
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 11, NOVEMBER 2003 2895

Capacity and Optimal Power Allocation for Fading
Broadcast Channels With Minimum Rates

Nihar Jindal, Student Member, IEEE,and Andrea Goldsmith, Senior Member, IEEE

Abstract—We derive the capacity region and optimal power al-
location scheme for a slowly fading broadcast channel in which
minimum rates must be maintained for each user in all fading
states, assuming perfect channel state information at the trans-
mitter and at all receivers. We show that the minimum-rate ca-
pacity region can be written in terms of the ergodic capacity re-
gion of a broadcast channel with an effective noise determined by
the minimum rate requirements. This allows us to characterize the
optimal power allocation schemes for minimum-rate capacity in
terms of the optimal power allocations schemes that maximize er-
godic capacity of the broadcast channel with effective noise. Nu-
merical results are provided for different fading broadcast channel
models.

Index Terms—Broadcast channel, capacity region, fading chan-
nels, minimum rates, optimal resource allocation.

I. INTRODUCTION

T HE time-varying nature of the underlying channel is one
of the most significant challenges in designing wireless

communication systems. Dynamic allocation of power, band-
width, and rate can result in significant performance improve-
ments over constant resource allocation strategies. Practical sys-
tems are beginning to incorporate more and more elements of
adaptation in order to effectively utilize the time-varying chan-
nels found in most wireless systems.

In this paper, we focus on the downlink of a single cell where
one base station transmits independent information to multiple
receivers and each receiver suffers from time-varying flat-fading
and additive Gaussian noise. We assume that the transmitter and
all receivers can track the channel fade perfectly, or in other
words, that the transmitter and all receivers have perfect channel
state information (CSI). Furthermore, we assume the channel is
slowly fadingrelative to codeword length, i.e., the channel is
constant during transmission of a codeword.

Two notions of Shannon capacity have been developed for
multiuser fading channels: ergodic capacity and outage ca-
pacity. Ergodic capacity is concerned with achieving long-term
rates averaged over all fading states [1]–[3], while outage
capacity achieves a constant rate in all non-outage fading states
subject to an outage probability [4], [5]. Zero-outage capacity
refers to outage capacity with zero outage probability [6].
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The ergodic capacity of a fading broadcast channel deter-
mines the maximum achievable long-term rates averaged over
all fading states. The optimal resource allocation scheme for
rates in the ergodic capacity region is found in [3], [7] and cor-
responds to multilevel water-filling over both time (i.e., fading
states) and users. As intuition would suggest, users are allocated
the most power when their channels are strong, and little, if any,
power when their channels are weak. Such an allocation scheme
maximizes long-term average rates, but depending on the dura-
tion of channel fades, users with poor channels may not receive
data for long periods of time while waiting for their channel to
improve. This clearly may not be reasonable for delay-sensitive
applications such as video or voice transmission.

In the outage capacity region of a broadcast channel, each
user maintains a constant rate some percentage of the time and
no data is transmitted (i.e., an outage is declared) the rest of
the time. In essence, no data is transmitted to a user when his
channel is weak because it takes a great deal of power to transmit
data over a weak channel. Constant rates are maintained in all
other states. The optimal power allocation scheme is essentially
a multiuser extension of channel inversion. This scheme elim-
inates all channel variation seen by the receivers by scaling
the transmitted signal to invert fading so constant rates can be
maintained during nonoutage. Because constant-rate transmis-
sion requires more power in a weak channel than in a strong
channel, users are allocated the most power when their chan-
nels are weak. This is in sharp contrast to the allocation scheme
used to maximize ergodic rates, where users are allocated the
most power when their channels are strongest. It is therefore
clear that stronger channel states are not truly taken advantage
of and, as a result, the outage capacity region may be signif-
icantly smaller than the ergodic capacity region. Zero-outage
capacity is a special case of outage capacity in which no outage
is allowed and constant rates must be maintained in all fading
states.

Ergodic and outage capacity are clearly two very different
performance measures, as reflected by their contrasting power
allocation strategies. In ergodic capacity, the transmittertakes
advantageof time variation in the channel by transmitting more
data to users with strong channels, while in outage capacity the
transmitterequalizestime variation by transmitting at constant
rates in all non-outage states. For a system which simultane-
ously transmits delay-sensitive and delay-insensitive data, nei-
ther of these approaches appears optimal. It is not desirable to
shut off users for long periods of time as is possible in the er-
godic capacity region, but forcing constant rates to be main-
tained subject only to an outage probability as is done in the
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outage capacity region severely reduces the set of achievable
rates.

In this work, we propose to combine the notions of ergodic
and zero-outage capacity by maximizing the ergodic capacity
subject to minimum rate requirements for all users in all fading
states. Thus, some power is used to maintain the minimum rates
in all fading states while the remaining power is used to max-
imize the average rates in excess of the minimum rates. Users
are never completely cut off due to the minimum rate require-
ments, but time variation of the channel is still taken advantage
of by transmitting to users at rates higher than the minimum
rates when their channels are strong and at exactly the minimum
rates when their channels are poor. Clearly, the minimum rate
requirement must be in the zero-outage capacity region for the
rates to be achievable in all states.

We consider a slowly fading channel that is assumed to be
constant over the duration of each codeword. Thus, we associate
an instantaneous rate with each user in every fading state. The
minimum-rate capacity region is defined as the set of all average
rates achievable subject to an average power constraint such that
the instantaneous rates in each fading states do not violate a min-
imum rate constraint. We show that the minimum-rate capacity
region is equal to the sum of the minimum-rate vector plus the
ergodiccapacity region of an effective noise channel, where the
effective noise depends on the minimum rate requirements. This
relationship allows us to easily characterize the boundary of the
minimum-rate capacity region and the optimal power allocation
policies in terms of known results for ergodic capacity [1], [3],
[7].

We then extend these results to find the minimum-rate ca-
pacity region subject to a peak power constraint instead of an
average power constraint, and also subject to both a peak and av-
erage power constraint. Furthermore, the problem of minimum
rates with outage is also addressed. When outage is allowed, er-
godic capacity is maximized with the constraint that minimum
rates must be satisfied at least a certain percentage of time. This
is a combination of ergodic capacity and outage capacity, as op-
posed to non-outage minimum-rate capacity, which is a combi-
nation of ergodic and zero-outage capacity. A similar notion of
minimum-rate outage capacity was independently proposed by
Luo et al. in [8], [9] for single-user channels.

The remainder of this paper is organized as follows. Sec-
tion II describes the flat-fading broadcast channel model and
Section III defines ergodic and zero-outage capacity. In Sec-
tion IV, we precisely define the minimum-rate capacity region.
In Section V, we characterize the minimum-rate capacity re-
gion in terms of the ergodic capacity region and find the op-
timal power allocation schemes. In Section VI, we find the min-
imum-rate capacity region with peak power constraints and in
Section VII, we find the minimum-rate outage capacity region.
Numerical results are presented in Section VIII, followed by our
conclusions.

Notation:We use boldface to denote vectors andto denote
expectation over the random variable.

II. THE FADING BROADCAST CHANNEL

We consider a Gaussian broadcast channel with a single trans-
mitter communicating independent information tousers over

Fig. 1. Equivalent broadcast channel.

bandwidth . The signal source is composed of inde-
pendent information sources, whererepresents the time index.
The time-varying channel gain of the path to useris denoted
by . Each receiver has additive Gaussian noise with noise
density . The received signal of userthen is

(1)

where is white Gaussian noise with power . By incor-
porating the channel gain into the noise term as in [3], we define
an effective noise density1 and get an equiva-
lent form for the received signal

(2)

where is Gaussian noise with power . The equivalent
channel model is shown in Fig. 1. For simplicity, we assume

throughout this paper.
We assume that the noise density vector

is known to the transmitter and all receivers at time instant.
The transmitter can therefore vary the power of the signal trans-
mitted to each user as a function of the noise vector
subject to an average power constraint. Since all receivers
have knowledge of , each receiver can perform successive de-
coding in which the decoding order depends on the ordering of

. We also assume that the fading statehas some joint distri-
bution.

As the noise density vector incorporates the effects of the
channel gain, we will alternatively refer toas thefading state
throughout this paper.

III. ERGODIC AND ZERO-OUTAGE CAPACITY REGIONS

In this section, we present results from [3], [4] on the ergodic
and zero-outage capacity of the fading broadcast channel.

A. Ergodic Capacity Region

The ergodic capacity region is defined as the set of all
long-term average rates achievable in a fading channel with
arbitrarily small probability of error. In [3], the ergodic capacity
region and optimal power allocation scheme for the fading

1Notice that the noise density is the instantaneous power of the noise and is
not the instantaneous noise sample.
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broadcast channel is found by decomposing the fading channel
into a parallel set of constant broadcast channels, one for each
fading state . In each fading state, the channel can be viewed
as a degraded Gaussian broadcast channel. Since the transmitter
and all receivers know , superposition coding according to
the ordering of the current noise density vector can be used by
the transmitter. Each receiver can perform successive decoding
in which the signals of weaker users (i.e., users with larger
noise power) are decoded and subtracted off before decoding
the desired signal. Furthermore, the power transmitted to each
user is a function of the current fading state.

We define a power policy over all possible fading states as
a function that maps from any fading stateto the transmitted
power for each user. Let denote the set of all power
policies satisfying average power constraint

The capacity of user assuming a constant fading stateunder
superposition coding and successive decoding is

(3)

where is the indicator function.
Furthermore, let denote the set of achievable rates

averaged over all fading states (i.e., long-term rates) for power
policy

where is defined in (3). From [3, Theorem 1], the
ergodic capacity region of the broadcast channel with perfect
CSI at the transmitter and receivers and power constraintis

(4)

Additionally, the region is convex. The optimal
power allocation scheme that achieves the boundary points
of the ergodic capacity region is a multilevel extension of
water-filling. Because the data rate varies from state to state, a
different codebook (a codebook is assumed to have codewords
for all users) is used in every joint fading state, as in the mul-
tiplexing strategy described in [3], [10]. This coding scheme
works in either a slow-fading or fast-fading environment, but
the decoding delay is highly dependent on the correlation
time of the channel because of the multiplexing structure. An
achievability proof and a converse are provided in [3].

B. Zero-Outage Capacity Region

For the -user broadcast channel, a rate vector
is in the zero-outage capacity region if

and only if the rate vector can be achieved in all fading states

while meeting the average power constraint. The zero-outage
capacity region (also referred to as thedelay-limited capacity)
for the multiple-access channel is derived in [6]. In [4], it
is shown that rates in the zero-outage capacity region of the
broadcast channel can be achieved using superposition coding
and successive decoding (using the same weakest to strongest
decoding order used to achieve ergodic capacity).

From [4, eq. (3)], the minimum power to support a rate vector
in fading state is

(5)

where is the permutation such that

Therefore, the zero-outage capacity region is the union of all
rate vectors that meet the average power constraint

(6)

The boundary of the capacity region is the set of all rate vectors
such that the power constraint is met with equality [4]. For

the two-user broadcast channel with time-varying additive white
Gaussian noise (AWGN) with powers and , the boundary
assumes the following form:

For a single-user channel, this reduces to

The zero-outage capacity region depends only on the ex-
pected value of the noise in the single-user case. Similarly
for the two-user broadcast channel, the zero-outage region
is determined solely by , ,

, and . This is due to the fact that
the power required to achieve a rate vector is a linear function
of the noise levels in each state, as seen in (5). The zero-outage
capacity region depends on the conditional expectations as
opposed to the unconditional expectations of the noises because
every different ordering of noises leads to a different expression
for the power required in each state, also seen in (5).

The zero-outage capacity region is more formally defined as
the set of rate vectors for which there exist codebooks that can
be decoded with a delayindependentof the channel correlation
structure (i.e., the speed of the fading) for any desired nonzero
probability of error. This is in stark contrast to the ergodic ca-
pacity, in which the decoding delay is highly dependent on the
channel correlation.
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IV. M INIMUM -RATE CAPACITY REGION

A. Definition of Capacity Region

We define the minimum-rate capacity region of a-user
broadcast channel as the region of all achievable average rate
vectors subject to an average power constraintand minimum
rate constraints . The minimum rate
constraint forces the instantaneous rate of each user to be at least
as large as its corresponding minimum rate in all fading states,
i.e., we require . Since we
are dealing with slowly fading channels that are assumed to be
constant over the length of a codeword, the notion of an instan-
taneous rate in each fading state is reasonable. Moreover,
the set of achievable instantaneous rates in each fading state is
equal to the capacity region of the constant Gaussian broad-
cast channel defined by the joint fading state and the amount
of power allocated to each user.

Using the previously stated notion of a power allocation
scheme, let denote the set of achievable long-term
average rates in excess of the minimum rates for power policy

where is defined in (3). Notice this definition is
slightly different from the definition of in Section III-A.
The set does not include the rates below the minimum
rates because if the average rates are less than the minimum
rates, then the minimum rates must be violated in some fading
states.

To ensure that the minimum rates are satisfied, we must re-
strict the set of feasible power policies more tightly than in the
case of ergodic capacity. Let denote the set of all power poli-
cies that satisfy the minimum rate constraints in every fading
state and the average power constraint

The additional constraint ensures that the minimum rates can be
maintained for all users in every fading state for any power
policy in .

Definition 1: The minimum-rate capacity region of a fading
broadcast channel with perfect CSI at the transmitter and re-
ceivers, average power constraint, and minimum rate con-
straint is

(7)

where denotes the convex hull operation. The achiev-
ability of this region follows from the achievability proof for
ergodic capacity given in [3] and standard time sharing argu-
ments.

B. Remarks on Coding

In the slowly fading channel model which we consider, the
channel is assumed to be constant over the duration of a code-

word. If the transmitter and receivers use a multiplexing strategy
similar to that of [10], then a different rate vector and a different
set of codebooks is associated with every joint fading state. In
this context, minimum-rate capacity is the set of all achievable
average rates such that the instantaneous rates in every fading
state meet the minimum rate requirements. The associated de-
coding delay at each user is equal to the codeword length, which
can be arbitrarily long due to our slow fading assumption.

Since our definition of minimum-rate capacity explicitly
mentions instantaneous rates (i.e., rates associated with each
fading state), no converse exists for this formulation. A more
Shannon-theoretic formulation of minimum-rate capacity
which would not require the slow fading assumption might
consider transmitting delay-sensitive data at the minimum rate
with a delay independent of the channel variation (similar
to zero-outage capacity), while simultaneously maximizing
transmission of delay-insensitive data with no delay require-
ment (similar to ergodic capacity). In this setting, it appears
natural to transmit using two independent codebooks, one for
the delay-sensitive data and one for the delay-insensitive data.
However, as we discuss below, it appears to be quite difficult to
apply this approach to the broadcast channel.

In Section V-D, we discuss a coding strategy for the single-
user channel such that the minimum rate data (i.e., the codeword
from the minimum rate codebook) can be decoded before the
codeword from the excess rate codebook. This allows the min-
imum rate data to be decoded with a delay that is independent
of the rate of channel variation, but the decoding delay associ-
ated with the excess rate (i.e., above the minimum rate) data can
be infinite. This coding strategy works in both slow-fading and
fast-fading environments. However, this scheme does not gener-
alize to the multiuser broadcast channel because the successive
decoding structure (which is capacity achieving for the broad-
cast channel) essentially precludes the possibility of all users
having finite delays associated with their minimum rate data
and infinite delays associated with their excess rate data. Since
successive decoding is needed in the broadcast channel, strong
users are required to decode and cancel out the codewords in-
tended for weaker users before being able to decode their own
codewords. This must include a cancellation of the minimum
rate data and the excess rate data of other users. Thus, the de-
coding delay of the strongest user is at least as large as the max-
imum of the decoding delay of all other users. If users have a
possibly infinite delay associated with decoding the excess rate
data, then the decoding delay associated with the minimum rate
codebook of the strongest user can also be infinite. One possi-
bility is for all users to treat all excess rate codewords (including
their own) as noise while decoding their minimum rate code-
words, but this appears to be quite suboptimal. In this paper, we
concentrate solely on the slow-fading channel in which coding
can be performed in each fading state and we leave the subject
of minimum-rate capacity for fast-fading channels as a topic for
future research.

C. Relationship With Ergodic and Zero-Outage Capacity
Regions

The minimum-rate capacity region is closely related to
the zero-outage and ergodic capacity regions because min-
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Fig. 2. Ergodic, zero-outage, and minimum-rate capacity regions for small (left) and large (right) minimum rates.

imum-rate capacity is essentially a combination of these two
capacities. Some fraction of the available power is used to
achieve the minimum rates in all fading states, while the
remaining power is used to maximize the long-term rates
achievable in excess of the minimum rates. For the minimum
rate problem to be feasible, the minimum rate vector must
be in the zero-outage capacity region of the channel in order
for the rates to be achievable in all fading states. For any

, the boundary of the minimum-rate capacity
region lies between the boundaries of the zero-outage capacity
region and the ergodic capacity region

(8)

This follows from the definition of zero-outage capacity as the
set of rates achievable in all fading states and from the defini-
tion of ergodic capacity as the set of all achievable average rates,
without any minimum rate constraints. If the minimum rates of
all users are zero, the minimum-rate capacity region is the same
as the ergodic capacity region. If the minimum rate vectoris
on the boundary of the zero-outage capacity region, achieving
the minimum rate vector in all states consumes all available
power and rates in excess of the minimum rates are not pos-
sible. In this situation, the minimum-rate capacity region con-
sists of only one point, . When is nonzero and not on the
boundary of the zero-outage capacity region, the boundary of
the minimum-rate capacity region lies strictly between
and .

To illustrate the relationship between the different capacity
regions, Fig. 2 shows the ergodic, zero-outage, and min-
imum-rate capacity regions for two different minimum rate
constraints. The corner point of the minimum-rate capacity
region corresponds to . In the graph on the left, the minimum
rate vector is well within the zero-outage capacity region
and, as a result, the minimum-rate capacity region extends
significantly past the zero-outage capacity region. In the second
graph, the minimum rate vector is close to the boundary of the
zero-outage capacity region and, therefore, a large fraction of
the power is used to simply achieve the minimum rates. Thus,

there is little power left over to exceed the minimum rates
and, as a result, the boundary of the minimum-rate capacity
region does not extend much further out than the boundary of
the zero-outage capacity region. Notice that in all cases the
minimum-rate capacity region does not extend to the axes due
to the minimum rate constraints.

Since the minimum rate boundary lies between the ergodic
and zero-outage boundaries, the difference between the er-
godic and zero-outage capacity regions is a good indicator
of the degradation in capacity (i.e., the difference between

and ) due to minimum rates. If the
zero-outage capacity region is much smaller than the ergodic
capacity region, the minimum-rate capacity region is generally
much smaller than the ergodic capacity region. Alternatively,
if the zero-outage capacity region is not much smaller than the
ergodic capacity region, the minimum-rate capacity region is
generally quite close to the ergodic capacity region.

V. EXPLICIT CHARACTERIZATION OF MINIMUM -RATE

CAPACITY REGION

In this section, we explicitly characterize the boundary of the
minimum-rate capacity region of a -user broadcast channel
and find the corresponding optimal power-allocation scheme.
Directly characterizing the minimum-rate capacity region ap-
pears to yield a rather nonintuitive solution, but we show that
the minimum-rate capacity region can be written in terms of
theergodiccapacity region of a related broadcast channel. This
characterization is intuitively easy to understand and allows the
minimum-rate capacity region to be calculated using only the
ergodic capacity techniques of [3].

A. Derivation of Minimum-Rate Capacity Region

Due to the convexity of the minimum-rate capacity region,
for any and power constraint , the boundary
of the region can be traced out by the following maximization:

subject to (9)
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over all priority vectors such that
By the definition of , the following is an equiv-

alent maximization:

(10)

subject to:

where is defined in (3).
For each fading state, let be the permutation such that

Since successive decoding is performed at each receiver in
which the weakest user (i.e., the user with the largest noise
power), or User ) is decoded first, can be
defined as

(11)

where is defined as .
In order for each user to achieve their respective minimum

rates in each state, a minimum amount of power must be allo-
cated to each user in each fading state. We use to de-
note the minimum power that Usermust be allocated in fading
state in order to exactly achieve . We define the minimum
powers such that if all users are allocated their minimum powers
in a fading state, then all users will exactly achieve their respec-
tive minimum rates. From the definition of in (11) it
follows that the minimum power of each user is given by

(12)

We define as the power allocated to Userin excess of
the minimum power. The total power allocated to each user in
fading state is thus . The minimum
rate constraints clearly imply , which implies

.
Since the rates are direct functions of the power allocation, we

can replace the rate constraints in (10) with a power constraint
to result in the following equivalent maximization:

(13)

subject to

where is the total excess power.
Notice that the maximization is over the excess power allo-
cation only. The minimum rate constraints make this
problem more difficult than maximizing ergodic capacity.
However, with some algebraic manipulation we will see that
the minimum-rate capacity maximization is equivalent to a
related ergodic capacity maximization.

Using the rate-splitting identity (i.e.,
), we can simplify the rate equation in (11). We have

omitted the dependence on the fading statefor brevity

where we have used the definition of to obtain the final
step. From this simplification it should be clear that power

maintains the minimum rate of each user, while power

(which is nonnegative by the power constraint in (13)) increases
the rate above the minimum rate. Let us introduce the following
effective noise and power terms (for each joint fading state),
denoted by and :

(14)

(15)
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Fig. 3. Ergodic capacity region of effective channel and minimum-rate capacity region.

Substituting these terms into our previous expression, we get

In Appendix A we show that

Thus, we can finally rewrite the rate expression as

(16)

which is identical to the rate equations for ergodic capacity for a
channel with noises . Since the rate of each user can
be written explicitly in terms of effective power and effective
noise, we can, in fact, maximize the weighted sum rate as a
function of only the effective noises and effective powers. In
Appendix C, we show that every set of excess powers satisfying
the minimum rate constraints in (13) maps uniquely to a set of
nonnegative effective powers, andvice versa. In Appendix D,
we show that the the mapping from noise state to effective noise
state is one-to-one for a fixed minimum rate vector and strictly
unequal noise powers (which is true with probabilityfor a
continuous fading distribution). Thus, we can write the effective
power allocation as a function of the joint effective noise state
instead of the joint noise state. Furthermore

by Appendix A. Therefore, the maximization in (13) is equiva-
lent to

subject to: (17)

In Appendix B, we show that the ordering of the effective noises
is the same as the ordering of the actual noises, i.e.,

. Thus, the preceding maximization is identical to
the problem of maximizing in the ergodic capacity region
of the channel with noises defined as in (14) and power. We
refer to the channel with noises and power as theeffective
channel. The joint distribution of can be derived from the
mapping in (14).

Without the constant term , (17) is identical to
the ergodic capacity maximization expression of the effective
broadcast channel [3], [7]. Therefore, the average rates achiev-
ablein excessof the minimum rates are equal to the rates achiev-
able in the effective channel, or to the ergodic capacity region
of the effective channel. The minimum-rate capacity region is
therefore equal to the ergodic capacity region of the effective
channel plus the minimum rates2

(18)

where refers to the ergodic capacity of
the effective channel. In Fig. 3, the ergodic capacity region of
the effective channel and the minimum-rate capacity region are
plotted as an example of this relationship.

B. Optimal Power Allocation Policies

The optimal power allocation scheme to achieve the boundary
of the minimum-rate capacity region can be found by finding
the optimal power allocation to achieve the boundary of the er-
godic capacity region of the effective channel. The allocation
of minimum power is predetermined by the minimum rate re-
quirements and the noise powers, while the optimal allocation
of excess power is related to the optimal power allocation to
achieve the ergodic capacity region of the effective channel.
More specifically, to find the optimal power allocation policy
that maximizes in for some fixed priority
vector , we define the optimal allocation of effective power
(i.e., ) to be the optimal power allocation policy that
maximizes in for the same pri-
ority vector . We can then transform the effective power allo-
cation to the excess power allocation by the rela-
tionships given in (14) and (15). The minimum power allocation

2The sum here refers to the set found by addingRRR to every element in
C (P ;n ; . . . ; n ).
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is defined in (12), and the total power allocated to each
user in every fading state is .

The optimal power allocation scheme for ergodic capacity
maximization is described in [3, Sec. III]. We briefly discuss the
power allocation here, but we defer the reader to [3] for a more
complete description. The optimal power allocation is a more
complicated version of the single-user water-filling algorithm
derived in [10]. In each fading state, power can be allocated to
any of the users, or none at all. The total amount of power
allocated to each fading state can be described in the following
compact form:

(19)

where and is the water-filling level chosen
such that the power constraint is met with equality. This is
akin to water-filling to the “best” user in each fading state, where
the notion of best user depends not only on the noise power but
also on the user-by-user priorities. Notice, however, that this
is only the allocation oftotal power to each fading state. The
actual distribution of power between users in each fading state
is rather involved and we defer the reader to [3] for more details.
A greedy algorithm to find the optimal power allocation policy
(over fading states and users) can also be found in [1], [3]

If the maximum sum rate of the minimum-rate capacity re-
gion is being found (i.e., ), then from results
on ergodic capacity we know that it is optimal to only allo-
cate effective power to the user with the smallest noise power.
Thus, at most one user per fading state strictly exceeds his min-
imum rate requirement. However, for general priorities this is
not true. Note that we are discussing only the allocation of effec-
tive power, which relates directly to the excess power. Of course,
each user must be allocated the minimum power in every fading
state, so all users are active in every fading state.

Fig. 4 illustrates the optimal amount of effective power in a
two-user system that is allocated to each fading state for a dis-
crete, four-state fading distribution where . Note that
the breakdown of power between the two users, which requires
the iterative algorithm of [3], is not indicated in this figure.
Water-level is used for channels that are allocated excess
power on and is used for channels allocated excess power
on . Water-filling is done on the effective noise level that cor-
responds to the largest power allocation in that state. In the first
state, water-filling is done on because although , the
higher water-level of compensates for this difference. Be-
cause in the figure, water-filling is done on only
when , as in state 2. In states 3 and 4, water-filling is
done on .

C. Interpretation of Effective Channel

The effective channel encapsulates how power allocated to
one user manifests itself into additional required power for other
users due to the minimum rate requirements. Consider the power
allocated to each user as consisting of two components: a part
that achieves the minimum rate, and the part that leads to ex-
cess rate above the minimum rate. The minimum power
allocated to each user leads to the minimum rates of each user

Fig. 4. Water-filling diagram for two-user channel with min rates.

only if all other users are allocated exactly their minimum power
levels. The minimum power does not take into account excess
power allocated to users who are seen as interference. Every in-
crement of power allocated to User forces User

to allocate to maintain his minimum
rate. User must then compensate for power and
power . This forces User to allocate

to maintain his minimum rate. This
process continues up to the weakest user. In total, every incre-
ment of power allocated to User corresponds to a total

allocation of power to Users .
Thus, allocation of excess power must capture two elements.
First, excess power allocated to stronger users (i.e., )
must be compensated for. The leftover excess power of User

after compensating for the excess power of stronger users
thus is

However, this leftover excess power must be multiplied by the

factor to account for the fact that weaker users
must compensate for any leftover excess power allocated to User

. Therefore, the effective power of Useris

It seems that the effective noise of each user should be equal to
the actual noise plus the minimum power allocated to stronger
users. However, the actual effective noise is multiplied by the

factor to compensate for the fact that the effective
power of User is multiplied by the same factor.

D. Single-User Channel

A single-user channel can be viewed as the broadcast channel
described in Section II with . Thus, the characterization
of minimum-rate capacity derived in Section V-A can be ap-
plied to the single-user channel as well. Clearly, the minimum
power for each state is defined as . As
before, the minimum-rate capacity can be found by solving the
ergodic capacity of the effective channel. From the expressions
in (14) and (15), we see that and

. The power constraint of the effective channel is
. Since water-filling over time achieves ergodic
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Fig. 5. Water-filling diagram for a single-user with zero and nonzero minimum rates.

capacity of a single-user fading channel [10], the optimal allo-
cation of effective power is found by water-filling over the ef-
fective noise

where is the water-filling level satisfying the excess power
constraint .

This simple power allocation scheme yields a closed-form
expression for the capacity of a single-user channel with power
constraint and minimum rate

In this expression we use the fact that .
Fig. 5 illustrates the water-filling procedure for zero and

nonzero minimum rates for a single-user three-state channel.
State 1 is the weakest of the three channels. The graph on
the left shows the power allocation scheme without minimum
rates. We see that all three channels are allocated power, but
the rate achieved in states 1 and 2 may be quite small. When
minimum rates are applied, the minimum power becomes
an additional source of noise. Because is an increasing
function of , the effective noise term of state 1 becomes
much larger than the other two terms. When water-filling is
done on the effective noise terms, additional power is only
allocated to states 2 and 3 because the effective noise term of
state 1 is too large and because much of the power was used to
simply achieve the minimum rates in all three states. In state 1,
transmission will be done at exactly , whereas the minimum
rate will be exceeded in the other two states due to the excess
power allocated to those states.

As briefly mentioned earlier, in a single-user channel data can
be transmitted at the minimum rate with a decoding delay that
is independent of the rate of channel variation while simultane-
ously transmitting delay-insensitive data which takes advantage
of the ergodic nature of the channel. This can be accomplished
through the use of a separate minimum rate codebook and an

ergodic rate codebook and the idea of rate splitting [11]. Notice
that the rate in each fading state can be expanded as

where the excess rate is

A minimum rate codebook of size with block length
can be used to transmit data at the minimum rate, while

a codebook of size with block length which is an
integer multiple of can be used to transmit data at the ex-
cess rate. Codewords from both codebooks are simultaneously
sent. The minimum rate codeword is scaled by the quantity

, while the ergodic codeword is scaled
by . Treating the ergodic codeword as interference,
it is easy to show that the received signal-to-interference-noise
ratio (SINR) of the minimum rate codeword is exactly ,
as required to transmit at rate . Thus, the minimum rate code-
word can be successfully decoded while treating the ergodic
codeword as interference. After decoding and subtracting out
the minimum rate codewords, the ergodic codeword can be de-
coded at the end of the ergodic block length, since only the ac-
tual noise remains in the channel.

This two-codebook strategy cannot be used for the broadcast
channel because the strongest user must decode both the ergodic
and minimum rate codeword of every other weaker user before
being able to decode his own minimum rate codeword. This
eliminates the possibility of decoding the minimum rate code-
words before the ergodic codewords.

VI. A LTERNATIVE CONSTRAINTS ONTRANSMITTED POWER

We have derived the minimum-rate capacity region of a
broadcast channel subject to an average power constraint. The
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optimal transmitted power is a function of the joint fading
state and can be quite large in some fading states. In practical
broadcast situations, there is generally a peak power constraint
and there may or may not be an average power constraint.
In this section, we characterize the minimum-rate capacity
region of a -user broadcast channel subject to two different
constraint sets: a peak power constraint only, and both a peak
and an average power constraint.

A. Peak Power Constraint

We now consider the problem of maximizing minimum-rate
capacity subject to only a peak power constraint in each
fading state. The capacity region can then be defined as the set
of all achievable average rates subject to minimum rate, peak,
and power constraints as it was for the average power constraint
case in Section IV. We let denote the set of feasible power
policies satisfying the peak power constraint and the minimum
rate constraint in all fading states

The capacity region subject to peak power constraint then
is

(20)

To find the boundary of the capacity region, we perform a max-
imization similar to (10), except with a peak power constraint
replacing the average power constraint.

Since the weighted sum of the rates is an increasing function
of the total power allocated to each fading state, each fading
state should be allocated the peak power. Clearly, the minimum
rates must be achievable in each state under the peak power con-
straint which implies . Given
that each fading state is allocated the peak power, the remaining
task is to optimally allocate between the users in each
fading state. We may first allocate the minimum power required
to achieve the minimum rates in each state, leaving excess power

in each fading state. The excess power
must then be optimally distributed between theusers to max-
imize the weighted sum of their rates in excess of the minimum
rates. The set of achievable excess rates is equal to the capacity
region of the effective broadcast channel, which takes the form
of a constant broadcast channel in each fading state. However,
maximizing weighted sum rate for a constant channel turns out
to be nearly as difficult as maximizing weighted sum rate for a
fading channel. First, a different water-filling level must be
chosen foreachfading state to satisfy

The effective power is then allocated to the
users in each fading state according to the procedure detailed

in [3, Sec. III]. As before, the actual excess power allocation
policy can be inferred from the allocation of effective power by
the relationship in (14) and (15).

B. Peak and Average Power Constraint

In this subsection, we find the minimum-rate capacity subject
to average power constraintand peak power constraint .
We assume . If this condition is not satisfied, the
average power constraint is meaningless. The capacity region
can be defined as it was for the average power constraint case in
Section IV. We let denote the set of feasible power policies

The capacity region subject to peak power constraint can
then be characterized as

(21)

To find the boundary of the -user capacity region, we perform
a maximization similar to (10) with the addition of a state-by-
state peak power constraint. We can therefore allocate minimum
power to both users and reduce the problem to an ergodic ca-
pacity maximization problem. As stated before, the minimum
power required in each state to meet the minimum rate require-
ments must not violate the peak power constraint. However, we
must maximize the ergodic capacity of the effective channel
subject to an average power constraint

and peak power constraint in each fading
state. The optimal power allocation with both average and peak
power constraints is simply a truncated version of the optimal
power allocation policy with only an average power constraint.
This is easiest to see by considering the greedy algorithm [1,
Sec. 3.2], [3, Sec. III-A] to allocate power with only an average
power constraint. In the greedy algorithm, each user is repre-
sented via a utility function which is a function of the amount
of power allocated in each fading state. The peak power con-
straint effectively truncates the utility functions of all users at

in each fading state. Then it is easy
to show that the total effective power allocated to each fading
state is given by

The only difference between this scheme and the optimal
excess power allocation scheme without the peak power con-
straint is that the excess power allocated to a state is truncated
at , which in turn affects the optimal
water-filling level . The distribution of excess power to the
users within each fading state follows the procedure detailed
in [3, Sec. III], with the simple caveat that the total effective
power allocated to each fading state cannot be larger than

.
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VII. M INIMUM -RATE OUTAGE CAPACITY

In this section, we discuss minimum-rate capacity with
outage subject to an average power constraint. In minimum-rate
capacity, minimum rates must be maintained in all fading states.
With outage, however, this constraint is loosened slightly and
the minimum rate of every user must only be met subject to
outage probabilities . In other words,
ergodic capacity is maximized subject to the constraint that the
minimum rate of user must be met with at least probability

for . Minimum rate outage allows
minimum rate transmission to be suspended to users when
their channels are very poor. Transmission is allowed during
outages, but minimum rates are not required to be met during
these times. In more practical terms, delay-sensitive data must
be transmitted at the minimum rates a certain percentage of the
time, whereas delay-insensitive data has no such constraint.
This is different than the definition of outage capacity [4], [5]
in which no data is transmitted during outages and the only
concern is the constant channel achievable during nonoutages.

In certain severe fading distributions (i.e., Rayleigh fading),
it is not possible to maintain a constant data rate at all times with
an average power constraint. In other words, channels with cer-
tain severe fading distributions have no zero-outage capacity re-
gion. These channels therefore have no minimum-rate capacity
region. However, all fading channels can support a constant
rate with outage. Therefore, all fading channels do have a min-
imum-rate outage capacity region.

In this section, we analyze the scenario where outage is de-
clared on a user-by-user basis as opposed to declaring a common
outage during which no user is required to meet his minimum
rate [4]. We will see that the case of common outage is a special
case of the more general independent outage formulation.

A. Characterization of Minimum-Rate Outage Capacity
Region With Independent Outage

To find the minimum rate outage capacity, we first define
the outage function over all
fading states where for fading states in which the
minimum rate of User must be satisfied and otherwise.3

Due to the outage constraints, the outage function must satisfy
for each user. The outage function

is an indicator function which determines which states are
required to maintain the minimum rates of the different users.
Maximizing ergodic capacity given outage function is
very similar to finding non-outage minimum-rate capacity,
except with time-varying minimum rates . We
define as

(22)

where is assumed to be the actual desired minimum rate of
User . We then write the time-varying minimum rates as

3We need not consider0 < w (nnn) < 1 since we are only concerned with
continuous fading distributions.

Though the minimum rates were assumed to be constant in
the original minimum-rate capacity formulation, time-varying
minimum rates can be handled using almost the identical solu-
tion. To achieve the minimum-rate capacity with time-varying
minimum rates , we simply need to replace
with in the optimal power allocation scheme de-
rived in Section V. The fact that the fading broadcast channel
was decomposed into a parallel set of constant broadcast chan-
nels, one for each fading state, allows us to optimally deal with
time-varying minimum rates using this simple substitution.

With this in mind, we define to be
the minimum-rate capacity of the broadcast channel with time-
varying minimum rates . For each outage function

satisfying the outage constraints,
defines an achievable rate region that satisfies both the average
power constraint and the outage constraints.

Definition 2: The minimum-rate outage capacity of a fading
broadcast channel with perfect CSI at the transmitter and re-
ceivers, average power constraint, minimum rate constraint

and outage probabilities is

where the union is over all satisfying

Notice that the minimum-rate vector must be in the inde-
pendent outage capacity region [4], i.e., ,
for the minimum rates to be achievable with the given outage
probability.

B. Characterization of Minimum-Rate Outage Capacity
Region With Common Outage

The minimum-rate outage capacity with common outage can
be characterized using the expression for minimum-rate outage
capacity with independent outage. With common outage, the
outage function must satisfy the additional constraint

. In addition, the vector
outage constraint becomes a scalar outage probability.
The capacity region then is

where the union is over all satisfying

Notice that the minimum rate vector must be in the common
outage capacity region [4], i.e., , for the
minimum rates to be achievable with common outage and with
the given outage probability.

C. Characterization of Minimum-Rate Outage Capacity for
a Single-User Channel

The definition of minimum-rate outage capacity given in The-
orem 2 applies to single-user channels as well, but the expres-
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sion can be simplified significantly in the single-user case. For
a single-user channel, the outage function is only a func-
tion of the fading state because there is only one user and the
capacity region is one-dimensional. Finding the largest achiev-
able rate subject to the power and outage constraint therefore is
equivalent to finding the outage function that corresponds to the
largest achievable rate. In [8], the concept of minimum-rate ca-
pacity with outage was independently proposed and the optimal
outage function was found to be

(23)

where the threshold is chosen to satisfy

The optimal scheme is therefore seen to be a threshold
policy: minimum rates must be maintained in all states better
(i.e., smaller noise values) than the threshold, while minimum
rates need not be maintained in states worse than the threshold.
This is very similar to the solution to the minimum outage prob-
ability problem under a long-term average power constraint
for a single-user channel solved in [12]. When maximizing
outage capacity, all power available goes toward maintaining
a constant rate in non-outage states. In minimum-rate outage
capacity, however, some fraction of the power maintains the
minimum rate in non-outage states. The excess power, however,
is water-filled over the fading states with respect to the effective
channel to maximize rates achieved in excess of the minimum
rates.

Unfortunately, the multiuser broadcast channel does not ap-
pear to have such a simple solution for either common outage or
independent outage because the relationship between the min-
imum power allocation, effective noise terms, and the effective-
ness of each fading state and user is much more complicated
than the single-user case.

VIII. N UMERICAL RESULTS

In this section, we present numerical results on the capacity
of a two-user broadcast channel with minimum-rate constraints
with an average power constraint and no outage. In all plots, the
total transmitted power is 10 mW, the bandwidth is 100 kHz, and
the noise distribution is symmetric. Furthermore, the minimum
rates are symmetric in Figs. 6–9.

In Fig. 6, the capacity region of a two-user channel with very
different noise levels is plotted. In one fading state,is 40
dB less than (i.e., the signal-to-noise ratio (SNR) of user 1
would be 40 dB larger than the SNR of user 2 assuming each
user was allocated the same power), andvice versain the second
fading state. Without minimum rates, capacity is achieved by
allocating almost all power to the better of the two users in
each channel state. This causes the capacity region to be highly
convex. When minimum-rate constraints are applied, however,
power must also be allocated to the weaker user in every fading
state to satisfy the minimum rates, leading to a large capacity
reduction. It is clear from Fig. 6 that the minimum-rate capacity
region is significantly smaller than the ergodic capacity region,
especially for large minimum rates.

Fig. 6. Capacity of symmetric channel with 40-dB difference in SNR.

Fig. 7. Capacity of symmetric channel with 20-dB difference in SNR.

Because the minimum-rate boundary always lies between the
zero-outage capacity region boundary and the ergodic capacity
region boundary, the zero-outage capacity region is generally
a good approximation for the minimum-rate capacity region.
Channels in which the ergodic capacity region is much larger
than the zero-outage capacity region will be significantly af-
fected by minimum rate requirements, andvice versafor chan-
nels with zero-outage capacity regions that are not much smaller
than the ergodic capacity region.

The zero-outage capacity region in Fig. 6 is significantly
smaller than the ergodic capacity region. As expected, the
minimum-rate capacity region is significantly smaller than
the ergodic capacity region. We will see a similar relationship
between the zero-outage and minimum-rate capacity regions
for the other channel models.

The capacity region of a channel whereand differ by 20
dB in each fading state is plotted in Fig. 7. The ergodic capacity
region is much less convex than in Fig. 6 because the channels
of the two users are more similar in each state. This is because
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Fig. 8. Rician fading withK = 1, Average SNR=10 dB.

the optimal power allocation scheme is not so heavily weighted
toward the better user in each state so even the poorer user is
allocated significant power in each state. Minimum-rate con-
straints force allocation of additional power to the poorer user
in each fading state, but this is not as suboptimal as it is for the
first example. We see in Fig. 7 that the minimum-rate capacity
region is smaller than the ergodic capacity region, but not by as
much as in Fig. 6. This result could have been predicted from
the fact that the zero-outage capacity region of this channel is
not much smaller than the ergodic capacity region due to the
similarity of the users’ channels.

In the subsequent two plots, results for more realistic channel
models are presented. Independent fading is assumed for both
receivers and the channel gain is incorporated into the noise
power, as described in Section II. Rician fading with
is modeled in Fig. 8. This is not as severe as Rayleigh fading
(which has no zero-outage capacity region), but the power of the
multipath component is equal to the power of the line-of-sight
component. The noise levels take on a wide range of values,
as they do in the channel plotted in Fig. 6. As expected by
our earlier results, minimum rates reduce capacity significantly.
Once again we see that the zero-outage capacity region is much
smaller than the ergodic capacity region.

In Fig. 9, Rician fading with is modeled. Because
the power of the line-of-sight component is five times as strong
as the multipath component, both users generally have strong
channels and this channel resembles the channel plotted in
Fig. 7. As expected, minimum rates do not reduce capacity
significantly.

Finally, in Fig. 10, the capacity regions of a Rician fading
channel with and asymmetric minimum rates are plotted.
In the graph the capacity regions for minimum rates of (100 kb/s,
100 kb/s), (100 kb/s, 50 kb/s), and (100 kb/s, 0 kb/s) are shown.
This relates to a scenario where one user has stricter require-
ments than the other or only one of the two users requires a min-
imum rate. We see that the capacity region for the asymmetric
minimum-rate pair is considerably larger than the capacity re-
gion for the symmetric-rate pair. Notice that reducing the min-

Fig. 9. Rician fading withK = 5, Average SNR= 10 dB.

Fig. 10. Rician fading withK = 1, Average SNR= 10 dB, asymmetric
minimum rates.

imum rate of user 2 increases the capacity of both users, not just
user 2, because reducing frees up power that can be allocated
to either user.

From these results, it is clear that minimum rates decrease the
capacity regions of fading channels in which the noise levels of
the users differ significantly in many channel states, i.e., when
either of the two users has a significantly larger channel gain
than the other user in many channel states. When the channels
of the users do not differ significantly, minimum rates do not
reduce the capacity region significantly.

IX. CONCLUSION

We defined the minimum-rate capacity region as the set of all
achievable average rates subject to minimum rate requirements
for each user in every fading state. By decomposing the power
allocated to each user in every fading state into a portion which
achieves the minimum rate and a portion which exceeds the min-
imum rate, we were able to specify the minimum-rate capacity
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region in terms of the ergodic capacity region of an effective
broadcast channel. The effective channel incorporates the effect
of the minimum rate requirements into the joint fading state and
into the amount of total power available.

By analyzing several different channel models, we deter-
mined that for severely fading channels, the minimum-rate
capacity region is significantly smaller than the ergodic ca-
pacity region. On the other hand, benign fading environments
are able to support large minimum rates with little reduction in
the capacity region. Furthermore, we saw that the difference be-
tween the zero-outage capacity region and the ergodic capacity
region approximated the difference between the minimum-rate
capacity region and the ergodic capacity region.

Additionally, it can be shown that a duality exists between
the minimum-rate capacity region of the Gaussian broadcast and
multiple-access channels [13]. Using this duality, [13] uses the
results found in this paper to find the minimum-rate capacity
region for the Gaussian multiple-access channel as well.

APPENDIX A
PROOF OFEXCESS ANDEFFECTIVEPOWERRELATIONSHIP

In this appendix, we prove the following result:

(24)

for . First, notice that for , we have

by the definition of in (15). As-
sume (24) holds for. We will show it holds for as well.

Notice that for , this implies

or that the sum of effective powers equals the sum of excess
powers.

APPENDIX B
PROOF OFEFFECTIVENOISEORDERINGEQUIVALENCE

In this appendix, we prove that the effective noise terms
have the same ordering as the original noises

. Since by the
definition of , we wish to show that

or that . We can expand as

Since by our choice of , we have
.

APPENDIX C
PROOF THAT EXCESSPOWER TO EFFECTIVE POWER

TRANSFORMATION IS ONE-TO-ONE

In this appendix, we show that every set of nonnegativeef-
fectivepowers corresponds (uniquely) to
a valid (i.e., powers that meet or exceed all minimum-rate con-
straints) set of excess powers , and vice
versa. This property is required so that the maximization over
nonnegative effective powers in (17) is equivalent to the original
maximization over excess powers in (13).

First, by the definition of effective power given in (15) it is
easy to see that any set of excess powers
that meet the constraints of (13) map to nonnegative effective
powers. Note also that the transformation preserves sum power
in each fading state (Appendix A), and thus preserves average
power as well.

To show equivalence in the other direction, first note that the
effective power transformation in (15) can be written in matrix
form as where is a matrix with

and

for all . Thus, is lower-triangular with strictly positive
diagonal entries (which ensures invertibility) and nonnegative
entries below the diagonal. It is straightforward to show that the
inverse of such a matrix is lower-triangular with all nonnegative
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entries. Thus, by using , we can map (uniquely) from non-
negative effective powers to nonnegative excess powers. Fur-
thermore, since the powers satisfy (15) by definition, for all
and we have

since by assumption. Also, as noted earlier, the sum
of the effective powers equals the sum of the excess powers in
each fading state. Thus, the excess powers corresponding to any
nonnegative set of effective powers satisfy all constraints in the
original rate maximization in (13).

APPENDIX D
PROOFTHAT NOISE TOEFFECTIVE NOISE TRANSFORMATION

IS ONE-TO-ONE

Here, we show that the transformation from noise state
to effective noise state is a one-to-one transformation by
showing that the map from to is an invertible linear trans-
formation from to . The effective noise is defined in (14)
as

One can inductively show that

(25)

Substituting this expression into the definition of effective noise,
we get

(26)

In matrix terms, we can write the effective noise as
where is a lower-triangular matrix defined by the
coefficients given in (26). Notice that

which implies that the matrix is invertible and thus the trans-
formation is one-to-one.
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