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kbbb0optk1. Suppose that there exists a vector hhh that meets Conditions 1)
and 2) of Theorem 5. It is clear that this vector hhh is dual feasible, and
furthermore

Rehsss; hhhi =Reh�bbb
0

opt; hhhi

=Rehbbb0opt;�
�

hhhi

=Rehbbb0opt; sgn bbb
0

opti

= kbbb0optk1:

To see that bbb0opt uniquely solves (2), observe that the third equality can
hold only if the support of bbbopt equals �opt.
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Abstract—In this correspondence, we consider the problem of max-
imizing sum rate of a multiple-antenna Gaussian broadcast channel
(BC). It was recently found that dirty-paper coding is capacity achieving
for this channel. In order to achieve capacity, the optimal transmission
policy (i.e., the optimal transmit covariance structure) given the channel
conditions and power constraint must be found. However, obtaining the
optimal transmission policy when employing dirty-paper coding is a
computationally complex nonconvex problem. We use duality to trans-
form this problem into a well-structured convex multiple-access channel
(MAC) problem. We exploit the structure of this problem and derive
simple and fast iterative algorithms that provide the optimum transmis-
sion policies for the MAC, which can easily be mapped to the optimal
BC policies.

Index Terms—Broadcast channel, dirty-paper coding, duality, multiple-
access channel (MAC), multiple-input multiple-output (MIMO), systems.

I. INTRODUCTION

In recent years, there has been great interest in characterizing
and computing the capacity region of multiple-antenna broadcast
(downlink) channels. An achievable region for the multiple-antenna
downlink channel was found in [3], and this achievable region was
shown to achieve the sum rate capacity in [3], [10], [12], [16],
and was more recently shown to achieve the full capacity region in
[14]. Though these results show that the general dirty-paper coding
strategy is optimal, one must still optimize over the transmit covari-
ance structure (i.e., how transmissions over different antennas should
be correlated) in order to determine the optimal transmission policy
and the corresponding sum rate capacity. Unlike the single-antenna
broadcast channel (BC), sum capacity is not in general achieved by
transmitting to a single user. Thus, the problem cannot be reduced
to a point-to-point multiple-input multiple-output (MIMO) problem,
for which simple expressions are known. Furthermore, the direct
optimization for sum rate capacity is a computationally complex
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nonconvex problem. Therefore, obtaining the optimal rates and trans-
mission policy is difficult.1

A duality technique presented in [7], [10] transforms the nonconvex
downlink problem into a convex sum power uplink (multiple-access
channel, or MAC) problem, which is much easier to solve, from which
the optimal downlink covariance matrices can be found. Thus, in this
correspondence we find efficient algorithms to find the sum capacity
of the uplink channel, i.e., to solve the following convex optimization
problem:

max
fQQQ g :QQQ �0; Tr(QQQ )�P

log III +

K

i=1

HHH
y
iQQQiHHHi : (1)

In this sum power MAC problem, the users in the system have a
joint power constraint instead of individual constraints as in the con-
ventional MAC. As in the case of the conventional MAC, there exist
standard interior point convex optimization algorithms [2] that solve
(1). An interior point algorithm, however, is considerably more com-
plex than our algorithms and does not scale well when there are large
numbers of users. Recent work by Lan and Yu based on minimax op-
timization techniques appears to be promising but suffers from much
higher complexity than our algorithms [8]. A steepest descent method
was proposed by Viswanathan et al., [13], and an alternative, dual de-
composition based algorithm was proposed by Yu in [15]. The com-
plexity of these two algorithms is on the same order as the complexity
of the algorithms proposed here. However, we find our algorithms to
converge more rapidly, and our algorithms are also considerably more
intuitive than either of these approaches. In this correspondence, we
exploit the structure of the sum capacity problem to obtain simple it-
erative algorithms for calculating sum capacity,2 i.e., for computing
(1). This algorithm is inspired by and is very similar to the iterative
water-filling algorithm for the conventional individual power constraint
MAC problem by Yu, Rhee, Boyd, and Cioffi [17].

This correspondence is structured as follows. In Section II, the
system model is presented. In Section III, expressions for the sum
capacity of the downlink and dual uplink channels are stated. In
Section IV, the basic iterative water-filling algorithm for the MAC is
proposed and proven to converge when there are only two receivers.
In Sections VI and VII, two modified versions of this algorithm are
proposed and shown to converge for any number of users. Complexity
analyses of the algorithms are presented in Section VIII, followed by
numerical results and conclusions in Sections IX and X, respectively.

II. SYSTEM MODEL

We consider a K user MIMO Gaussian broadcast channel (abbre-
viated as MIMO BC) where the transmitter has M antennas and each
receiver has N antennas.3 The downlink channel is shown in Fig. 1
along with the dual uplink channel. The dual uplink channel is aK user
multiple-antenna uplink channel (abbreviated as MIMO MAC) where
each of the dual uplink channels is the conjugate transpose of the cor-
responding downlink channel. The downlink and uplink channel are
mathematically described as

yyyi =HHHixxx+ nnni; i = 1; . . . ; K Downlink channel (2)

1In the single transmit antenna BC, there is a similar nonconvex optimization
problem. However, it is easily seen that it is optimal to transmit with full power
to only the user with the strongest channel. Such a policy is, however, not the
optimal policy when the transmitter has multiple antennas.

2To compute other points on the boundary of the capacity region (i.e., non-
sum-capacity rate vectors), the algorithms in either [13] or [8] can be used

3We assume all receivers have the same number of antennas for simplicity.
However, all algorithms easily generalize to the scenario where each receiver
can have a different number of antennas.

Fig. 1. System models of the MIMO BC (left) and the MIMO MAC (right)
channels.

yyyMAC =

K

i=1

HHH
y
ixxxi + nnn Dual uplink channel (3)

whereHHH1;HHH2; . . . ;HHHK are the channel matrices (withHHHi 2
N�M )

of Users 1 through K , respectively, on the downlink, the vector xxx 2
M�1 is the downlink transmitted signal, and xxx1; . . . ; xxxK (with xxxi 2
N�1) are the transmitted signals in the uplink channel. This work

applies only to the scenario where the channelmatrices are fixed and are
all known to the transmitter and to each receiver. In fact, this is the only
scenario for which capacity results for the MIMO BC are known. The
vectorsnnn1; . . . ; nnnK andnnn refer to independent additive Gaussian noise
with unit variance on each vector component. We assume there is a sum
power constraint of P in the MIMO BC (i.e.,E[kxxxk2] � P ) and in the
MIMO MAC (i.e., K

i=1 E[kxxxik
2] � P ). Though the computation of

the sum capacity of the MIMO BC is of interest, we work with the dual
MAC, which is computationally much easier to solve, instead.
Notation: We use boldface to denote vectors and matrices, andHHHy

refers to the conjugate transpose (i.e., Hermitian) of the matrixHHH . The
function [�]K is defined as

[x]K ((x� 1) mod K) + 1

i.e., [0]K = K , [1]K = 1, [K]K = K , and so forth.

III. SUM RATE CAPACITY

In [3], [10], [12], [16], the sum rate capacity of the MIMO BC (de-
noted as CBC(HHH1; . . . ;HHHK ; P )) was shown to be achievable by dirty-
paper coding [4]. From these results, the sum rate capacity can be
written in terms of the following maximization:

CBC(HHH1; . . . ;HHHK ; P )

= max
f��� g :��� �0; Tr(��� )�P

log III +HHH1���1HHH
y
1

+ log
III +HHH2(���1 +���2)HHH

y
2

III +HHH2���1HHH
y
2

+ � � �

+ log
III +HHHK(���1 + � � �+���K)HHH

y
K

III +HHHK(���1 + � � �+���K�1)HHH
y
K

: (4)

The maximization is performed over downlink covariance matrices
���1; . . . ;���K , each of which is anM�M positive semidefinite matrix.
In this correspondence, we are interested in finding the covariance ma-
trices that achieve this maximum. It is easily seen that the objective (4)
is not a concave function of ���1; . . . ;���K . Thus, numerically finding
the maximum is a nontrivial problem. However, in [10], a duality is
shown to exist between the uplink and downlink which establishes that
the dirty paper rate region for the MIMO BC is equal to the capacity
region of the dual MIMO MAC (described in (3)). This implies that
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the sum capacity of the MIMO BC is equal to the sum capacity of the
dual MIMO MAC (denoted as CMAC(HHH1; . . . ;HHHK ; P )), i.e.,

CBC(HHH1; . . . ;HHHK ; P ) = CMAC(HHH
y
1; . . . ;HHH

y
K ; P ): (5)

The sum rate capacity of the MIMO MAC is given by the following
expression [10]:

CMAC(HHH
y
1; . . . ;HHH

y
K ; P )

= max
fQQQ g :QQQ �0; Tr(QQQ )�P

log III +

K

i=1

HHH
y
iQQQiHHHi (6)

where the maximization is performed over uplink covariance matrices
QQQ1; . . . ;QQQK (QQQi is an N � N positive semidefinite matrix), subject
to power constraint P . The objective in (6) is a concave function of
the covariance matrices. Furthermore, in [10, eqs. 8–10], a transforma-
tion is provided (this mapping is reproduced in Appendix I for conve-
nience) that maps from uplink covariance matrices to downlink covari-
ance matrices (i.e., fromQQQ1; . . . ;QQQK to���1; . . . ;���K ) that achieve the
same rates and use the same sum power. Therefore, finding the optimal
uplink covariance matrices leads directly to the optimal downlink co-
variance matrices.

In this correspondence, we develop specialized algorithms that effi-
ciently compute (6). These algorithms converge, and utilize the water-
filling structure of the optimal solution, first identified for the individual
power constraint MAC in [17]. Note that the maximization in (6) is
not guaranteed to have a unique solution, though uniqueness holds for
nearly all channel realizations. See [17] for a discussion of this same
property for the individual power constraint MAC. Therefore, we are
interested in finding any maximizing solution to the optimization.

IV. ITERATIVE WATER-FILLING WITH INDIVIDUAL

POWER CONSTRAINTS

The iterative water-filling algorithm for the conventional MIMO
MAC problem was obtained by Yu, Rhee, Boyd, and Cioffi in [17].
This algorithm finds the sum capacity of a MIMO MAC with indi-
vidual power constraints P1; . . . ; PK on each user, which is equal to

CMAC(HHH
y
1; . . . ;HHH

y
K ; P1; . . . ; PK)

= max
fQQQ g :QQQ �0; Tr(QQQ )�P

log III +

K

i=1

HHH
y
iQQQiHHHi : (7)

This differs from (6) only in the power constraint structure. Notice that
the objective is a concave function of the covariance matrices, and that
the constraints in (7) are separable because there is an individual trace
constraint on each covariance matrix. For such problems, it is generally
sufficient to optimize with respect to the first variable while holding all
other variables constant, then optimize with respect to the second vari-
able, etc., in order to reach a globally optimum point. This is referred
to as the block-coordinate ascent algorithm and convergence can be
shown under relatively general conditions [1, Sec. 2.7]. If we define
the function f(�) as

f(QQQ1; . . . ;QQQK) log III +

K

i=1

HHH
y
iQQQiHHHi (8)

then in the (n+1)th iteration of the block-coordinate ascent algorithm

QQQ
(n+1)
i arg max

QQQ :QQQ �0; Tr(QQQ )�P
f QQQ

(n)
1 ; . . . ;QQQ

(n)
i�1;

QQQi;QQQ
(n)
i+1; . . . ;QQQ

(n)
K (9)

for i = [n]K and QQQ(n+1)
i = QQQ

(n)
i for i 6= [n]K . Notice that only one

of the covariances is updated in each iteration.

The key to the iterative water-filling algorithm is noticing that
f(QQQ1; . . . ;QQQK) can be rewritten as

f(QQQ1; . . . ;QQQK) = log III +
j 6=i

HHH
y
jQQQjHHHj +HHH

y
iQQQiHHHi

= log III +
j 6=i

HHH
y
jQQQjHHHj

+ log III + III +
j 6=i

HHH
y
jQQQjHHHj

�1=2

�HHHy
iQQQiHHHi III +

j 6=i

HHH
y
jQQQjHHHj

�1=2

for any i, where we have used the property jAAABBBj = jAAAkBBBj.
Therefore, the maximization in (9) is equivalent to the calculation
of the capacity of a point-to-point MIMO channel with channel

GGGi = HHHi III + j 6=iHHH
y
jQQQ

(n)
j HHHj

�1=2

, thus

QQQ
(n+1)
i = arg max

QQQ :QQQ �0; Tr(QQQ )�P
log III +GGG

y
iQQQiGGGi : (10)

It is well known that the capacity of a point-to-point MIMO channel is
achieved by choosing the input covariance along the eigenvectors of the
channel matrix and by water-filling on the eigenvalues of the channel
matrix [9]. Thus,QQQ(n+1)

i should be chosen as awater-fill of the channel
GGGi, i.e., the eigenvectors ofQQQ(n+1)

i should equal the left eigenvectors
ofGGGi, with the eigenvalues chosen by the water-filling procedure.

At each step of the algorithm, exactly one user optimizes his covari-
ance matrix while treating the signals from all other users as noise. In
the next step, the next user (in numerical order) optimizes his covari-
ance while treating all other signals, including the updated covariance
of the previous user, as noise. This intuitively appealing algorithm can
easily be shown to satisfy the conditions of [1, Sec. 2.7] and thus prov-
ably converges. Furthermore, the optimization in each step of the al-
gorithm simplifies to water-filling over an effective channel, which is
computationally efficient.

If we let QQQ�
1; . . . ;QQQ

�
K denote the optimal covariances, then opti-

mality implies

f(QQQ�
1; . . . ;QQQ

�
K) = max

QQQ :QQQ �0;Tr(QQQ )�P
f(QQQ�

1; . . . ;QQQ
�
i�1

;QQQi;QQQ
�
i+1; . . . ;QQQ

�
K) (11)

for any i. Thus, QQQ�
1 is a water-fill of the noise and the sig-

nals from all other users (i.e., is a waterfill of the channel
HHH1(III + j 6=1HHH

y
jQQQ

�
jHHHj)

�1=2), while QQQ
�
2 is simultaneously a

water-fill of the noise and the signals from all other users, and so forth.
Thus, the sum capacity achieving covariance matrices simultaneously
water-fill each of their respective effective channels [17], with the
water-filling levels (i.e., the eigenvalues) of each user determined
by the power constraints Pj . In Section V, we will see that similar
intuition describes the sum capacity achieving covariance matrices
in the MIMO MAC when there is a sum power constraint instead of
individual power constraints.

V. SUM POWER ITERATIVE WATER-FILLING

In the previous section, we described the iterative water-filling al-
gorithm that computes the sum capacity of the MIMO MAC subject
to individual power constraints [17]. We are instead concerned with
computing the sum capacity, along with the corresponding optimal co-
variance matrices, of a MIMO BC. As stated earlier, this is equiva-
lent to computing the sum capacity of a MIMO MAC subject to a sum



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 4, APRIL 2005 1573

power constraint, i.e., computing (12) (see the bottom of the page). If
we let QQQ�

1; . . . ;QQQ
�
K denote a set of covariance matrices that achieve

the maximum in (12), it is easy to see that similar to the individual
power constraint problem, each covariance must be a water-fill of the
noise and signals from all other users. More precisely, this means that
for every j, the eigenvectors ofQQQ�

i are aligned with the left eigenvec-
tors ofHHHi(III + j 6=iHHH

y
jQQQ

�
jHHHj)

�1=2 and that the eigenvalues of QQQ�
i

must satisfy the water-filling condition. However, since there is a sum
power constraint on the covariances, the water level of all users must be
equal. This is akin to saying that no advantage will be gained by trans-
ferring power from one user with a higher water-filling level to another
user with a lower water-filling level. Note that this is different from
the individual power constraint problem, where the water level of each
user was determined individually and could differ from user to user. In
the individual power constraint channel, since each user’s water-filling
level was determined by his own power constraint, the covariances of
each user could be updated one at a time. With a sum power constraint,
however, we must update all covariances simultaneously to maintain a
constant water-level.

Motivated by the individual power algorithm, we propose the fol-
lowing algorithm in which all K covariances are simultaneously up-
dated during each step, based on the covariance matrices from the pre-
vious step. This is a natural extension of the per-user sequential update
described in Section IV. At each iteration step, we generate an effec-
tive channel for each user based on the covariances (from the previous
step) of all other users. In order to maintain a common water-level, we
simultaneously water-fill across allK effective channels, i.e., we max-
imize the sum of rates on the K effective channels. The nth iteration
of the algorithm is described by the following.

1) Generate effective channels

GGG
(n)
i = HHHi III +

j 6=i

HHH
y
jQQQ

(n�1)
j HHHj

�1=2

(13)

for i = 1; . . . ; K .
2) Treating these effective channels as parallel, noninterfering

channels, obtain the new covariance matrices fQQQ(n)
i gKi=1 by

water-filling with total power P

QQQ
(n)
i

K

i=1
= arg max

fQQQ g :QQQ �0; Tr(QQQ )�P

K

i=1

log

III + GGG
(n)
i

y

QQQiGGG
(n)
i :

This maximization is equivalent to water-filling the block diag-
onal channel with diagonals equal toGGG(n)

1 ; . . . ;GGG
(n)
K . If the sin-

gular value decomposition (SVD) ofGGG(n)
i (GGG

(n)
i )y is written as

GGG
(n)
i GGG

(n)
i

y

= UUU iDDDiUUU
y
i

with UUU i unitary and DDDi square and diagonal, then the updated
covariance matrices are given by

QQQ
(n)
i = UUU i���iUUU

y
i (14)

where ���i = �III � (DDDi)
�1 +

and the operation [AAA]+ denotes
a component-wise maximum with zero. Here, the water-filling
level � is chosen such that K

i=1 Tr(���i) = P .

We refer to this as the original algorithm [6]. This simple and highly
intuitive algorithm does in fact converge to the sum rate capacity when
K = 2, as we show next.

Theorem 1: The sum power iterative water-filling algorithm con-
verges to the sum rate capacity of the MAC whenK = 2.

Proof: In order to prove convergence of the algorithm forK = 2,
consider the following related optimization problem shown in (15) at
the bottom of the page.We first show that the solutions to the original
sum rate maximization problem in (12) and (15) are the same. If we
defineAAA1 = BBB1 = QQQ1 andAAA2 = BBB2 = QQQ2, we see that any sum rate
achievable in (12) is also achievable in the modified sum rate in (15).
Furthermore, if we defineQQQ1 =

1
2
(AAA1+BBB1) andQQQ2 =

1
2
(AAA2+BBB2),

we have

log III +HHH
y
1QQQ1HHH1 +HHH

y
2QQQ2HHH2

�
1

2
log III +HHH

y
1AAA1HHH1 +HHH

y
2BBB2HHH2

+
1

2
log III +HHH

y
1BBB1HHH1 +HHH

y
2AAA2HHH2

due to the concavity of log(det(�)). Since

Tr(QQQ1) + Tr(QQQ2) =
1

2
Tr(AAA1 +AAA2 +BBB1 +BBB2) � P

any sum rate achievable in (15) is also achievable in the original (12).
Thus, every set of maximizing covariances (AAA1; AAA2; BBB1;BBB2)maps di-
rectly to a set of maximizing (QQQ1;QQQ2). Therefore, we can equivalently
solve (15) to find the uplink covariances that maximize the sum-rate ex-
pression in (12).

Now notice that the maximization in (15) has separable constraints
on (AAA1; AAA2) and (BBB1;BBB2). Thus, we can use the block coordinate as-
cent method in which we maximize with respect to (AAA1; AAA2) while
holding (BBB1;BBB2) fixed, then with respect to (BBB1;BBB2) while holding
(AAA1; AAA2) fixed, and so on. The maximization of (15) with respect to
(AAA1; AAA2) can be written as

max
AAA ;AAA �0; Tr(AAA +AAA )�P

log III +GGG
y
1AAA1GGG1 + log III +GGG

y
2AAA2GGG2

(16)

where

GGG1 = HHH1(III +HHH
y
2BBB2HHH2)

�1=2

and

GGG2 = HHH2(III +HHH
y
1BBB1HHH1)

�1=2
:

Clearly, this is equivalent to the iterative water-filling step described
in the previous section where (BBB1;BBB2) play the role of the covariance
matrices from the previous step. Similarly, when maximizing with re-
spect to (BBB1;BBB2), the covariances (AAA1; AAA2) are the covariance ma-
trices from the previous step. Therefore, performing the cyclic coordi-
nate ascent algorithm on (15) is equivalent to the sum power iterative
water-filling algorithm described in Section V.

CMAC(HHH
y
1; . . . ;HHH

y
K ; P ) = max

fQQQ g :QQQ �0; Tr(QQQ )�P

log III +

K

i=1

HHH
y
iQQQiHHHi : (12)

max
AAA ;AAA �0; BBB ;BBB �0; Tr(AAA +AAA )�P; Tr(BBB +BBB )�P

1

2
log III +HHH

y
1AAA1HHH1 +HHH

y
2BBB2HHH2 +

1

2
log III +HHH

y
1BBB1HHH1 +HHH

y
2AAA2HHH2 : (15)
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Fig. 2. Graphical representation of Algorithm 1.

Furthermore, notice that each iteration is equal to the calculation
of the capacity of a point-to-point (block-diagonal) MIMO channel.
Water-filling is known to be optimal in this setting, and in Appendix II
we show that the water-filling solution is the unique solution. There-
fore, by [18, p. 228], [1, Ch. 2.7], the block coordinate ascent algorithm
converges because at each step of the algorithm there is a unique max-
imizing solution. Thus, the iterative water-filling algorithm given in
Section V converges to the maximum sum rate whenK = 2.

However, rather surprisingly, this algorithm does not always
converge to the optimum when K > 2, and the algorithm can even
lead to a strict decrease in the objective function. In Sections VI–IX,
we provide modified versions of this algorithm that do converge for
all K .

VI. MODIFIED ALGORITHM

In this section, we present a modified version of the sum power
iterative water-filling algorithm and prove that it converges to the sum
capacity for any number of users K . This modification is motivated
by the proof of convergence of the original algorithm for K = 2.
In the proof of Theorem 1, a sum of two log det functions, with four
input covariances is considered instead of the original log det function.
We then applied the provably convergent cyclic coordinate ascent algo-
rithm, and saw that this algorithm is in fact identical to the sum power
iterative algorithm. When there are more than two users (i.e., K > 2)
we can consider a similar sum ofK log det functions, and again per-
form the cyclic coordinate ascent algorithm to provably converge to the
sum rate capacity. In this case, however, the cyclic coordinate ascent al-
gorithm is not identical to the original sum power iterative water-filling
algorithm. It can, however, be interpreted as the sum power iterative
water-filling algorithm with a memory of the covariance matrices gen-
erated in the previous K � 1 iterations, instead of just in the previous
iteration.

For simplicity, let us consider the K = 3 scenario. Similar to the
proof of Theorem 1, consider the following maximization:

max
1

3
log III +HHH

y
1AAA1HHH1 +HHH

y
2BBB2HHH2 +HHH

y
3CCC3HHH3

+
1

3
log III +HHH

y
1CCC1HHH1 +HHH

y
2AAA2HHH2 +HHH

y
3BBB3HHH3

+
1

3
log III +HHH

y
1BBB1HHH1 +HHH

y
2CCC2HHH2 +HHH

y
3AAA3HHH3 (17)

subject to the constraintsAAAi � 0,BBBi � 0,CCCi � 0 for i = 1; 2; 3 and

Tr(AAA1 +AAA2 +AAA3) � P

Tr(BBB1 +BBB2 +BBB3) � P

Tr(CCC1 +CCC2 +CCC3) � P:

By the same argument used for the two-user case, any solution to the
above maximization corresponds to a solution to the original optimiza-
tion problem in (12). In order to maximize (17), we can again use the
cyclic coordinate ascent algorithm. We first maximize with respect to
AAA (AAA1; AAA2; AAA3), then with respect toBBB (BBB1;BBB2;BBB3), then with
respect to CCC (CCC1;CCC2;CCC3), and so forth. As before, convergence is
guaranteed due to the uniqueness of the maximizing solution in each
step [1, Sec. 2.7]. In the two-user case, the cyclic coordinate ascent
method applied to the modified optimization problem yields the same
iterative water-filling algorithm proposed in Section V where the ef-
fective user of each channel is based on the covariance matrices only
from the previous step. In general, however, the effective channel of
each user depends on covariances which are up toK � 1 steps old.

A graphical representation of the algorithm for three users is shown
in Fig. 2. HereAAA(n) refers to the triplet of matrices (AAA1; AAA2; AAA3) after
the nth iterate. Furthermore, the function fexp(AAA;BBB;CCC) refers to the
objective function in (17).We begin by initializing all variables to some
AAA

(0), BBB(0), CCC(0). In order to develop a more general form that gener-
alizes to arbitraryK , we also refer to these variables asQQQ(�2),QQQ(�1),
QQQ

(0). Note that each of these variables refers to a triplet of covariance
matrices. In step 1,AAA is updated while holding variablesBBB andCCC con-
stant, and we defineQQQ(1) to be the updated variable AAA(1)

QQQ
(1)

AAA
(1)

=arg max
QQQ:QQQ �0; Tr(QQQ )�P

f
exp(QQQ;BBB(0)

; CCC
(0)) (18)

=arg max
QQQ:QQQ �0; Tr(QQQ )�P

f
exp(QQQ;QQQ(�1)

;QQQ
(0)): (19)

In step 2, the matricesBBB are updated withQQQ(2)
BBB

(2), and in step 3,
the matricesCCC are updated withQQQ(3)

CCC
(3). The algorithm continues

cyclically, i.e., in step 4, AAA is again updated, and so forth. Notice that
QQQ

(n) is always defined to be the set of matrices updated in the nth
iteration.

In Appendix III, we show that the following is a general formula for
QQQ

(n)(see (20) and (21) at the top of the next page), where the effective
channel of User i in the nth step is

GGG
(n)
i = HHHi III +

K�1

j=1

HHH
y

[i+j] QQQ
(n�K+j)
[i+j] HHH [i+j]

�1=2

(22)

where [x]K = mod((x � 1);K) + 1. Clearly, the previous K � 1
states of the algorithm (i.e., QQQ(n�K+1)

; . . . ;QQQ(n�1)) must be stored
in memory in order to generate these effective channels.
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QQQ
(n) =arg max

QQQ:QQQ �0; Tr(QQQ )�P

f
exp(QQQ;QQQ(n�K+1)

; . . . ;QQQ(n�1)) (20)

=arg max
QQQ:QQQ �0; Tr(QQQ )�P

K

i=1

log III + GGG
(n)
i

y

QQQiGGG
(n)
i (21)

We now explicitly state the steps of Algorithm 1. The covariances are
first initialized to scaled versions of the identity,4 i.e., QQQ(n)

j = P
KN

III

for j = 1; . . . ; K and n = �(K � 2); . . . ; 0. The algorithm is al-
most identical to the original sum power iterative algorithm, with the
exception that the expression for each effective channel now depends
on covariance matrices generated in the previousK � 1 steps, instead
of just on the previous step.

1) Generate effective channels

GGG
(n)
i = HHHi III +

K�1

j=1

HHH
y
[i+j] QQQ

(n�K+j)
[i+j] HHH [i+j]

�1=2

(23)
for i = 1; . . . ; K .

2) Treating these effective channels as parallel, noninterfering
channels, obtain the new covariance matrices fQQQ(n)

i gKi=1 by
water-filling with total power P

QQQ
(n)
i

K

i=1
= arg max

fQQQ g :QQQ �0; Tr(QQQ )�P

K

i=1

log

� III + (GGG
(n)
i )yQQQiGGG

(n)
i :

We refer to this as Algorithm 1. Next we prove convergence to the
sum rate capacity:

Theorem 2: Algorithm 1 converges to the sum rate capacity for
any K .

Proof: Convergence is shown by noting that the algorithm is the
cyclic coordinate ascent algorithm applied to the function fexp(�).
Since there is a unique (water-filling) solution to the maximization in
step 2, the algorithm converges to the sum capacity of the channel for
any number of users K .5 More precisely, convergence occurs in the
objective of the expanded function

lim
n!1

f
exp(QQQ(n�K+1)

; . . . ;QQQ(n)) = CMAC(HHH
y
1; . . . ;HHH

y
K ; P ):

(24)
Convergence is also easily shown in the original objective function f(�)
because the concavity of the log(det()) function implies

f
1

K

n

l=n�K+1

QQQ
(l)
1 ; . . . ;

1

K

n

l=n�K+1

QQQ
(l)
K

� f
exp

QQQ
(n�K+1)

; . . . ;QQQ(n)
:

4The algorithm converges from any starting point, but for simplicity we have
chosen to initialize using the identity covariance. In Section IX we discuss the
large advantage gained by using the original algorithm for a few iterations to
generate a considerably better starting point.

5Notice that the modified algorithm and the original algorithm in Section V
are equivalent only for K = 2.

Thus, if we average over the covariances from the previous K itera-
tions, we get

lim
n!1

f
1

K

n

l=n�K+1

QQQ
(l)
1 ; . . . ;

1

K

n

l=n�K+1

QQQ
(l)
K

= CMAC(HHH
y
1; . . . ;HHH

y
K ; P ): (25)

Though the algorithm does converge quite rapidly, the required
memory is a drawback for large K . In Section VII, we propose an
additional modification to reduce the required memory.

VII. ALTERNATIVE ALGORITHM

In the preceding section, we described a convergent algorithm that
requires memory of the covariance matrices generated in the previous
K�1 iterations, i.e., ofK(K�1)matrices. In this section, we propose
a simplified version of this algorithm that relies solely on the covari-
ances from the previous iteration, but is still provably convergent. The
algorithm is based on the same basic iterative water-filling step, but in
each iteration, the updated covariances are a weighted sum of the old
covariances and the covariances generated by the iterative water-filling
step. This algorithm can be viewed as Algorithm 1 with the insertion
of an averaging step after each iteration.

A graphical representation of the new algorithm (referred to as Al-
gorithm 2 herein) for K = 3 is provided in Fig. 3. Notice that the
initialization matrices are chosen to be all equal. As in Algorithm 1, in
the first step AAA is updated to give the temporary variable SSS(1). In Al-
gorithm 1, we would assign (AAA(1)

; BBB
(1)
; CCC

(1)) = (SSS(1); BBB(0)
; CCC

(0)),
and then continue by updating BBB, and so forth. In Algorithm 2, how-
ever, before performing the next update (i.e., before updating BBB), the
three variables are averaged to give

QQQ
(1) 1

3
(SSS(1) +QQQ

(0) +QQQ
(0)) =

1

3
SSS
(1) +

2

3
QQQ
(0)

and we set

(AAA(1)
; BBB

(1)
; CCC

(1)) = (QQQ(1)
;QQQ

(1)
;QQQ

(1)):

Notice that this averaging step does not decrease the objective, i.e.,
fexp(QQQ(1)

;QQQ
(1)
;QQQ

(1)) � fexp(SSS(1);QQQ(0)
;QQQ

(0)), as we show later.
This is, in fact, crucial in establishing convergence of the algorithm.

After the averaging step, the update is again performed, but this time
on BBB. The algorithm continues in this manner. It is easy to see that
the averaging step essentially eliminates the need to retain the pre-
viousK�1 states in memory, and instead only the previous state (i.e.,
QQQ
(n�1)) needs to be stored. The general equations describing the algo-

rithm are

SSS
(n) =argmax

QQQ
f
exp(QQQ;QQQ(n�1)

; . . . ;QQQ(n�1)) (26)

QQQ
(n) =

1

K
SSS
(n) +

K � 1

K
QQQ
(n�1)

: (27)

Themaximization in (26) that definesSSS(n) is again solved by thewater-
filling solution, but where the effective channel depends only on the
covariance matrices from the previous state, i.e.,QQQ(n�1).
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Fig. 3. Graphical representation of Algorithm 2 for K = 3.

After initializingQQQ(0), the algorithm proceeds as follows.6

1) Generate effective channels for each use

GGG
(n)
i =HHHi III+

j 6=i

HHH
y
jQQQ

(n�1)
j HHHj

�1=2

; i=1; . . . ; K:

(28)
2) Treating these effective channels as parallel, noninterfering

channels, obtain covariance matrices fSSS(n)i gKi=1 by water-filling
with total power P

SSS
(n)
i

K

i=1
= arg max

fSSS g :SSS �0; Tr(SSS )�P

K

i=1

log

� III + GGG
(n)
i

y

SSSiGGG
(n)
i :

3) Compute the updated covariance matricesQQQ(n)
i as

QQQ
(n)
i =

1

K
SSS
(n)
i +

K � 1

K
QQQ
(n�1)
i ; i = 1; . . . ; K: (29)

Algorithm 2 (which first appeared in [11]) differs from the original
algorithm only in the addition of the third step.

Theorem 3: Algorithm 2 converges to the sum rate capacity for
any K .

Proof: Convergence of the algorithm is proven by showing that
Algorithm 1 is equivalent to Algorithm 2 with the insertion of a non-
decreasing (in the objective) operation in between every iteration. The
spacer step theorem of [18, Ch. 7.11] asserts that if an algorithm sat-
isfying the conditions of the global convergence theorem [18, Ch. 6.6]
is combined with any series of steps that do not decrease the objective,
then the combination of these twowill still converge to the optimal. The
cyclic coordinate ascent algorithm does indeed satisfy the conditions of
the global convergence theorem, and later we prove that the averaging
step does not decrease the objective. Thus, Algorithm 2 converges.7

Consider the n-iteration of the algorithm, i.e.,

(QQQ(n�1)
; . . . ;QQQ(n�1))! (SSS(n);QQQ(n�1)

; . . . ;QQQ(n�1)) (30)

!
1

K
SSS
(n) +

K � 1

K
QQQ
(n�1)

; . . . ;

1

K
SSS
(n) +

K � 1

K
QQQ
(n�1) (31)

where the mapping in (30) is the cyclic coordinate ascent algorithm
performed on the first set of matrices, and the mapping in (31) is the

6As discussed in Section IX, the original algorithm can be used to generate
an excellent starting point for Algorithm 2.

7There is also a technical condition regarding compactness of the set with
larger objective than the objective evaluated for the initialization matrices that
is trivially satisfied due to the properties of Euclidean space.

averaging step. The first step is clearly identical to Algorithm 1, while
the second step (i.e., the averaging step) has been added. We need only
show that the averaging step is nondecreasing, i.e.,

f
exp(SSS(n);QQQ(n�1)

; . . . ;QQQ(n�1))

�f
exp 1

K
SSS
(n)+

K�1

K
QQQ
(n�1)

; . . . ;
1

K
SSS
(n)+

K�1

K
QQQ
(n�1)

:

(32)

Notice that we can rewrite the left-hand side as

f
exp(SSS(n);QQQ(n�1)

; . . . ;QQQ(n�1))

=
1

K

K

i=1

log III +HHH
y
iSSS

(n)
i HHHi +

j 6=i

HHH
y
jQQQ

(n�1)
j HHHj

� log
1

K

K

i=1

III +HHH
y
iSSS

(n)
i HHHi +

j 6=i

HHH
y
jQQQ

(n�1)
j HHHj

= log III +

K

j=1

HHH
y
j

1

K
SSS
(n)
j +

K � 1

K
QQQ
(n�1)
j HHHj

= f
exp 1

K
SSS
(n) +

K � 1

K
QQQ
(n�1)

; . . . ;
1

K
SSS
(n)

+
K � 1

K
QQQ
(n�1)

where the inequality follows from the concavity of the log j � j func-
tion. Since the averaging step is nondecreasing, the algorithm con-
verges. More precisely, this means fexp(QQQ(n)

; . . . ;QQQ(n)) converges
to the sum capacity. Since this quantity is equal to f(QQQ(n)), we have

lim
n!1

f(QQQ(n)) = CMAC(HHH
y
1; . . . ;HHH

y
K ; P ): (33)

VIII. COMPLEXITY ANALYSIS

In this section, we provide complexity analyses of the three proposed
algorithms and other algorithms in the literature. Each of the three pro-
posed algorithms here have complexity that increases linearly withK ,
the number of users. This is an extremely desirable property when con-
sidering systems with large numbers of users (i.e., 50 or 100 users).
The linear complexity of our algorithm is quite easy to see if one goes
through the basic steps of the algorithm. For simplicity, we consider
Algorithm 1, which is the most complex of the algorithms. Calculating
the effective channels in step 1 requires calculating the total interfer-
ence seen by each user (i.e., a term of the form of jIII+ j 6=iHHH

y
iQQQiHHHij).

A running sum of such a term can be maintained, such that calculating
the effective channel of each user requires only a finite number of sub-
tractions and additions. The water-filling operation in step 2 can also
be performed in linear time by taking the SVD of each of the effective
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Fig. 4. Algorithm comparison for a divergent scenario.

channels and then water-filling. It is important not to perform a stan-
dard water-filling operation on the block diagonal channel, because the
size of the involved matrices grow with K . In general, the key idea
behind the linear complexity of our algorithm is that the entire input
space is never considered (i.e., onlyN �N andM �M matrices, and
never matrices whose size is a function of K , are considered). This,
however, is not true of general optimization methods which do not take
advantage of the structure of the sum capacity problem.

Standard interior point methods have complexity that is cubic with
respect to the dimensionality of the input space (i.e., with respect to
K , the number of users), due to the complexity of the inner Newton
iterations [2]. The minimax-based approach in [8] also has complexity
that is cubic in K because matrices whose size is a function of K are
inverted in each step. For very small problems, this is not significant,
but for even reasonable values ofK (i.e.,K = 10 orK = 20) this in-
crease in complexity makes such methods computationally prohibitive.

The other proposed specialized algorithms [13], [15] are also linear in
complexity (inK).However, the steepest descent algorithmproposed in
[13] requires a line search in each step,which does not increase the com-
plexity order but does significantly increase run time. The dual decom-
position algorithm proposed in [15] requires an inner optimization to be
performedwithin each iteration (i.e., user-by-user iterativewater-filling
[17] with a fixed water level, instead of individual power constraints,
must be performed repeatedly), which significantly increases run time.
Our sum power iterative water-filling algorithms, on the other hand,
do not require a line search or an inner optimization within each itera-
tion, thus leading to a faster run time. In addition, we find the iterative
water-filling algorithms to converge faster than the other linear com-
plexity algorithms for almost all channel realizations. Some numerical
results and discussion of this are presented in Section IX.

IX. NUMERICAL RESULTS

In this section, we provide some numerical results to show the be-
havior of the three algorithms. In Fig. 4, a plot of sum rate versus iter-
ation number is provided for a 10–user channel with four transmit and
four receive antennas. In this example, the original algorithm does not
converge and can be seen to oscillate between two suboptimal points.
Algorithms 1 and 2 do converge, however, as guaranteed by Theorems
2 and 3. In general, it is not difficult to randomly generate channels for
which the original algorithm does not converge and instead oscillates
between suboptimal points. This divergence occurs because not only
can the original algorithm lead to a decrease in the sum rate, but ad-
ditionally there appear to exist suboptimal points between which the
original algorithm can oscillate, i.e., point 1 is generated by iteratively
waterfilling from point 2, and vice versa.

In Fig. 5, the same plot is shown for a different channel (with the
same system parameters as in Fig. 4:K = 10,M = N = 4) in which

Fig. 5. Algorithm comparison for a convergent scenario.

Fig. 6. Error comparison for a convergent scenario.

the original algorithm does in fact converge. Notice that the original al-
gorithm performs best, followed byAlgorithm 1, and then Algorithm 2.
The same trend is seen in Fig. 6, which plots the error in capacity. Addi-
tionally, notice that all three algorithms converge linearly, as expected
for this class of algorithms. Though these plots are only for a single
instantiation of channels, the same ordering has always occurred, i.e.,
the original algorithm performs best (in situations where it converges)
followed by Algorithm 1 and then Algorithm 2.

The fact that the original algorithmconverges faster than themodified
algorithms is intuitively not surprising, because the original algorithm
updates matrices at a much faster rate than either of the modified ver-
sions of the algorithm. In Algorithm 1, there areK covariances for each
user (corresponding to theK previous states) that are averaged to yield
the set of covariances that converge to the optimal. The most recently
updated covariances therefore make up only a fraction 1=K of the av-
erage, and thus the algorithm moves relatively slowly. In Algorithm 2,
the updated covariances are very similar to the covariances from the pre-
vious state, as the updated covariances are equal to (K � 1)=K times
the previous state’s covariances plus only a factor of 1=K times the co-
variances generated by the iterative water-filling step. Thus, it should
be intuitively clear that in situations where the original algorithm ac-
tually converges, convergence is much faster for the original algorithm
than for either of the modified algorithms. From the plot it is clear that
the performance difference between the original algorithm and Algo-
rithms 1 and 2 is quite significant. At the end of this section, however,
we discuss how the original algorithm can be combined with either Al-
gorithm 1 or 2 to improve performance considerably while still main-
taining guaranteed convergence. Of the two modified algorithms, Al-
gorithm 1 is almost always seen to outperform Algorithm 2. However,
there does not appear to be an intuitive explanation for this behavior.
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Fig. 7. Comparison of linear complexity algorithms. (a) Ten-user system withM = 10,N = 1 (b) Fifty-user system withM = 5,N = 1.

In Fig. 7(a) sum rate is plotted for the three iterative water-filling al-
gorithms (original, Algorithm 1, and Algorithm 2), the steepest descent
method [13], and the dual decomposition method [15], for a channel
withK = 10,M = 10, andN = 1. The three iterative water-filling
algorithms perform nearly identically for this channel, and three curves
are in fact superimposed on one and other in the figure. Furthermore,
the iterative water-filling algorithms converge more rapidly than either
of the alternative methods. The iterative water-filling algorithms out-
perform the other algorithms in many scenarios, and the gap is partic-
ularly large when the number of transmit antennas (M) and users (K)
are large. It should be noted that there are certain situations where the
steepest descent and dual decomposition algorithms outperform the it-
erative water-filling algorithm, in particular when the number of users
is much larger than the number of antennas. Fig. 7(b) contains a conver-
gence plot of a 50-user system withM = 5 andN = 1. Algorithm 1
converges rather slowly precisely because of the large number of users
(i.e., because the covariances can only change at approximately a rate of
1=K in each iteration, as discussed earlier). Notice that both the steepest
descent and dual decomposition algorithms converge faster. However,
the results for a hybrid algorithm are also plotted here (referred to as
“Original+ Algorithm 2”). In this hybrid algorithm, the original itera-
tive water-filling algorithm is performed for the first five iterations, and
thenAlgorithm 2 is used for all subsequent iterations. The original algo-
rithm is essentially used to generate a good starting point for Algorithm
2. This hybrid algorithm converges, because the original algorithm is
only used a finite number of times, and is seen to outperform any of the
other alternatives. In fact, we find that the combination of the original al-
gorithmwith either Algorithm 1 or 2 converges extremely rapidly to the
optimum and outperforms the alternative linear complexity approaches
in the very large majority of scenarios, i.e., for any number of users and
antennas. This is true even for channels for which the original algo-
rithm itself does not converge, because running the original algorithm
for a few iterations still provides an excellent starting point.

X. CONCLUSION

In this correspondence we proposed two algorithms that find the sum
capacity achieving transmission strategies for themultiple-antenna BC.
We use the fact that the Gaussian broadcast and MAC’s are duals in the
sense that their capacity regions, and therefore their sum capacities, are
equal. These algorithms compute the sum capacity achieving strategy
for the dual MAC, which can easily be converted to the equivalent op-
timal strategies for the BC. The algorithms exploit the inherent struc-
ture of the MAC and employ a simple iterative water-filling procedure
that provably converges to the optimum. The two algorithms are ex-
tremely similar, as both are based on the cyclic coordinate ascent and
use the single-user water-filling procedure in each iteration, but they

offer a simple tradeoff between performance and requiredmemory. The
convergence speed, low complexity, and simplicity make the iterative
water-filling algorithms extremely attractive methods to find the sum
capacity of the multiple-antenna BC.

APPENDIX I
MAC BC TRANSFORMATION

In this appendix, we restate the mapping from uplink covariance ma-
trices to downlinkmatrices. Given uplink covariancesQQQ1; . . . ;QQQK , the
transformation in [10, eqs. 8–10] outputs downlink covariance matrices
���1; . . . ;���K that achieve the same rates (on a user-by-user basis, and
thus also in terms of sum rate) using the same sum power, i.e., with

K

i=1

Tr(QQQi) =

K

i=1

Tr(���i):

For convenience, we first define the following two quantities:

AAAi III +HHHi

i�1

l=1

���l HHHy
i ; BBBi III +

K

l=i+1

HHHy
lQQQlHHH l (34)

for i = 1; . . . ; K . Furthermore, we write the SVD decomposition
of BBB�1=2i HHHy

iAAA
�1=2
i as BBB�1=2i HHHy

iAAA
�1=2
i = FFF iDDDiGGG

y
i , where DDDi is a

square and diagonal matrix.8 Then, the equivalent downlink covariance
matrices can be computed via the following transformation:

���i = BBB
�1=2
i FFF iGGG

y
iAAA

1=2
i QQQiAAA

1=2
i GGGiFFF

y
iBBB

�1=2
i (35)

beginning with i = 1. See [10] for a derivation and more detail.

APPENDIX II
UNIQUENESS OF WATER-FILLING SOLUTION

In this appendix, we show there is a unique solution to the following
maximization:

max
QQQ�0; Tr(QQQ)�P

log III +HHHQQQHHHy (36)

for any nonzero HHH 2
N�M for arbitrary M;N . This proof is iden-

tical to the proof of optimality of water-filling in [9, Sec. 3.2], with the
addition of a simple proof of uniqueness.

Since HHHyHHH 2
M�M is Hermitian and positive semi-definite, we

can diagonalize it and write HHHyHHH = UUUDDDUUU y where UUU 2
M�M is

unitary and DDD 2
M�M is diagonal with nonnegative entries. Since

the ordering of the columns of UUU and the entries of DDD are arbitrary
and because DDD must have at least one strictly positive entry (because

8Note that the standard SVD command in MATLAB does not return a square
and diagonal DDD . This is accomplished by using the “0” option in the SVD
command inMATLAB, and is referred to as the “economy size” decomposition.



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 4, APRIL 2005 1579

HHH is not the zero matrix), for simplicity, we assumeDDDii > 0 for i =
1; . . . ; L andDDDii = 0 for i = L + 1; . . . ;M for some 1 � L � M .
Using the identity jIII +AAABBBj = jIII+BBBAAAj, we can rewrite the objective
function in (36) as

log jIII +HHHQQQHHH
yj = log jIII +QQQHHH

y
HHHj = log jIII +QQQUUUDDDUUU

yj

= log jIII +UUU
y
QQQUUUDDDj: (37)

If we define SSS UUU
y
QQQUUU , then QQQ = UUUSSSUUU

y. Since Tr(AAABBB) =
Tr(BBBAAA) and UUU is unitary, we have

Tr(SSS) = Tr(UUUy
QQQUUU) = Tr(QQQUUUUUU y) = Tr(QQQ):

Furthermore,SSS � 0 if and only ifQQQ � 0. Therefore, the maximization
can equivalently be carried out over SSS, i.e.,

max
SSS�0; Tr(SSS)�P

log jIII + SSSDDDj: (38)

In addition, each solution to (36) corresponds to a different solution of
(38) via the invertible mappingSSS = UUU

y
QQQUUU . Thus, if the maximization

in (36) has multiple solutions, the maximization in (38) must also have
multiple solutions. Therefore, it is sufficient to show that (38) has a
unique solution, which we prove next.

First we show by contradiction that any optimalSSS must satisfySSSij =
0 for all i; j > L. Consider an SSS � 0 with SSSij 6= 0 for some i > L

and j > L. Since

jSSSij j � SSSiiSSSjj ; for any SSS � 0

this implies SSSii > 0 and SSSjj > 0, i.e., at least one diagonal entry
of SSS is strictly positive below the Lth row/column. Using Hadamard’s
inequality [5] and the fact thatDDDii = 0 for i > L, we have

jIII + SSSDDDj �

M

i=1

(1 + SSSiiDDDii) =

L

i=1

(1 + SSSiiDDDii):

We now construct another matrix SSS0 that achieves a strictly larger ob-
jective than SSS. We define SSS0 to be diagonal with

SSS
0
ii =

SSS11 +
M

i=L+1 SSSii; i = 1

SSSii; i = 2; . . . ; L

0; i = L+ 1; . . . ;M .

(39)

Clearly SSS0 � 0 and

Tr(SSS0) =

L

i=1

SSS
0
ii = SSS11 +

M

i=L+1

SSSii +

L

i=2

SSSii = Tr(SSS):

Since SSS0 is diagonal, the matrix SSS0DDD is diagonal and we have

log III + SSS
0
DDD = log

L

i=1

(1 + SSS
0
iiDDDii) > log

L

i=1

(1 + SSSiiDDDii)

� log jIII + SSSDDDj

where the strict inequality is due to the fact thatSSS011>SSS11 andDDD11>0.
Therefore, the optimal SSS must satisfy SSSij = 0 for all i; j > L.

Next we show by contradiction that any optimal SSS must also be di-
agonal. Consider anySSS � 0 that satisfies the above condition (SSSij = 0
for all i; j > L) but is not diagonal, i.e., SSSkj 6= 0 for some k 6= j and
k; j � L. Since DDD is diagonal and DDDii > 0 for i = 1; . . . ; L, the
matrix SSSDDD is not diagonal because (SSSDDD)kj = SSSkjDDDjj 6= 0. Since

Hadamard’s inequality holds with equality only for diagonal matrices,
we have

log jIII + SSSDDDj < log

L

i=1

(1 + SSSiiDDDii):

Let us define a diagonal matrix SSS0 with SSS0ii = SSSii for i = 1; . . . ;M .
Clearly, Tr(SSS0) = Tr(SSS) and SSS0 � 0. Since SSS0 is diagonal, the matrix
SSS
0
DDD is diagonal and thus

log III + SSS
0
DDD = log

L

i=1

(1 + SSSiiDDDii) > log jIII + SSSDDDj :

Therefore, the optimal SSS must be diagonal, as well as satisfy SSSij = 0
for i; j > L.

Therefore, in order to find all solutions to (38), it is sufficient to
only consider the class of diagonal, positive semidefinite matrices SSS
that satisfy SSSij = 0 for all i; j > L and Tr(SSS) � P . The positive
semidefinite constraint is equivalent to SSSii � 0 for i = 1; . . . ; L, and
the trace constraint gives L

i=1 SSSii � P . Since

log III + SSS
0
DDD = log

L

i=1

(1 + SSS
0
iiDDDii)

for this class of matrices, we need only consider the following maxi-
mization:

max
fSSS g :SSS �0; SSS �P

L

i=1

log(1 + SSSiiDDDii): (40)

Since DDDii > 0 for i = 1; . . . ; L, the objective in (40) is a strictly
concave function, and thus has a unique maximum. Thus, (38) has a
unique maximum, which implies that (36) also has a unique maximum.

APPENDIX III
DERIVATION OF ALGORITHM 1

In this appendix, we derive the general form of Algorithm 1 for an
arbitrary number of users. In order to solve the original sum rate ca-
pacity maximization in (12), we consider an alternative maximization

max
SSS(1);...;SSS(K)

f
exp(SSS(1); . . . ; SSS(K)) (41)

where we define SSS(i) (SSS(i)1; . . . ; SSS(i)K) for i = 1; . . . ; K with
SSS(i)j 2 N�N , and the maximization is performed subject to the
constraints SSS(i)j � 0 for all i, j and

K

j=1

Tr(SSS(i)j) � P; for i = 1; . . . ; K:

The function fexp(�) is defined as

f
exp(SSS(1); . . . ; SSS(K))

=
1

K

K

i=1

log III +

K

j=1

HHH
y
jSSS([j � i+ 1]K)jHHHj : (42)

In the notation used in Section VI, we would have AAA = SSS(1),
BBB = SSS(2), CCC = SSS(3). As discussed earlier, every solution to
the original sum rate maximization problem in (12) corresponds
to a solution to (41), and vice versa. Furthermore, the cyclic
coordinate ascent algorithm can be used to maximize (41) due
to the separability of the constraints on SSS(1); . . . ; SSS(K). If we
let fSSS(i)(n)gKi=1 denote the nth iteration of the cyclic coordinate
ascent algorithm, then (43) (at the bottom of the page) holds for

SSS(l)(n) =
argmaxSSS f

exp(SSS(1)(n�1); . . . ; SSS(m� 1)(n�1); SSS;SSS(m+ 1)(n�1); . . . ; SSS(K)(n�1)) l = m

SSS(l)(n�1) l 6= m
(43)
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QQQ
(n) =argmax

QQQ
f
exp

QQQ;QQQ
(n�K+1)

; . . . ;QQQ(n�1) (48)

=arg max
QQQ:QQQ �0; Tr(QQQ )�P

K

i=1

log III +HHH
y
iQQQiHHHi +

K�1

j=1

HHH
y

[i+j] QQQ
(n�K+j)
[i+j] HHH [i+j] (49)

=arg max
QQQ:QQQ �0; Tr(QQQ )�P

K

i=1

log III + GGG
(n)
i

y

QQQiGGG
(n)
i : (50)

l = 1; . . . ; K , where m = [n]K . For each n, we define QQQ(n) to be
the updated matrices in that iteration

QQQ
(n)

SSS(m)(n) (44)

=argmax
SSS

f
exp(SSS(1)(n�1)

; . . . ; SSS(m� 1)(n�1)
; SSS;

SSS(m+ 1)(n�1)
; . . . ; SSS(K)(n�1)) (45)

=argmax
SSS

f
exp(SSS;SSS(m+ 1)(n�1)

; . . . ; SSS(K)(n�1)
;

SSS(1)(n�1)
; . . . ; SSS(m� 1)(n�1)) (46)

where in the final step we used the fact that

f
exp(SSS(1); . . . ; SSS(K))

= f
exp(SSS(l); . . . ; SSS(K);SSS(1); . . . ; SSS(l� 1)) (47)

for any l due to the circular structure of fexp and the uniqueness of the
water-filling solution to (46). Plugging in recursively for QQQ(n) for all
n, we get (48)–(50) at the top of the page. The final maximization is
equivalent to water-filling over effective channelsGGGj , given by

GGG
(n)
i = HHHi III +

K�1

j=1

HHH
y

[i+j] QQQ
(n�K+j)
[i+j] HHH [i+j]

�1=2

(51)

for i = 1; . . . ; K .
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Design of Efficient Second-Order Spectral-Null Codes

Ching-Nung Yang

Abstract—An efficient recursive method has been proposed for the en-
coding/decoding of second-order spectral-null codes, via concatenation by
Tallini and Bose. However, this method requires the appending of one, two,
or three extra bits to the information word, in order to make a balanced
code, with the length being a multiple of 4; this introduces redundancy.
Here, we introduce a new quasi-second-order spectral-null code with the
length 2 (mod 4) and extend the recursivemethod of Tallini and Bose,
to achieve a higher code rate.

Index Terms—Balanced code, dc-free codes, high-order spectral-null
codes.

I. INTRODUCTION

In some applications, such as digital transmission and recording sys-
tems, wewant to achieve a larger level of rejection of the low-frequency
components for dc-free (referred to as balanced or zero-disparity)
codes. These codes are so called “high-order spectral-null codes”

Manuscript received December 10, 1003; revised November 27, 2004.
The author is with the Department of Computer Science and Information En-

gineering, National Dong Hwa University, Shou-Feng, Taiwan, R.O.C. (e-mail:
cnyang@mail.ndhu.edu.tw).

Communicated by Ø. Ytrehus, Associate Editor for Coding Techniques.
Digital Object Identifier 10.1109/TIT.2005.844085

0018-9448/$20.00 © 2005 IEEE


