𝑖=𝑘+1

𝔼
[∣𝑋𝑖∣−𝛼𝐻𝑖

]
(38)

=
∞∑

𝑖=𝑘+1

𝔼
[∣𝑋𝑖∣−𝛼

]
(39)

where 𝔼 [∣𝑋𝑖∣−𝛼𝐻𝑖] = 𝔼 [∣𝑋𝑖∣−𝛼]𝔼 [𝐻𝑖] = 𝔼 [∣𝑋𝑖∣−𝛼] due to
the independence of ∣𝑋𝑖∣ and 𝐻𝑖 and the fact that 𝔼[𝐻𝑖] = 1.
Because ∣𝑋1∣2, ∣𝑋2∣2, . . . are a 1-D PPP with intensity 𝜋𝜆,
random variable 𝜋𝜆∣𝑋𝑖∣2 is 𝜒2

2𝑖 and thus has PDF 𝑓(𝑥) =
𝑥𝑖−1𝑒−𝑥

(𝑖−1)! . Therefore

𝔼

[(∣𝑋𝑖∣2
)−𝛼/2]

= (𝜋𝜆)
𝛼
2

∫ ∞

0

𝑥−𝛼/2𝑥
𝑖−1𝑒−𝑥

(𝑖− 1)!
𝑑𝑥 (40)

= (𝜋𝜆)
𝛼
2
Γ
(
𝑖− 𝛼

2

)
Γ(𝑖)

. (41)

This quantity is finite only for 𝑖 > 𝛼
2 , and thus the expected

power from the nearest uncancelled interferer is finite only if
𝑘 + 1 > 𝛼

2 .
To reach the upper bound, we use the following inequality

from [12] (which is derived using Kershaw’s inequality to the
gamma function):

Γ
(
𝑖− 𝛼

2

)
Γ(𝑖)

<
(
𝑖−

⌈𝛼
2

⌉)−𝛼
2

(42)

where ⌈⋅⌉ is the ceiling function and we require 𝑖 >
⌈
𝛼
2

⌉
.

Therefore

∞∑
𝑖=𝑘+1

Γ
(
𝑖− 𝛼

2

)
Γ(𝑖)

<
∞∑

𝑖=𝑘+1

(
𝑖−

⌈𝛼
2

⌉)−𝛼
2

(43)

≤
∫ ∞

𝑘

(
𝑥−

⌈𝛼
2

⌉)−𝛼
2

𝑑𝑥 (44)

=
(𝛼
2
− 1

)−1 (
𝑘 −

⌈𝛼
2

⌉)1−𝛼
2

, (45)

where the inequality in the second line holds because 𝑥−𝛼
2 is

a decreasing function.

APPENDIX C
PROOF OF THEOREM 2

The outage upper bound is obtained by keeping the interfer-
ence contribution of only the nearest 𝑙 uncancelled interferers
in (21) and applying Markov’s inequality to the success
probability:

1− Pmmse
out (𝜆)

(𝑎)

≤ ℙ

[
𝑑−𝛼∣∣h0∣∣2∑∞
𝑖=𝑛R

∣𝑋𝑖∣−𝛼𝐻𝑖
≥ 𝛽

]
(46)

(𝑏)

≤ ℙ

[
𝑑−𝛼∣∣h0∣∣2∑𝑛R−1+𝑙

𝑖=𝑛R
∣𝑋𝑖∣−𝛼𝐻𝑖

≥ 𝛽

]
(47)

(𝑐)

≤ ℙ

[
𝑑−𝛼∣∣h0∣∣2

∣𝑋𝑛R−1+𝑙∣−𝛼
∑𝑛R−1+𝑙
𝑖=𝑛R

𝐻𝑖

≥ 𝛽

]
(48)

(𝑑)

≤ 1

𝛽
𝔼

[
𝑑−𝛼∣∣h0∣∣2

∣𝑋𝑛R−1+𝑙∣−𝛼
∑𝑛R−1+𝑙

𝑖=𝑛R
𝐻𝑖

]
(49)

where (a) follows from (21), (b) because decreasing the
interference increases the SIR and thus the success probability,
(c) because ∣𝑋𝑖∣ are increasing in 𝑖 and the function (⋅)−𝛼
is decreasing, and (d) is due to Markov’s inequality. By the
independence of the various random variables:

𝔼

[
𝑑−𝛼∣∣h0∣∣2

∣𝑋𝑛R−1+𝑙∣−𝛼
∑𝑛R+𝑙−1
𝑖=𝑛R

𝐻𝑖

]

= 𝔼
[∣∣h0∣∣2

]
𝔼

[
𝑑−𝛼∑𝑛R−1+𝑙

𝑖=𝑛R
𝐻𝑖

]
𝔼 [∣𝑋𝑛R − 1 + 𝑙∣𝛼]

=
𝑛R

𝑙− 1

(
𝜋𝑑2𝜆

)−𝛼/2 Γ (𝑛R − 1 + 𝑙 + 𝛼
2

)
Γ (𝑛R − 1 + 𝑙)

. (50)

where we have used the fact that ∣∣h0∣∣2 ∼ 𝜒2
2𝑛R

,
∑𝑛R+𝑙−1

𝑖=𝑛R
𝐻𝑖

is the sum of 𝑙 iid exponentials and thus is 𝜒2
2𝑙, and ∣𝑋𝑛R −

1 + 𝑙∣2 ∼ 1
𝜋𝜆𝜒

2
2(𝑛R−1+𝑙).

By applying Kershaw’s inequality, which states

Γ (𝑥+ 1) /Γ (𝑥+ 𝑠) <
(
𝑥− 1

2 +
√

𝑠+ 1/4
)1−𝑠

∀𝑥 > 0

and 0 < 𝑠 < 1, and the property Γ(𝑥+1) = 𝑥Γ(𝑥), we have:

Γ
(
𝑛R − 1 + 𝑙 + 𝛼

2

)
Γ (𝑛R − 1 + 𝑙)

≤
(
𝑛R − 1 + 𝑙 +

𝛼

2

)𝛼/2
. (51)

Substituting (50) and (51) into (49) yields:

Pmmse
out (𝜆) ≥ 1− 1

𝛽

𝑛R

𝑙− 1
(𝜋𝜆)

−𝛼/2 (
𝑛R − 1 + 𝑙+

𝛼

2

)𝛼/2
(52)

By choosing 𝑙 = 𝑛R + 1 we obtain the desired outage
probability lower bound, and by setting this bound to 𝜖 and
solving we get the density upper bound.
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