
TO APPEAR IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, JUNE 2004 1

Dirty Paper Coding vs. TDMA for MIMO
Broadcast Channels

Nihar Jindal & Andrea Goldsmith
Dept. of Electrical Engineering, Stanford University

njindal, andrea@systems.stanford.edu

Abstract—In this paper we derive an upper bound on the sum-rate gain
that dirty-paper coding provides over TDMA for MIMO broadca st chan-
nels. We find that the sum-rate capacity (achievable using dirty-paper
coding) of the multiple-antenna broadcast channel is at most min(M, K)
times the largest single-user capacity (i.e. the TDMA sum-rate) in the sys-
tem, whereM is the number of transmit antennas andK is the number
of receivers. This result is independent of the number of receive antennas.
We investigate the tightness of this bound in a time-varyingchannel (as-
suming perfect channel knowledge at receivers and transmitters) where the
channel experiences uncorrelated Rayleigh fading and in some situations
we find that the dirty paper gain is upper bounded by the ratio of transmit
to receive antennas. We also show thatmin(M, K) upper bounds the sum
rate gain of successive decoding over TDMA for the uplink, where M is
the number of receive antennas at the base station andK is the number of
transmitters.

I. I NTRODUCTION

In this paper we consider a broadcast channel (downlink or
BC) in which there are multiple antennas at the transmitter
(base station) and possibly multiple antennas at each receiver
(mobile). Dirty-paper coding (DPC) [1, 2] is an exciting new
transmission technique which allows a base station to efficiently
transmit data to multiple users at the same time. It has recently
been shown that dirty paper coding achieves the sum-rate ca-
pacity of the multiple-antenna broadcast channel [1, 3–5] and
the DPC achievable region is the largest known achievable re-
gion for the multiple-antenna broadcast channel. However,dirty
paper coding is a rather new and complicated scheme which
has yet to be implemented in practical systems. Current sys-
tems such as Qualcomm’s High Date Rate (HDR) system [6]
use the much simpler technique of time-division multiple-access
(TDMA) in which the base transmits to only a single user at a
time. This technique achieves the sum-rate capacity when the
base station has only one transmit antenna, but TDMA is sub-
optimal when the base station has multiple transmit antennas.

Considering the difficulty in implementing dirty-paper cod-
ing, a relevant question to ask is the following: How large ofa
performance boost does dirty-paper coding provide over TDMA
in terms of sum-rate? Viswanathan, Venkatesan, and Huang first
investigated this question by obtaining numerical resultson the
DPC gain in a practical, cellular setting [7]. In this paper we
derive a simple analytical upper bound on the sum-rate perfor-
mance gain which DPC offers over TDMA and investigate the
tightness of this bound in a time-varying, Rayleigh-faded chan-
nel in which the transmitter and receiver have perfect channel
knowledge. Using the same techniques, we are also able to up-
per bound the sum-rate gain that successive decoding provides
over TDMA on the uplink (multiple-access) channel.

II. SYSTEM MODEL

We consider a broadcast channel withK receivers,M > 1
transmit antennas, andN ≥ 1 receive antennas at each re-
ceiver. Letx ∈ C

M×1 be the transmitted vector signal and
let Hk ∈ CN×M be the channel matrix of receiverk where
Hk(i, j) represents the channel gain from transmit antennaj

to antennai of receiverk. The circularly symmetric complex
Gaussian noise at receiverk is represented bynk ∈ CN×1

wherenk ∼ N(0, I). Let yk ∈ C
N×1 be the received signal

at receiverk. The received signal is mathematically represented
as

yk = Hkx + nk k = 1, . . . , K. (1)

The covariance matrix of the input signal isΣx , E[xx†]. The
transmitter is subject to an average power constraintP , which
implies Tr(Σx) ≤ P . In the first half of this paper, we assume
the channel matrixH , [HT

1 · · ·HT
K ]T is fixed and is known

perfectly at the transmitter and at all receivers. We explain the
time-varying channel model in Section V.

In terms of notation, we useH† to indicate the conjugate
transpose of matrixH and ||H|| to denote the matrix norm of
H, defined by||H|| =

√

λmax(H†H). We also use boldface to
indicate vector and matrix quantities.

III. SUM-RATE CAPACITY

For the single antenna broadcast channel, sum rate capacity
is achieved by transmitting to the user with the largest channel
norm1. However, this is not generally true for a multiple trans-
mit antenna broadcast channel. For the multiple-antenna chan-
nel, sum-rate capacity is achieved by using dirty paper coding to
simultaneously transmit to several users [1,3–5].

The expression for the sum-rate capacity of the MIMO BC in
terms of the dirty paper rate region is rather complicated. How-
ever, in [3], the dirty paper rate region is shown to be equal to
the capacity region of the dual MIMO multiple-access channel
(MAC or uplink) with sum power constraintP , where the dual
uplink is formed by changing the transmitter into anM -antenna
receiver and changing each receiver into anN -antenna transmit-
ter. The received signal in the dual MAC is given by:

yMAC =
K
∑

i=1

H
†
ixi + n (2)

1The single-antenna Gaussian broadcast channel falls into the class ofde-
graded broadcast channel, for which it is known that the sum rate capacity is
equal to the largest single-user capacity in the system.
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whereH†
i is the channel of each transmitter and the noise is the

same as in the downlink (i.e. each component is a unit variance
Gaussian). Notice that the dual channel matrix is simply the
conjugate transpose of the downlink channel of each user.

Due to the MAC-BC duality, the sum-rate capacity of the
MIMO BC is equal to the maximum sum-rate achievable on the
dual uplink with sum power constraintP :

CBC(H, P ) =

max
{Qi: Qi≥0,

P

K
i=1

Tr(Qi)≤P}
log

∣

∣

∣

∣

∣

I +
K
∑

i=1

H
†
iQiHi

∣

∣

∣

∣

∣

(3)

where each of the matricesQi is anN×N positive semi-definite
covariance matrix. The expression in (3) is the sum-rate capac-
ity of the dual uplink subject to sum power constraintP . Note
that (3) is a concave maximization, for which efficient numerical
algorithms exist. In this paper, we use the specialized algorithm
developed in [8] for all numerical results.

The time-division rate regionRTDMA is defined as the set
of average rates that can be achieved by time-sharing between
single-user transmission using constant powerP :

RTDMA(H, P ) ,

{

(R1, . . . , RK) :

K
∑

i=1

Ri

Ci(P,Hi)
≤ 1

}

whereC(Hi, P ) denotes the single-user capacity of thei-th user
subject to power constraintP . It is easy to see that the maximum
sum-rate inRTDMA is the largest single-user capacity of theK

users:
CTDMA(H, P ) , max

i=1,...,K
C(Hi, P ). (4)

We will refer to this quantity as the TDMA sum-rate. We de-
fine the DPC gainG(H, P ) as the ratio of sum-rate capacity to
TDMA sum-rate:

G(H, P ) ,
CBC(H, P )

CTDMA(H, P )
. (5)

IV. B OUNDS ONSUM-RATE CAPACITY

In this section we compare the sum-rate capacity to the
TDMA sum-rate. We first upper bound the sum-rate capacity
of the MIMO BC, and then lower bound the TDMA sum-rate.
We then use these results to upper bound the ratio of sum-rate
capacity to TDMA sum-rate.

Theorem 1: The sum-rate capacity of the multiple-antenna
downlink is upper-bounded by:

CBC(H, P ) ≤ M log

(

1 +
P

M
||H||2max

)

(6)

where||H||max = maxi=1,...,K ||Hi||.
Proof: We prove this result using the fact that the BC

sum rate capacity is equal to the dual MAC sum-rate capacity
with power constraintP . The received signal in the dual MAC
is yMAC =

∑K
i=1 H

†
ixi + n. The received covariance then

is given byΣy = E[yy†] = I +
∑K

i=1 H
†
iE[xix

†
i ]Hi = I +

∑K
i=1 H

†
iQiHi. Notice that the argument of the maximization

in (3) is log |Σy|.
The received signal power is given byE[y†y] =

∑K
i=1 E[x†

iH
†
iHixi] + E[n†n]. Sincex†H†Hx ≤ ||H||2||x||2

by the definition of matrix norm, we have

E[y†y] ≤

K
∑

i=1

||Hi||
2E[x†

ixi] + E[n†n] (7)

≤ ||H||2max

K
∑

i=1

E[x†
ixi] + M (8)

≤ ||H||2maxP + M (9)

where (8) follows from the definition of||H||max and the fact
that E[n†n] = M and (9) follows from the sum power con-
straint on the transmitters in the dual MAC which implies
∑K

i=1 E[x†
ixi] ≤ P . SinceE[y†y] = Tr(E[yy†]) = Tr(Σy),

this implies thatTr(Σy) ≤ P ||H||2max + M . By [9, Theo-
rem 16.8.4], for any positive definiteM × M matrixK, |K| ≤

(Tr(K)
M

)M . Therefore|Σy| ≤ (1 + P
M
||H||2max)M , from which

we getCBC(H, P ) = log |Σy| ≤ M log(1 + P
M
||H||2max).

This bound is equivalent to the sum-rate capacity of a sys-
tem with M spatially orthogonal eigenmodes (distributed in
any manner between theK users), each with norm equal to
||H||max.

Theorem 2: The TDMA sum-rate is lower bounded by the
rate achieved by transmitting all power in the direction of the
largest eigenmode:

CTDMA(H, P ) ≥ log
(

1 + P ||H||2max

)

. (10)

Proof: For each user,C(Hi, P ) ≥ log(1 + P ||Hi||
2) be-

cause single-user capacity is achieved by water-filling over all
eigenmodes instead of allocating all power to the best eigen-
mode. Since the TDMA sum-rate is the maximum of the single-
user capacities, the result follows directly.
This bound is tight whenN = 1, but is generally not tight for
N > 1 because each user hasmin(M, N) eigenmodes to water-
fill over.

By combining Theorems 1 and 2, we can upper bound the
DPC gain:

Theorem 3: The ratio of sum-rate capacity (achievable by
DPC) to TDMA sum-rate is upper bounded byM , the number
of transmit antennas.

Proof: The DPC gain is bounded as follows:

CBC(H, P )

CTDMA(H, P )
≤

M log
(

1 + P
M
||H||2max

)

log (1 + P ||H||2max)
(11)

≤ M (12)

where we used Theorems 1 and 2 to get (11).
Single-user bounds on capacity imply

CBC(H, P ) ≤
K
∑

i=1

C(Hi, P )

≤ KCTDMA(H, P ), (13)
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Combining Theorem 3 and (13) gives the following bound:

G(H, P ) ≤ min(M, K). (14)

This bound is valid for any set of channel matricesH1, . . . ,HK ,
any number of receive antennasN , any number of usersK, and
any SNRP . Thus, there is the greatest potential for a large DPC
gain when there are a large number of users and transmit anten-
nas. In the next section, we actually investigate the tightness of
this bound for Rayleigh-faded channels.

If we consider a system withM ≥ N in the regimes of high
and low SNR, we get the following results (proofs of both theo-
rems are contained in [10]):

Theorem 4: If H has at leastmin(M, NK) linearly indepen-
dent rows and at least one of the channel matricesHi is full row
rank (i.e. hasN linearly independent rows), asP → ∞ we have

lim
P→∞

G(H, P ) = min

(

M

N
, K

)

. (15)

Theorem 5: For anyH, dirty paper coding and TDMA are
equivalent at asymptotically low SNR:

lim
P→0

G(H, P ) = 1. (16)

WhenN = 1, we conjecture thatG(H, P ) is in fact a mono-
tonically non-decreasing function ofP , but we have been unable
to prove this. Interestingly, whenM = N > 1, G(H, P ) is gen-
erally not non-decreasing and actually achieves its maximum at
a finite SNR.

Note: A bound similar to Theorem 1 for the single receive
antenna (N = 1) downlink when users have the same channel
norm and are mutually orthogonal was independently derivedin
an earlier paper by Viswanathan and Kumaran [11, Proposition
2].

V. T IGHTNESS OFBOUND IN RAYLEIGH FADING

In this section we consider the downlink sum-rate capacity
in uncorrelated Rayleigh fading, i.e. where each entry ofHk is
distributed as a complex circularly symmetric Gaussian random
variable with unit variance. Here we consider time-varyingsys-
tems, but we assume the transmitter and receiver have perfect
and instantaneous channel state information (CSI), and thus can
adapt to the channel in each fading state. We also assume that
the transmitter (the base station) is subject to a short-term power
constraint, so that the base station must satisfy power constraint
P in every fading state. This implies that there can be no adap-
tive power allocation over time.

Assuming that the fading process is ergodic, the sum-rate is
equal to the expected value of the sum-rate in each fading state.
By applying (14) in each fading state and taking an expectation
of the sum-rate capacity and of the TDMA sum-rate, it is clear
that the ratio of the average sum-rate capacity to the average
TDMA sum-rate is also upper bounded by min(M, K). In this
section we show that this bound can be tightened tomin(M

N
, K)

in the limit of high SNR, in the limit of a large number of trans-
mit antennas, and in the limit of a large number of users for
Rayleigh fading channels.

A. High SNR

We first consider the scenario whereM , N , andK are fixed,
but the SNRP is taken to infinity. Furthermore, we assume
K ≥ M ≥ N , which is quite reasonable for practical systems.
In this scenario, the DPC gain is shown to asymptotically equal
M
N

. Thus, ifM = N , then TDMA is optimal at high SNR. We
show tightness of this bound by establishing upper and lower
bounds on TDMA and DPC sum-rate.

Similar to Theorem 1, we can upper bound the single-user ca-
pacityC(Hi, P ) by N log(1+ P

N
||Hi||

2). Then, using Jensen’s
inequality, the TDMA sum-rate can be bounded as:

EH [CTDMA(H, P )] ≤ NEH

[

log

(

1 +
P

N
||H||2max

)]

≤ N log

(

1 +
P

N
EH[||H||2max]

)

.

We can lower bound the TDMA capacity as:

EH[CTDMA(H, P )] ≥ EH1
[C(H1, P )]

≥ NEH

[

log

(

1 +
P

N
λi

)]

≥ N

(

log

(

P

N

)

+ EH [log (λi)]

)

.

where λi is an unordered eigenvalue of the Wishart matrix
H

†
1H1 and the single-user capacity is lower bounded by trans-

mitting equal power (as opposed to the optimal water-filling
power allocation) on each of theN eigenmodes of User 1.

Using Theorem 1 and Jensen’s inequality, we can upper
bound the sum-rate capacity as:

EH [CBC(H, P )] ≤ MEH

[

log

(

1 +
P

M
||H||2max

)]

≤ M log

(

1 +
P

M
EH

[

||H||2max

]

)

.

We can also lower bound the sum-rate capacity by choosing
Qi = P

N
I in (3) for each user:

EH[CBC(H, P )] ≥ EH

[

log

∣

∣

∣

∣

I +
P

KN
H†H

∣

∣

∣

∣

]

= MEH

[

log

(

1 +
P

KN
λ1

)]

≥ M

(

log

(

P

KN

)

+ EH [log(λ1)]

)

whereλ1 is distributed as an unordered eigenvalue of theM×M

Wishart matrixH†H. Using these bounds, asP becomes large,
we can upper and lower bound the ratioEH[CBC ]

EH[CT DMA] by M
N

. It

then follows that EH[CBC ]
EH[CT DMA] converges toM

N
in the limit of high

SNR.
In Fig. 1, the ratio of sum-rate capacity to the TDMA sum-

rate is plotted for a system with 20 users. The ratio is plotted
for M = 4 andN = 1, N = 2, andN = 4. In each case the
DPC gain converges toM

N
, though it does so quite slowly for the

N = 1 case.
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Fig. 1. DPC Gain as a function of SNR for a system with 20 users

B. Large M

In this section we examine the scenario where the number of
users (K), number of receive antennas (N ), and SNR (P ) are
fixed but the number of transmit antennas (M ) is taken to be
large. We will show that the DPC gain tends toK in this case.

As in the previous section, we lower bound the sum rate ca-
pacity by choosingQi = P

N
I in (3) for each user and in each

fading state. The lower bound then is the point-to-point capac-
ity of a NK transmit,M receive antenna MIMO channel in
Rayleigh fading. If the number of receive antennas in this point-
to-point link is allowed to become large (i.e.M → ∞) but the
number of transmit antennas in this point-to-point model (KN )
is kept fixed, then the capacity of the point-to-point systemtends
to KN log(1 + MP

KN
) [12].

As in the previous section, the TDMA sum-rate is upper
bounded asEH[CTDMA(H, P )] ≤ NEH[log

(

1 + P
N
||H||2max

)

].
Using standard probability arguments [10], we can upper bound
EH[CTDMA(H, P )] byN log (1 + PM(1 + α)), whereα > 0.

If we now take the ratio of DPC sum-rate capacity to TDMA
sum-rate asM → ∞, we get

lim
M→∞

EH [CBC ]

EH [CTDMA]
≥ lim

M→∞

KN log(1 + MP
KN

)

N log(1 + PM(1 + α))

= K. (17)

By (14), this ratio is also upper-bounded byK for all M , Thus,
in the limit of many transmit antennas and with a fixed number
of receivers, the DPC gain goes toK in the sense that the ratio
of the expected value of the DPC sum-rate to the expected value
of the TDMA sum-rate goes toK.

In Figure 2 the DPC gain is plotted as a function of the num-
ber of transmit antennas for a system with 3 users, each with 10
dB average SNR. Notice that for bothN = 1 andN = 2, slow
convergence toK = 3 is observed asM becomes large.

C. Large K

If the number of antennas and the SNR are kept fixed and the
number of users is taken to be large, it is shown in [13] that the
dirty paper gain converges toM

N
. More specifically, the authors
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Fig. 2. DPC Gain as a function ofM for a system with 3 users at 10 dB

show that the sum rate capacity and the TDMA sum-rate grow
asM log log(K) andN log log(K), respectively.

VI. T RANSMITTER BEAMFORMING

Transmitter beamforming2 is a sub-optimal technique that
supports simultaneous transmission to multiple users on a
broadcast channel. Each active user is assigned a beamform-
ing direction by the transmitter and multi-user interference is
treated as noise. Transmit beamforming is actually quite similar
to dirty paper coding, but with DPC some multi-user interfer-
ence is “pre-subtracted” at the transmitter, thus increasing the
rates of some users. WhenN = 1, the maximum sum rate using
beamforming is given by:

CBF (H, P ) = max
{Pi:

P

K
i=1

Pi≤P}

K
∑

j=1

log

∣

∣

∣
I +

∑K
i=1 H

†
iPiHi

∣

∣

∣

∣

∣

∣
I +

∑

i 6=j H
†
iPiHi

∣

∣

∣

In [14] the authors numerically evaluate the gain that DPC
provides over beamforming. Transmit beamforming actually
supersedes TDMA, so an interesting open problem is to analyt-
ically bound the gain that DPC provides over transmitter beam-
forming.

At both asymptotically low and high SNR, beamforming per-
forms as well as DPC in the ratio sense:

lim
P→∞

CBC(H, P )

CBF (H, P )
= lim

P→0

CBC(H, P )

CBF (H, P )
= 1. (18)

A proof of the high SNR result is contained in [10], and the
low SNR result follows from Theorem 5 and the fact that
CBF (H, P ) ≥ CTDMA(H, P ).

Furthermore, we conjecture that the ratioCBC(H,P )
CBF (H,P ) is

bounded by a constant (< M ) independent of the system param-
eters for allP , but we are unable to prove this. Viswanathan and
Venkatesan recently characterized the performance of downlink
beamforming and dirty paper coding asM andK both grow to
infinity at some fixed ratioM

K
= α. In this asymptotic regime,

2Transmitter beamforming is also referred to as SDMA, or space-division
multiple access.
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the ratio CBC(H,P )
CBF (H,P ) is in fact bounded by 2 for all values ofα

andP .

VII. B OUND ON SUM-RATE GAIN OF SUCCESSIVE

DECODING FORUPLINK

Successive decoding is a capacity-achieving scheme for the
multiple-access channel (uplink) in which multiple users trans-
mit simultaneously to the base station and the receiver succes-
sively decodes and subtracts out the signals of different users.
This technique achieves the sum-rate capacity of the MIMO
MAC [9, Chapter 14], but is difficult to implement in practice.
A sub-optimal transmission scheme is to allow only one user to
transmit at a time. Using the proof technique of Theorem 1 on
the dual uplink (K transmitters withN antennas each and a sin-
gle receiver withM antennas) along with the individual power
constraintsP = (P1, . . . , PK) on the MAC, it can be shown
that the following bound holds:

CMAC(H,P) = max
{Tr(Qi)≤Pi ∀i}

log

∣

∣

∣

∣

∣

I +

K
∑

i=1

H
†
iQiHi

∣

∣

∣

∣

∣

≤ M log

(

1 +

∑K
i=1 Pi||Hi||

2

M

)

. (19)

Notice that the sum-rate capacity of the MAC is identical to the
BC sum-rate capacity expression in (3) except that the MAC ex-
pression hasindividual power constraints instead of a sum con-
straint.

The TDMA region for the uplink is defined differently than
for the downlink because each transmitter in the uplink is subject
to an average power constraint:

RTDMA(H, P1, . . . , PK) ,

⋃

αi≥0,
P

K
i=1

αi=1

(

α1C

(

H1,
P1

α1

)

, . . . , αKC

(

HK ,
PK

αK

))

.

The TDMA sum-rate is then defined to be the maximum sum of
rates in this region. As used in the proof of Theorem 2, for each
user we haveC(Hi,

Pi

αi
) ≥ log(1+ Pi

αi
||Hi||

2) for anyαi. Thus,

CTDMA(H,P) ≥ max
αi≥0,

P

K
i=1

αi=1

K
∑

i=1

αi log

(

1 +
Pi

αi

||Hi||
2

)

.

The RHS of this expression corresponds to the TDMA region
of a scalar MAC with channel gains||H1||, . . . , ||HK ||. It is
easy to verify this expression is maximized by choosingαi =

Pi||Hi||
2

P

K
j=1

Pj ||Hj ||2
. We then get the following upper bound:

CTDMA(H,P) ≥ log

(

1 +

K
∑

i=1

Pi||Hi||
2

)

. (20)

Combining (19) and (20) we getCMAC(H,P)
CT DMA(H,P) ≤ M. As before,

the single-user capacity of each user also upper bounds thisratio
by K. Thus, we finally get

CMAC(H,P)

CTDMA(H,P)
≤ min(M, K) (21)

or that performing optimal successive decoding at the base sta-
tion offers a gain of at most min(M, K) over TDMA.

VIII. C ONCLUSION

We have found that the performance gain of DPC versus
TDMA is upper-bounded by min(M, K), whereM is the num-
ber of transmit antennas (at the base station) andK is the num-
ber of users. This bound applies at any SNR and for any number
of receive antennas. For Rayleigh fading channels, the bound
tightens to min(M

N
, K) at high SNR, for a large number of trans-

mit antennas, or for a large number of users. Using the same
techniques for the uplink, we found that the performance gain
using successive decoding on the uplink versus TDMA is also
upper bounded by min(M, K), whereM is the number of re-
ceive antennas (at the base station) andK is the number of mo-
biles (i.e. transmitters). Thus, it seems that for systems with
many users, significant gains can be achieved by adding addi-
tional base station antennas. However, if the number of mobile
antennas is the same as the number of base station antennas, the
benefit of using DPC on the downlink or successive decoding on
the uplink may be limited.
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