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Abstract—We derive the capacity and optimal power allocation scheme
for a multi-user fading broadcast channel in which minimum rates must
be maintained for each user in all fading states, assuming perfect channel
state information at the transmitter and at all receivers. We show that su-
perposition coding can achieve the capacity of such channels and explicitly
characterize the boundary of the capacity region. The optimal power allo-
cation scheme is a two-step process: We first allocate the minimum power
required to achieve the minimum rates in all fading states, and we then op-
timally allocate the excess power to maximize the ergodic rates averaged
over all fading states in excess of the minimum rate requirements. The op-
timal allocation of the excess power is a multi-level water-filling relative to
effective noise that incorporates the minimum rate constraints. Numerical
results are provided for different fading broadcast channel models.

I. INTRODUCTION

The ergodic capacity of fading broadcast channels deter-
mines the maximum average rates achievable in the downlink
of a single cell. Ergodic capacity is achieved via multi-level
water-filling of power over time and users using superposition
coding [1,2]. An unfortunate consequence of the optimal power
allocation scheme is that users with poor channels may receive
no data for large periods of time, depending on the duration of
channel fades. Such a situation may be unacceptable in delay-
constrained applications such as video transmission.

With the above motivation in mind, this paper finds the er-
godic capacity of a broadcast channel subject to an average
power constraint and with minimum rate requirements for all
users. We will show that the optimal power allocation scheme
with minimum rates reduces to first allocating the minimum
power required to meet the minimum rates and then allocat-
ing the excess power according to a multi-level water-filling
scheme relative to effective noise. Minimum-rate capacity is
essentially a combination of outage capacity [3] and ergodic
capacity: some power is used to maintain the minimum rates
in all fading states, similar to outage capacity with zero-outage
probability, while the remaining power is used to maximize the
average rates in excess of the minimum rates, similar to ergodic
capacity. Minimum-rate capacity with a peak power constraint
and with outage are extensions of our derivations which are
solved in [6].

This paper is organized as follows. Section II describes the
system model. Section III considers a single-user fading chan-
nel with a minimum rate constraint. In Section IV we show that
superposition coding is optimal for the fading two-user broad-
cast channel and find the optimal power allocation scheme us-
ing both Lagrangian and greedy techniques. Numerical results
are presented in Section V, followed by our conclusions.

II. SYSTEM MODEL

For notation, we use boldface to denote vectors and
���

to
denote expectation over the random variable � .

We consider a flat-fading Gaussian broadcast channel with a
single transmitter communicating independent information to�

users over bandwidth � . The signal intended for user � at
time � is denoted by �
	����� and has power ��	������ . Each receiver
has additive white Gaussian noise (AWGN) with noise den-
sity � 	 . The time-varying channel gain of user � is denoted by� � 	����� . By incorporating the channel gain into the noise term
as in [2], we define an effective noise density ��	����������	�� � 	�����
and get an equivalent form for the received signal:� 	�������  !"$#�% � " ������&(')	����� (1)

where ')	*�����+-,.�0/213�4	*����3�
� . We assume that the noise density
vector 56����7�8�� % ����$1)9:9)9:13�  �����3� is known to the transmitter
and all

�
receivers at time instant � . As the noise density vec-

tor incorporates the effects of the channel gain, we will alterna-
tively refer to 5 as the fading state.

The transmitter can vary power ��	;���� (and therefore the
rate) for each user relative to the noise density vector, sub-
ject to average power constraint � . Using superposition cod-
ing with successive decoding, the rate of user � for fading state5 is given by < 	 �05=�>�?�A@CB*D4��EF& G�H$IKJ�L� H3M=N�OQPRCS;T G R IKJ*L0UWV � HYX � R[Z �
where \^]K9 _ is the indicator function. For simplicity, we assume�`�aE . In this paper we impose minimum rate constraintsbdc �e�< c% 1)9)9:9)1f< c � which must be maintained in all fading
states, or <g	��5h�jik< c	 1l�>�8E�1)9)9:9m1 � , for all 5 . Clearly,

b c
must be in the zero-outage capacity region [3] of the channel
in order for the minimum rates to be achievable in all fading
states.

III. SINGLE USER FADING CHANNEL

Before analyzing the broadcast channel, we first find the
capacity-achieving scheme for a single user fading channel
subject to minimum rate constraints. We must find the opti-
mal power allocation scheme �n����� ( � is a scalar for the single
user scenario), or equivalently:onp�qGrI � L ���ts @KB�Du�3E6& �n����� �lv (2)

subject to:
�w� ] �n������_�x �Q1y<j����zit< c|{ �r9

0-7803-7206-9/01/$17.00 © 2001 IEEE

1292



We denote the minimum power required to achieve the mini-
mum rate as � c �����~}���������2�nE�� and define ��n����� as the power
allocated to fading state � in excess of � c ���� . The total power
allocated to fading state � then is �n����~�-� c ������& ��n����� . Us-
ing standard Lagrangian techniques, the optimal allocation of
excess power is modified water-filling:

��Q�����~��� %� �t���&.� c ����������&(� c �����zx %�/ ��&(� c �����z� %� (3)

where
%� is the water-filling level satisfying the reduced power

constraint � c � ����� J ] � c �����l_ .The special structure of the capacity formula for Gaussian
channels allows us to treat power allocated to a channel as an
additional source of noise. Therefore, the interpretation of this
scheme is very simple: First allocate minimum power � c ����
to each state. Then, treating � c ����� as additional noise, use
the standard water-filling algorithm with effective noise ��&� c ����� rather than � and with power constraint � c instead of� . We will soon seen that the multi-user broadcast channel can
be interpreted in a similar manner.

IV. TWO-USER FADING BROADCAST CHANNEL

Now consider a multi-user fading broadcast channel as de-
scribed in Section II with

� ��� . We explicitly characterize
the minimum rate capacity for the two-user case, but these re-
sults can be extended to an arbitrary

�
-user broadcast channel.

For simplicity, we assume ���7��� % in all states. Later we show
how our results extend to the general case where the ordering
of noises differs from state to state.

Before we find the optimal power allocation scheme, let us
first prove that superposition coding achieves capacity for the
broadcast channel with minimum rates. Consider a two-user,
constant broadcast channel with minimum rates. Our goal
then is to find all possible rate pairs �0< % 1f<���� satisfying mini-
mum rates < c% and < c� , or equivalently all rate pairs such that< % i�< c% and <���i�< c� . Without minimum rates, all possi-
ble rate pairs are achievable by superposition coding. The rate
pairs satisfying the minimum rates are simply a subset of all
rate pairs without minimum rates, and are therefore achievable
by superposition coding. Because the fading broadcast channel
can be equivalently viewed as a set of parallel constant broad-
cast channels [2], one for each fading state, superposition cod-
ing can be used in each of these parallel channels to achieve
capacity. Using the time-sharing argument of [2], we also can
show that the capacity region is convex.

Due to the convexity of the region, the boundary of the ca-
pacity region can be found by the following maximization:onp�q� IKJ*L � � ] � % < % �05=��&A� � < � �5h�l_ (4)

subject to:
��� ] � % �5h��&.�=�;�5h�l_�x �< % �5h�zi�< c% 1y<��*�5h��it< c� { 5

over /jx�� % x�E and �w����E���� % .

Let us now introduce notation similar to that used in Section
III. Defining minimum powers � c% �5h��} � % ������T �¡E�� and� c� �05=�~}k�� c% �5h��&.� � �)�� ���¢ �tE�� , (4) simplifies to:onpWq£� IKJ�L �w��¤ � % @KB�Dd¥�E6& �� % �5h��&.� c% �5h�� % ¦ (5)

&�� � @CB*D ¥ E�& ��=�*�5h��&(� c� �05=��� % �05=��&(� c% �5h��&A� � ¦7§
subject to:

� � ]���n�5h�l_�xt� c 1y/Qx¨�� % �5h��x ��n�5h����© ���¢
where � c } ��� �w� ] � c% �05=�g&ª� c� �5h�l_ is the excess power
constraint and ��n�5h�z}`�� % �05=�=&«�� � �5h� is the excess power al-
located to fading state 5 . As before, �� % �5h� and ��=���05=� represent
excess power.

Though the minimum rate capacity of the single-user chan-
nel was found rather easily, the broadcast channel problem
is considerably more difficult because stronger users interfere
with weaker users. Whenever excess power �� % �5h� is allocated
to user 1, the interference seen by user 2 increases and <¬� de-
creases. Therefore, whenever user 1 is allocated excess power
some excess power must also be allocated to user 2 to overcome
the additional interference. As a result, user 1 cannot be allo-
cated all of the excess power in a state and �� % �5h� is constrained
to /jx¨�� % �05=�zx¨��n�5h��� © ���¢ .

In order to solve (5), we decompose the maximization into
two steps:
1. Given ��Q�5h� for all 5 , we must optimally distribute the ex-
cess power between the users in each state: � ����n�05=���~} onpWq®G T IKJ*L � % @CB*D ¥ E6& �� % �05=�=&.� c% �5h�� % ¦ (6)

&��w�^@CB*D¯¥=E6& ��n�05=�r� �� % �05=�=&.� c� �5h��� % �5h��&(� c% �05=��&A�w� ¦
subject to: /Qx¨�� % �05=��x ��n�5h��� © ���¢ 9

2. After we find
 � ������05=��� for each 5 , we must optimally allo-

cate excess power ��n�5h� over all fading states:oQp�q®GhIKJ*L �w� ] =� ����n�5h�3��_ subject to:
�w� ]*��Q�05=��_�x�� c 9 (7)

Equation (6) is a one-dimensional optimization over �� % �05=�
and is therefore easily solved.

h� ����n�05=��� is achieved by the
following power distribution:
1) If ° ¢° T x±E , then �� % �5h�~� ��n�5h��� © ���¢ and ��=�*�05=�6���n�5h�m��E���� © ���¢ �m9
2) If ° ¢° T i � ¢ N G �T� T N G �T , then �� � �5h���²��n�05=� and �� % �05=�~�-/ .
3a) If E�³ ° ¢° T ³ � ¢ N G �T� T N G �T and ��n�05=�Fxk��´µ�¶f·�¸3µ , then �� % �05=�7���n�5h��� © ���¢ and �� � �5h���¹��n�05=�)��Eg��� © ���¢ �$9
3b) If E�³ ° ¢° T ³ � ¢ N G �T� T N G �T and ��n�5h�¬�º��´µ�¶f·3¸�µ , then �� % �05=�7�
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� ´µ:¶Y·�¸�µ � © ���¢ and ��=�;�5h��� ��n�5h��� �� % �05=� where � ´µ�¶Y·�¸�µ �� ° T � ¢ © ° ¢ � T° ¢ © ° T ��� c% �3�����¢ .
Power allocated to user 1 increases < % , but also leads to a

decrease in <�� due to interference. On the other hand, power
allocated to user 2 will not lead to as large of an increase in< � because � � �»� % , but it does not affect < % . In case 1,
because � % i(� � , it is optimal to give user 1 as much power as
allowable while ensuring that user 2 can still maintain < c� . On
the other extreme, in case 2, when ���¯¼|� % , user 2 is given
all available power. When E.³ ° ¢° T ³ � ¢ N G �T� T N G �T as in case 3 ,
the weights are such that increasing < % is optimal up to the
point where �� % �½��´µ�¶f·�¸3µ*� © ���¢ (case 3a). Past this point, it
is optimal to use the power above �=´µ�¶Y·�¸�µ to increase < � (case
3b).

Now that
=� � ��n�05=��� is known, we must solve (7). We intro-

duce a Lagrangian multiplier ¾ to get:onpWq®GhIKJ�L �w� ] �� ����n�5h�3�l_^�A¾����� ]���n�05=��_u��� c �m9 (8)

The standard solution to such a problem satisfies
F¿ ����n�5h�3�g�¾ , similar to single user water-filling. The optimal power allo-

cation scheme is a two-level water-filling scheme where
%� is

chosen to satisfy excess power constraint � c :
1) If � � xt� % , then

� �� % �5h����° T� � © ���¢ �t�0� c% �05=��&.� % �����;�5h����° T� ��E���� © ���¢ �=���� c% �5h��&.� % �m�0�����¢ �tE��m9 (9)

2) If ° ¢° T i � ¢ N G �T� T N G �T , then

� �� % �5h�~�-/�� � �5h�~� ° ¢� �t�0� c% �05=��&A� � �������¢ 9 (10)

3a) If E7xÀ° ¢° T x � ¢ N G �T� T N G �T and ¾Áx±�:° ¢ © ° T� ¢ © � T ��� © ���¢ then

� �� % �05=�6��° T� � © ���¢ ���� c% �5h��&.� % ��� � �05=�6� ° T� ��E���� © ���¢ �h�t�0� c% �05=��&A� % �m������¢ ��E��$9
(11)

3b) If EÂxÀ° ¢° T x � ¢ N G �T� T N G �T and ¾¯�ª�:° ¢ © ° T� ¢ © � T ��� © ���¢ then

� �� % �05=���-��´µ�¶Y·�¸�µ;� © ���¢��=���05=��� ° ¢� ���� c% &.�w�:�3�����¢ ��� ´µ�¶Y·�¸�µ � © ���¢ 9 (12)

After some algebraic manipulation, the state-by-state excess
power allocation simplifies to:��j�05=�6� onpWq±Ã � %¾ �t�0� c% �05=��&.� % �3� ���¢ 1 (13)� �¾ ���� c% �5h��&.�w�:�3� ���¢ 1w/�Ä
and �� % �5h� and �� � �05=� are specified by

 � �w��n�5h�3�. Extending
this scheme to allow states in which � % �e� � only requires
reversing all subscripts in (13).

To simplify this solution, let us first define effective noises� ¿ % and � ¿� :
� � ¿Å �k�� c% �5h��&.� Å �3�����¢ � % ³�� �� ¿Å �k�� c� �5h��&.� Å �3�����T � % i��w� (14)

Let us examine the � % ³�� � equations more carefully. In Sec-
tion III we saw that the effective noise in a single-user channel
is the sum of the actual noise and power already used in the
channel. If we expand � ¿� , we find that � ¿� ���w��&�� c% �5h��&� c� �05=� . In this expression the first two terms represent noise
and interference, and the last term � c� �5h� , represents power al-
ready allocated to user 2. It appears that user 1 should only
have an effective noise term of � % &�� c% �5h� , but the factor of�����¢ in � ¿ % is due to the fact that user 1 can only use a frac-
tion (specifically � © ���¢ ) of the power allocated to it due to the
interference user 1 causes on user 2.

Using the effective noises, the optimal scheme is water-
filling with two water-levels scaled by weights � % and �w� :��n�5h�~� oQp�q Ã � %¾ ��� ¿ % 1 �w�¾ ��� ¿� 1w/ Ä 9 (15)

The allocation of excess power to each fading state is identi-
cal to the optimal power allocation [1, 2] used to achieve er-
godic capacity of the broadcast channel with effective noises� ¿ % and � ¿� and power � c . The allocation of the excess power
between users, however, is not necessarily the same as under
ergodic capacity maximization because under minimum rate
constraints all excess power in a fading state cannot be allo-
cated to the stronger user due to the interference it causes on
the weaker user. Nonetheless, the state-by-state rates achieved
by each user, and therefore the average rates, are equal to the
ergodic capacity maximization rates. The minimum rate capac-
ity is therefore equal to the ergodic capacity of the broadcast
channel with effective noises � ¿ % and � ¿� and power � c plus the
minimum rates.

We see that water-level ° T� is used for channels that are filled
on � ¿ % and ° ¢� is used for � ¿� channels. Fig. 1 illustrates a four
fading state example where ������� % . Note that (15) does not
specify the distribution of excess power between the two users.
If water-filling is done up to ° T� , then some power is given to
user 1, but power may also be allocated to user 2 according
to
=� ����n�5h�3�. Both users are allocated some power in all fad-

ing states, due to the minimum power allocation, and therefore
superposition coding is necessary in every fading state.

In recent work on the broadcast channel [2, 4], a greedy in-
terpretation of the optimal power allocation scheme is derived.
We now use the same approach to find an alternative deriva-
tion of the minimum rate capacity. To use the greedy approach,
we must reformulate our problem slightly. We again assume�w�Â��� % for simplicity and generalize our results later. Instead
of allocating power to users 1 and 2, we distribute power be-
tween two policies in each fading state:

Policy 1: Increase < % �5h� while ensuring < � �5h��i-< c� . De-
note the power allocated to this policy as � � T �05=� . To main-

1294



Æ

Ç

state 1 state 2 state 3 state 4

° T�
° ¢�

� ¿ % � ¿� � ¿ % � ¿� � ¿ % � ¿� � ¿ % � ¿�
Fig. 1. Water-filling diagram for two-user channel with min rates

tain <��;�5h� above the minimum rate, user 2 receives a frac-
tion of � � T �05=� : �� � �05=�d�»� � T �5h�m��E
��� © ���¢ � and �� % �5h�È�� � T �5h��� © ���¢ .

Policy 2: Increase <��;�5h� while keeping < % �05=� constant. De-
note the power allocated to this policy as � � ¢ �05=� . Because user
2 does not interfere with user 1, user 2 is given all the power:�� � �05=���-� � ¢ �5h� and �� % �5h�~��/ .

We now perform the optimization in (5) over � � T �5h� and� � ¢ �5h� . By adding the constant �3��� % < c% �¯�w�:< c� � to the func-
tion to be maximized and introducing a Lagrangian, it can be
shown that the following is an equivalent maximization:onpWqG;É T IKJ*LlÊ G;É ¢ IKJ*L ��� ] � %YË�% &��w� Ë �m_Ì��¾ ��� ] � � T �5h��&�� � ¢ �05=��_ (16)

where Ë^% �� � T 1f� � ¢ � � @CB*D4��E�& G;É T IKJ*L ·YÍ É �¢� T N G �T � andË �;�� � T 1f� � ¢ ����@CB*D4��E6& G;É ¢ IKJ*LG�É T IKJ�L N G �T IKJ�L N G �¢ ICJ*L N � ¢ � .Due to the convexity of the problem, we know there exists
a ¾À�e/ such that the solution of the above problem solves
the original optimization problem (4). As is done in the stan-
dard broadcast channel [2, 4], we decompose (16) into a set of
independent optimization problems, one for each fading state:onpWqG;É T IKJ*LlÊ G;É ¢ IKJ*L � %mË^% &.�w� Ë ����¾��� � T �5h��&.� � ¢ �05=��� (17)

By Lemma 3.1 of [4], a power allocation scheme is optimal if
and only if it is the solution to (17) for every fading states. We
can find the solution to (17) using the greedy method of [2, 4].
For �=�ºE*1f� , define utility functions Î Å as:Î Å �0';�r� � Å'�&-�� c% �5h��&A� Å ��� � �¢ ��¾�1y�=�ºE*1Y�Ï9 (18)

The solution to (17) then is:Ð�ÑÒ ] onpWqÅ #�% Ê � Î Å �0';��_ NrÓ 'u9 (19)

At each interference level ' , power Ó:Ô is allocated to the pol-
icy with the larger utility function Î Å �'Õ� up to the point where
both utility functions are negative. The utility functions are the
derivatives of Ë�% and Ë � minus ¾ . In each fading state, power

is allocated to the better of the two policies at each interference
level, or to the policy leading to the larger marginal increase of
the objective. At the optimal point, the marginal increase of the
objective function in each fading state will equal ¾ . The opti-
mal power allocation scheme then is:
1) If � � xº� % , then Î % �0';�
�¡Î � �0';� for '�i¡/ so policy 1 re-
ceives all power. Therefore, � � T � ° T� ���� c% &.� % �3�����¢ .
2) If ° ¢° T i � ¢ N G �T� T N G �T , then Î^���'Õ�7�±Î % �'Õ� for 'Ái�/ so policy 2

receives all power and � � ¢ ��° ¢� ���� c% &.�w�:�3�����¢ .
3) If E-x ° ¢° T x � ¢ N G �T� T N G �T , then Î % �0';� and Î^�*�'Õ� intersect at

the point '��»� ° T � ¢ © ° ¢ � T° ¢ © ° T ��� c% �������¢ and Î % �/;�niÀÎ � �/;� . If¾Áxª� ° ¢ © ° T� ¢ © � T ��� © ���¢ , then the utility functions are negative at the
intersection point and only policy 1 receives power according
to � � T � ° T� ���� c% &A� % �������¢ . If ¾>�ª� ° ¢ © ° T� ¢ © � T ��� © ���¢ , then the
functions intersect where the utility functions are positive and
both policies receive power: � � T �k� ° T � ¢ © ° ¢ � T° ¢ © ° T �n� c% �3�����¢ and� � ¢ ��° ¢� ���� c% &.�w�:�3� ���¢ ��� � T .

These three cases correspond exactly to (9)-(12) and the
scheme can be extended to any ordering of noises by reversing
all subscripts. The greedy approach gives valuable insight on
how power is allocated within each fading state (by choosing
the policy with the larger marginal increase at every interfer-
ence level) and also across fading states (via water-filling level%� ).

V. NUMERICAL RESULTS

In this section we present numerical results on two-user
broadcast channels with symmetric minimum rates and sym-
metric fading distributions. In all plots, the power constraint is
10 mW and the bandwidth is 100 kHz.

In Fig. 2 the capacity region of a two-user channel with very
different noise levels is plotted. In one fading state, � % is 40 dB
less than � � , and vice versa in the second fading state. Without
minimum rates, capacity is achieved by allocating most of the
power to the better of the two users in each channel state. When
minimum rate constraints are applied, much of the power must
be allocated to the weaker user in every fading state to meet the
minimum rates, leading to a large capacity reduction.

As the difference in the noise levels of the two users de-
creases, the difference between the minimum-rate capacity re-
gion and the ergodic capacity region decreases. The capacity
region of a channel where � % and � � differ by 20 dB in each
fading state is plotted in Fig. 3. Minimum rate constraints
force power to be allocated to both users in every state, but be-
cause the poorer channel is only 20 dB weaker than the stronger
channel, as opposed to the 40 dB in the first example, allocating
power to the weaker user is not quite as sub-optimal. Therefore,
the difference between the ergodic and minimum rate capacity
regions is not as large as in the first example.

In the final two plots, results for more realistic channel mod-
els are presented. Independent fading is assumed for both re-
ceivers. In Fig. 4, Rician fading with Ö×�`E is modeled.
This is not as severe as Rayleigh fading, but the power of the
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Fig. 2. Capacity of symmetric channel with 40 dB difference in SNR
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Fig. 3. Capacity of symmetric channel with 20 dB difference in SNR

multipath component equals the power of the line of sight com-
ponent. The channels of the two users often vary quite signif-
icantly, and, as expected by our earlier results, minimum rates
reduce capacity significantly. In Fig. 5, Rician fading withÖØ�«Ù is modeled. Because the line of sight component is
quite large, both users generally have strong channels. As a
result, minimum rates do not reduce capacity significantly.

In each of the plots, the zero-outage capacity region is also
shown. Notice that the difference between the minimum-rate
and ergodic capacity regions is roughly proportional to the dif-
ference between the zero-outage and ergodic capacity regions.
This relationship is due to the fact that minimum-rate capacity
is a combination of zero-outage and ergodic capacity.

VI. CONCLUSION

We have obtained the capacity region of a multi-user fad-
ing broadcast channel with minimum rates. We found that the
minimum-rate capacity region is achievable by superposition
coding with successive decoding and we derived the optimal
power allocation scheme. By using minimum power and ef-
fective noise terms, we saw that the minimum rate problem
decomposes into two independent problems: a zero-outage ca-
pacity problem (i.e. minimizing the power needed to achieve
the minimum rates), and an ergodic capacity problem (i.e. max-
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imizing the ergodic capacity of the broadcast channel with the
effective noise terms and the excess power constraint). We
also derived a greedy power allocation scheme to give addi-
tional insight into the optimal power allocation scheme. Fi-
nally, by analyzing our numerical results, we determined that
severely fading channels, i.e channels with wide-ranging noise
levels, incur a large capacity reduction due to minimum rate
constraints, while benign fading environments are able to sup-
port large minimum rates with little capacity reduction.
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