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Abstract— The multiple antenna multicast channel is consid-
ered, in which the transmitter, equipped with an antenna array,
sends a common message to multiple receivers, each of which are
assumed to have only a single antenna. The information theoretic
capacity of this channel is studied, along with the rates achievable
using lower complexity transmission schemes. The primary focus
of the paper is on the scaling of the capacity and achievable rates
as the number of antennas and/or users is taken to infinity.

I. I NTRODUCTION

The multicast channel, in which a single transmitter sends
a common message to multiple receivers, arises naturally in
many different communication systems. In a cellular system,
for example, a base station may wish to broadcast a common
news stream to all users. While the unicast channel broadcast
channel has been extensively studied in information theory
(c.f. [1][2]), much less is known about the multicast channel
[3][4][5][6][7].

We study the capacity limits of a multiple antenna multicast
channel in which the transmitter is equipped with multiple
antennas while each receiver has only a single antenna. In
addition to studying the information theoretic capacity, we also
consider the rate achievable with lower complexity schemes:
transmission of the spatially white input, which does not
require channel state information (CSI) at the transmitter,
transmitter beamforming, which is easy to implement from
a coding perspective, and TDMA, which is the lowest com-
plexity alternative.

We focus on the rate at which multicast capacity and
these achievable rates increase or decrease as the number of
users and/or the number of transmit antennas is increased.
While TDMA performs poorly in each scenario, transmitter
beamforming and the spatially white input are able to achieve
the same scaling as the multicast capacity in certain regimes.

II. SYSTEM MODEL

We consider a slowly fading, quasi-static channel in which
the transmitter is equipped withn antennas and each of the
m receivers has a single antenna. The received signal at the
i-th receiver is given by:

yi = h
H
i x + ni i = 1, . . . , m,

wherehi ∈ Cn represents the vector channel from the trans-
mitter to thei-th receiver,x ∈ Cn is the transmitted signal, and
ni is unit variance, circularly symmetric complex Gaussian

additive noise. The transmitter is subject to an average power
constraintE[xH

x] ≤ P .
The channel is assumed to be quasi-static and thus fixed

for a block of transmission. We assume the channel is known
perfectly at the transmitter and the receivers, which allows for
optimization of the input in response to the current channel
conditions. Though we assume perfect CSI, we also study the
performance of a simpler channel independent transmission
strategy. Each of them channels are assumed to be drawn in-
dependently from the Rayleigh distribution, i.e., each element
of hi is iid complex Gaussian.

Though the channel realizations differ from block to block,
we only consider the rate achievable within each block; this
rate is relevant in the slow fading scenario where delay
constraints are of the same order as the block size.

III. C APACITY DEFINITIONS

In this section we define the multicast capacity as well as
the rates achievable using sub-optimal transmission strategies.
Note that CSI is required at the transmitter for all strategies
except the third, in which a spatially white Gaussian input is
used.

A. Multicast Capacity

By first principles, the multicast capacityC0 is given by:

C0(H, P ) , max
p(x):E[‖x‖2]≤P

min
i=1,...,m

I(X ; Yi)

= max
Σ:Σ�0, Tr(Σ)≤1

min
i=1,...,m

log
(

1 + P · h†
iΣhi

)

= log

(

1 + P · max
Σ:Σ�0, Tr(Σ)≤1

min
i=1,...,m

h
†
iΣhi

)

.

The capacity achieving input covarianceΣ maximizes the min-
imum (amongst them users) received SNR. Though no closed
form or waterfilling-based solution for this maximization is
known to exist, the problem is convex and can be efficiently
solved using standard semi-definite programming techniques.

B. Transmit Beamforming

Transmit beamforming, in which the input is constrained
to be unit rank, is a low complexity, though generally sub-
optimal, transmission strategy [6]:

Cbf (H, P ) , max
w:‖w‖=1

log

(

1 + P min
i=1,...,m

|h†
iw|2

)

= log

(

1 + P max
w:‖w‖=1

min
i=1,...,m

|h†
iw|2

)

.



Notice that this maximization is equivalent to the definition of
C0(H, P ) with the addition of a unit rank constraint on the
transmit covariance. Although this maximization is NP-hard
[6], a convex relaxation of this problem which gives nearly
optimal results can be efficiently solved [8]. The following
lower bound, which will prove to be useful later, follows from
[9, Claim 2.4.2(i)]:

Cbf (H, P ) ≥ log

(

1 +
P

m2
min

i=1,...,m
||hi||2

)

. (1)

In fact, the optimal beamforming vector satisfies|h†
iw|2 ≥

1
m2 ||hi||2 for each user. This implies that the optimum beam-
forming vector captures at least a fraction1m2 of each user’s
channel power. Interestingly, mutually orthogonal channel
vectors are not the worst choice of channel vectors for beam-
forming: if the channel vectors are mutually orthogonal, the
1

m2 term in (1) can be replaced by1m .
The beamforming rate can be achieved by multiplying a

scalar input stream by the beamforming vectorw, which
effectively converts the channel into a single-antenna channel
in which the received SNR at thei-th receiver is given by
P |h†

iw|2. Thus, standard AWGN codes can be used in transmit
beamforming systems. The same statement may not hold if a
non-unit rank input is used, as may be required to achieve the
true multicast capacityC0(H, P ).

C. Spatially White Input

A simpler alternative to finding either the optimum input
covariance or the optimum beamforming vector is to transmit
using a spatially white covariance, i.e.Σ = 1

nI. The corre-
sponding rate, denoted asCwhite is given by:

Cwhite(H, P ) , min
i=1,...,m

log

∣

∣

∣

∣

I +
P

n
hih

H
i

∣

∣

∣

∣

= log

(

1 + P · min
i=1,...,m

‖hi‖2

n

)

.

Note that CSI is not required at the transmitter in order to
achieve this rate. Furthermore, this setup is nearly identical
to that considered in space-time coding and thus techniques
such as the Alamouti code [10] can be used to achieve or
come close toCwhite.

Clearly the inequalitiesCwhite(H) ≤ C0(H) and
Cbf (H) ≤ C0(H) hold, but no strict ordering exists between
Cbf (H) andCwhite(H).

D. Orthogonal Transmission

Note that the transmitter simultaneously transmits to all
users in order to achieve the rates specified in the above three
definitions. An even simpler strategy is to use an orthogonal-
ized transmission scheme such as TDMA. If the transmitter
is allowed to vary slot times and power subject to an average
power constraint, the following rate is achievable:

Ctdma(H, P ) , max
αi,Pi

min
i=1,...,m

αi log
(

1 + Pi‖hi‖2
)

,

where the maximum is overαi, Pi satisfying the time
slot constraint

∑m
i=1 αi = 1 and the average power con-

straint
∑m

i=1 αiPi ≤ P . We get a simple lower bound to
Ctdma(H, P ) by choosing equal time slots and power:

Ctdma(H, P ) ≥ 1

m
log

(

1 + P · min
i=1,...,m

‖hi‖2

)

. (2)

It is also straightforward to get the following upper bound:

Ctdma(H, P ) ≤ 1

m
log

(

1 + P · max
i=1,...,m

‖hi‖2

)

, (3)

by using the fact thatmini=1,...,m xi ≤ ∑m
i=1 αixi, for all

αi ≥ 0 and
∑m

i=1 αi = 1, and the concavity of the log
function.

IV. CAPACITY SCALING

In this section we present results on the order growth of
the different capacity metrics when the number of antennasn
and/or the number of usersm is taken to infinity. These results
are summarized at the end of this section in Table I.

A. Fixed Antennas, Increasing Users

We first consider the scenario where the number of base
station antennasn is fixed, while the number of usersm
is taken to infinity. Since a user’s channel magnitude can
be arbitrarily small (because the support of the distribution
of channel gains includes the open positive plane for any
number of antennasn), the multicast capacity, and thus all
other achievable rates, goes to 0 as the number of users goes
to infinity. However, there are significant differences at the rate
at which these metrics decrease to zero.

Proposition 1: If n is fixed andm → ∞, capacity metrics
decrease to zero at the following rates:

C0 ≈ O

(

1

m1/n

)

Cwhite ≈ O

(

1

m1/n

)

O

(

1

m1+1/n

)

≤ Ctdma ≤ O

(

log log m

m

)

Proof: (Sketch) First note that‖hi‖2 follows the Chi-
squared distribution with2n degrees of freedom by the as-
sumption of iid Rayleigh fading. Thus, a key quantity to
characterize is the behavior of the minimum ofm independent
Chi-square random variables. From extreme value theory, the
minimum of m iid random variables, each with CDFF (x),
occurs approximately at the value ofx at which F (x) = 1

m
[11]. The CDF of a chi-square with2n degrees of freedom
is given byF (x) = 1 − e−x

∑n−1
k=0

xk

k! , which can be well-
approximated by ann-th order Taylor approximation for small
values ofx: F (x) ≈ xn. Thus, the minimum ofm iid chi-
squared rv’s with2n d.o.f scales asm−1/n.

We can now proceed to show the order results. First notice
that the multicast capacity can be bounded by the minimum
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Fig. 1. Multicast rates forn = 4 and increasing # of users

of the point-to-point capacities:

C0(H) ≤ log

(

1 + P · min
i=1,...,m

‖hi‖2

)

.

Using the earlier result on the minimum of chi-square ran-
dom variables, the upper bound can be approximated by
log
(

1 + P
m1/n

)

≈ P
m1/n , which is O

(

1
m1/n

)

. The same
method can be used on the definition ofCwhite to show that
Cwhite is O

(

1
m1/n

)

. To analyze TDMA, notice that the lower
bound in (2) can be approximated as1m log(1 + 1

m1/n ) ≈
1

m1+1/n . Using the fact that the maximum of chi-squared
random variables grows logarithmically, the TDMA upper
bound can readily be approximated as1

m log log m.

Note that similar scaling results forC0 and Cwhite are
given in [5][4]. Since the number of users is taken to be
large while the number of spatial dimensions is fixed, it is
not surprising that the scaling ofC0 and Cwhite is similar,
as one would intuitively expect the optimal covariance to tend
towards the identity matrix so that all spatially dispersedusers
would receive adequate signal power. Note that TDMA does
not scale as well as the multicast capacity or the isotropic
input rate because the use of an orthogonal strategy resultsin
a pre-log factor of1m .

Though no order result is given forCbf , the lower bound
in (1) indicates thatCbf grows at least as fast asO

(

1
m2+1/n

)

,
which is rather poor. While this lower bound may be overly
pessimistic, it is intuitively clear that beamforming willnot
perform well whenm ≫ n because every beamforming
direction will likely be nearly orthogonal to at least one user’s
channel.

The multicast capacity and the rate achieved with a spatially
white input are shown in Figure 1 for a 4 antenna transmitter
with an increasing number of receivers. The numerical results
indicate that both curves go to zero asO(m−1/4), and the
order term is shown for reference.

B. Fixed Users, Increasing Antennas

Next we consider the scenario where the number of users
m is fixed while the number of transmit antennasn is
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Fig. 2. Multicast rates for 5 user system with an increasing #of antennas

taken to infinity. Here the multicast capacity as well as the
beamforming and TDMA rates go to infinity at the same rate,
but the rate achieved with a spatially white input is bounded.

Proposition 2: If m is fixed andn → ∞, capacity metrics
grow at the following rates:

C0 ≈ O (log n)

Cwhite ≈ O (1)

Cbf ≈ O (log n)

Ctdma ≈ O (log n) .

Proof: We first considerCbf and the lower bound in (1).
Sincem is finite, the effect of the minimum operation over
m random variables is negligible because|hi|2 is chi-squared
with degrees of freedom going to infinity. Thus, the lower
bound inCbf can be approximated aslog(1+ P

m2 n), which is
O(log(n)). By the same argument, the TDMA bounds in (2)
and (3) can both be approximated as1

m log n, which gives the
O(log n) growth of TDMA.

The multicast capacityC0 is lower bounded byCbf , and
thus grows at least aslog n. It is easy to see that the multicast
capacity does not grow at a rate faster than this because the
multicast capacity is upper bounded by the capacity of the
channel to any of the receivers, i.e.,C0(H, P ) ≤ log(1 +
P‖hi‖2), and this upper bound clearly isO(log n). The fact
that Cwhite is bounded follows by noting thatCwhite ≤
log(1 + P ‖hi‖

2

n ), which converges tolog(1 + P ) asn → ∞
[12, Section 4.1].

When there are many more antennas than users, even
TDMA achieves the optimal scaling oflog n because time
must only be split between a finite number of users and the
capacity within each time slot increases logarithmically with
n. Notice that only the isotropic input performs poorly in this
scenario, since it is clearly wasteful to transmit power in all
spatial directions when users only occupym dimensions.

Figure 2 presents results for a 5 user channel with an
increasing number of transmit antennas. From the plot, the
logarithmic growth of the multicast capacity and the bounded
behavior of the rate achieved with a spatially white input are



apparent. The rate achieved with transmit beamforming is also
shown here, and is seen to be extremely close to the multicast
capacity.

C. Increasing Users and Antennas

Finally we consider the scenario where the number of users
(m) and base station antennas (n) simultaneously increase
while maintaining a linear constantβ = m

n > 0, which
is commonly referred to as the loading factor in CDMA
literature.

We first present a lemma showing that the per user SNR is
bounded in the large system limit.

Lemma 1: The per user received SNR is upper bounded as:

max
Σ

min
i=1,...,m

h
†
iΣhi ≤ P · (1 +

√

β)2,

in the large system limit.

Proof: We can clearly upper bound the minimum re-
ceived SNR by the average received SNR, which gives:

max
Σ

min
i=1,...,m

h
†
iΣhi ≤ 1

m
max

Σ

m
∑

i=1

h
†
iΣhi

=
1

m
max

Σ

m
∑

i=1

Tr(Σhih
†
i )

=
1

m
max

Σ
Tr

(

Σ

m
∑

i=1

hih
†
i

)

=
1

m
max

Σ
Tr
(

ΣHH
H
)

whereH = [h1h2 · · ·hm] and the maximum operations are
over Σ ≥ 0 satisfying Tr(Σ) ≤ 1. It is straightforward to
see that the solution to the final maximization is in fact the
maximum eigenvalue of the matrixHH

H . Furthermore, a
fundamental result in random matrix theory states that [13]:

1

m
λmax(HH

H)
a.s.→ (1 +

√

β)2,

A direct result of this lemma is that the multicast capacityC0

is bounded as the number of users and antennas are taken to
infinity at a fixed ratio.

Proposition 3: If n andm both tend to infinity at the ratio
β = m

n > 0, then

E(C0) ≈ O(1)

E(Cwhite) ≈ O(1)

E(Ctdma) ≈ O

(

log n

n

)

.

Proof: (Sketch) We first show thatE[Cwhite(H, P )] is
bounded away from zero. Fix anyt ∈ (0, 1) and notice that

P

(

min
i=1,...,m

‖hi‖2

n
≥ t

)

= P

(‖h‖2

n
≥ t

)m

=

(

1 − P

(‖h‖2

n
< t

))m

.

Sincet < 1, we have

P

(‖h‖2

n
< t

)

= P

(‖h‖2

n
− 1 < t − 1

)

≤ P

(∣

∣

∣

∣

‖h‖2

n
− 1

∣

∣

∣

∣

> 1 − t

)

≤ 1

2n(1 − t)2
,

where the last step follows from Chebychev inequality and the
fact that ‖h‖

2

n has mean 1 and variance1/2n. Combining the
above to bounds we obtain

P

(

min
i=1,...,m

‖hi‖2

n
≥ t

)

≥
(

1 − 1

2n(1 − t)2

)m

→ e
− β

2(1−t)2 ,

which is clearly positive. Now we can lower bound the
expected rate as follows:

E(Cwhite(H, P )) ≥ P

(

min
i=1,...,m

‖hi‖2

n
≥ t

)

log (1 + tP )

→ e
− yVar(|u|2)

(1−t)2 log (1 + tP ) > 0.

Furthermore, Lemma 1 implies thatC0 is bounded by a
constant:

C0 ≤
(

1 + P (1 +
√

β)2
)

.

SinceC0 ≥ Cwhite, both quantities areO(1).
Finally we characterize the behavior of TDMA by consid-

ering the bounds in (2) and (3). Notice that the argument of
the log function is dominated bymaxi=1,...,m ‖hi‖2, which
can be further upper bounded by

∑m
i=1 ‖hi‖2. The latter is

a Chi-square random variable with2mn degrees of freedom,
and thus increases at most asO(mn). This shows thatCtdma

grows at most1m log(mn), which givesO
(

log n
n

)

.

Thus, using the spatially white input or the optimal input
allows for constant transmission rate to all users, whereas
orthogonal transmission can only support a vanishing rate as
the system size increases. The fact that a constant multicast
rate can be supported is perhaps not surprising, as transmitting
power in a spatially isotropic manner should ensure that each
user receives at least a constant amount of power in the large
system limit. However, what is perhaps less intuitive is that
the multicast capacity is bounded and does not increase with
the system size.

A lower bound to the scaling of the beamforming rate can
be attained by considering the bound in (1), which clearly is
O( 1

n ) due to the1/m2 term in the SNR. Though this seems
rather pessimistic, determining whether beamforming can also
achieve a constant rate remains an open research question.

Numerical results for a system at an SNR of 10 dB with an
equal number of antennas and users (i.e.,β = 1) are shown in
Figure 3. While both the multicast capacity andCwhite achieve
constant rates, there is a non-negligible difference between the
constant factor. Transmit beamforming also appears to achieve
a constant rate; the decreasing nature of the curve is likelydue
to the fact that the plotted rate is actually a lower bound to
Cbf [6].
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V. TRANSMISSION TO ASUBSET OFUSERS

In some scenarios, it may be acceptable to transmit to only
a subset of users instead of all users. We again consider the
large system limit, where the number of antennas and users is
taken to infinity. Although it might appear that such flexibility
would greatly increase multicast capacity, we show that subset
selection is only beneficial (from an order perspective) when
the subset contains a vanishing fraction of users.

Lemma 1 indicates that the sum of received SNR’s across
all n users, and therefore across any subset, is upper bounded
by P (1 +

√
β)2n in the large system limit. Thus, any scheme

that selects a constant fraction of then users can achieve no
better than a constant SNR, or equivalently rate, to each user.
For example, the best selection of a subset ofn

2 receivers can
at best yield an SNR of2P (1 +

√
β)2 per receiver.

As the following lemma shows, an increasing SNR/rate can
be achieved if a subset of sub-linear size is selected. Surpris-
ingly, random selection of the subset of users is sufficient to
achieve the boundary of the tradeoff curve:

Lemma 2: If the number of antennas and users are taken
to infinity at ratioβ > 0, a random subset of ordernp users
can be served with an SNR of ordern1−p, or equivalently at
a rate of order(1 − p) log n, for any p ∈ [0, 1]. Furthermore,
this tradeoff cannot be exceeded by any intelligent selection
of user subsets.

Proof: (Sketch) Achievability for0 < p < 1 follows
by randomly selectingnp users and choosing the transmit
covariance according to:

Σ =

∑np

i=1 hih
†
i

Tr(
∑np

i=1 hih
†
i )

,

and noticing that the corresponding SNR grows asn1−p.
Achievabilty for p = 0 is obvious while thep = 1 scenario
follows from Proposition 3. The converse follows directly from
the linear growth of total received SNR shown in Lemma 1.

Users Antennas Antennas & Users

C0 O

“

1

m1/n

”

O (log n) O(1)

Cbf ≥ O

“

1

m2+1/n

”

O (log n) ≥ O
`

1
m

´

Cwhite O

“

1

m1/n

”

O(1) O(1)

Ctdma ≈ O
`

1
m

´

O (log n) O

“

log n

n

”

TABLE I

ASYMPTOTIC MULTICAST CAPACITY SCALING

VI. CONCLUSION

The capacity of multiple antenna multicast channels was
studied in the limit of a large number of transmit antennas
and/or users under the assumption of quasi-static fading. While
orthogonal transmission schemes such as TDMA are strictly
sub-optimal in all regimes, other low-complexity transmission
schemes were found to achieve the optimum scaling in certain
regimes. In particular, transmitting an isotropic input achieves
the optimal scaling when there are a large number of users
or when the number of users and antennas is large, while
transmitter beamforming performs well when there are more
antennas than users. Perhaps the most important result showed
that the multicast capacity is bounded in the large system limit.
In addition, multicast transmission to a subset of users was
considered, and the optimal tradeoff between subset size and
rate was characterized.
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