
Digital Signal Processing with Molecular Reactions

Hua Jiang, Marc D. Riedel and Keshab K. Parhi

Department of Electrical and Computer Engineering

University of Minnesota

200 Union St. S.E., Minneapolis, MN 55455

{hua, mriedel, parhi}@umn.edu

Abstract

This paper presents a methodology for implementing
digital signal processing (DSP) operations such as
filtering with molecular reactions. Molecular reac-
tions that produce time-varying output quantities of
molecules as a function of time-varying input quanti-
ties are designed according to a DSP specification. Un-
like all previous schemes for molecular computation,
the methodology produces designs that are dependent
only on coarse rate categories for the reactions (“fast”
and “slow”). Given such categories, the computation
is exact and independent of the specific reaction rates.

The methodology is illustrated with the design of
a simple moving-average filter as well as a more
complex biquad filter. Both designs are translated
into DNA strand displacement reactions. The designs
are validated through transient stochastic simulations
of the chemical kinetics at the DNA reactions level.
Although conceptual for the time being, the proposed
methodology has potential applications in domains of
synthetic biology such as biochemical sensing and drug
delivery.

1. Introduction

The past few decades have seen remarkable progress
in the design of integrated circuits for digital sig-
nal processing (DSP) for applications such as audio
and video processing [1]. A typical signal processing
operation produces an output signal by filtering or
transforming an input signal. Examples are smoothing
a signal with a moving-average filter and performing
a fast Fourier transform (FFT). We aim to apply
and extend this expertise to the domain of molecular
computation.

Just as electronic systems implement computation in
terms of voltage (energy per unit charge), molecular

systems can compute in terms of molecular concen-
trations (molecules per unit volume). A variety of
computational constructs have been proposed [2], [3],
[4], [5]. Our prior work includes constructs for logic,
memory, and arithmetic [6], [7].

The impetus is not to create computational systems
per se. Molecular computation will never compete
with conventional computers made of silicon integrated
circuits for tasks such as number crunching. Rather,
the ultimate goal is to create “embedded controllers” –
cells and viruses that are engineered to perform useful
molecular computation in situ where it is needed, for
instance for drug delivery and biochemical sensing.
Exciting work in this vein includes [8], [9], [10].

The design of effective embedded controllers will
entail computational processing, performed in terms
of molecular reactions. Such computational processing
could take the form: “If molecular type X is present,
produce molecular type Y ” where X is, say a protein
marker of cancer and Y is a chemotherapy drug.
Or it could be more complicated: “If X is present
and Y is not present, or vice-versa, then produce Z”
(i.e., an exclusive-or function). Or it could be time-
varying computation: “Produce an output quantity Y
that changes as X changes, but more smoothly” (i.e.,
low-pass filtering).

This paper discusses techniques for implementing
DSP operations such as filtering with molecular re-
actions. From a DSP specification, we demonstrate
how to synthesize molecular reactions that produce
time-varying output concentrations of molecules as a
function of time-varying input concentrations. We im-
plement the operations through a “self-timed” protocol
that transfers concentrations between molecular types
based on the absence of other types. We illustrate
our methodology with the design of a simple moving
average filter as well as a more complex biquad filter.

1



2. Computational Model

A molecular system consists of a set of chemical
reactions, each specifying a rule for how types of
molecules combine. For instance,

X1 +X2
k−→ X3, (1)

specifies that one molecule of X1 combines with one
molecule of X2 to produce one molecule of X3. The
value k is called the rate constant. We model the
molecular dynamics in terms of mass-action kinetics:
reaction rates are proportional to (1) the concentrations
of the participating molecular types; and (2) the rate
constant. Accordingly, for the reaction above, the rate
of change in the concentrations of X1, X2 and X3 is

−d[X1]

dt
= −d[X2]

dt
=

d[X3]

dt
= k[X1][X2], (2)

(here [·] denotes concentration).

Most prior schemes for molecular computation de-
pend on specific values of the rate constants, which
limits the applicability since the rate constants are not
constant at all; they depend on factors such as cell
volume and temperature. Accordingly, the results of
the computation are not robust.

We aim for robust constructs: in our methodology
we require only two coarse values for the rate con-
stants, i.e., kfast and kslow. Given such coarse values
for these constants, the computation is exact. It does
not matter how fast the “fast” reactions are or how slow
the “slow” reactions are – only that all fast reactions
fire relatively faster than slow reactions.

We target DNA-based computation via strand dis-
placement as our experimental chassis. Our contribu-
tion can be positioned as the front-end of a design flow.
The output of our methodology is a set of abstract
molecular reactions. Soloveichik et al. have developed
a “DNA assembler” [11]; this constitutes the back-
end. They have shown that the kinetics of molecular
reactions can be emulated with DNA strand displace-
ments. Reaction rates are controlled by designing se-
quences with different binding strengths. The binding
strengths are controlled by the length and sequence
composition of “toehold” sequences of DNA. Different
reaction rates can be easily realized by designing DNA
strands with different toehold lengths [11]. They have
shown that that any system consisting of unimolec-
ular reactions (i.e., those with a single reactant) and
bimolecular reactions (i.e., those with two reactants)
can be emulated by such DNA strand displacement
reactions.

In DNA strand displacement systems, the reaction
rates for unimolecular reactions and bimolecular re-
actions are different. The rates for unimolecular re-

(a) Schematic of the two-tap moving average filter.

(b) The filter in a three-phase configuration.

Figure 1: A two-tap moving average filter.

actions depend on the initial concentration of aux-
iliary complexes. For design simplicity, all of our
designs consist of bimolecular reactions. We map these
to DNA strand displacement reactions, using similar
experimental parameters as [11]. We generate differ-
ential equations corresponding to the DNA reactions
and obtain transient solutions. Such simulations of
the chemical kinetics provide a reasonably accurate
prediction of the actual in vitro behavior.

3. Example: A Moving-Average Filter

A sequential system computes output values that
are a function of the current input values as well
as prior input values. Here “current” and “previous”
refer to successive signal values that are supplied by
some external source. Our system consumes the input
molecular types, and so resets the input signal to zero.
Our system accepts new input values only after the
current output value is cleared, i.e., after some external
source consumes all of the output molecular type.

We illustrate our design methodology with a detailed
example: a finite impulse response (FIR) filter. An FIR
filter is shown in Figure 1a. This system computes
a moving average: given a time-varying input signal
X , the output Y is a smoother version of it. More

2



precisely, the output is one-half the current input value
plus one-half the previous value.

Our implementation consists of the following set of
reactions. We present the reactions in their entirety and
then provide the rationale for the design. We validate
the design after mapping it to DNA strand displace-
ment reactions. We present the simulation results in
Section 6.

g +X
kslow−→ A+ C

2C
kfast−→ R

2A
kfast−→ Y

(3)

b+R
kslow−→ G

r +G
kslow−→ B

g +B
kslow−→ Y

(4)

2R
kfast−→ 2R+R′

2Y
kfast−→ 2Y +R′

2G
kfast−→ 2G+G′

2B
kfast−→ 2B +B′

2X
kfast−→ 2X +B′

2R′ kfast−→ ∅

2G′ kfast−→ ∅

2B′ kfast−→ ∅.
(5)

2Sr
kslow−→ 2Sr + r

2Sg
kslow−→ 2Sg + g

2Sb
kslow−→ 2Sb + b

R′ + r
kfast−→ R′

G′ + g
kfast−→ G′

B′ + b
kfast−→ B′

(6)

R′ +X
kfast−→ A+ C

G′ +R
kfast−→ G

B′ +G
kfast−→ B

R′ +B
kfast−→ Y.

(7)

The molecular types corresponding to signals are X ,
A, C, R, G, B and Y . These are labeled in Figure 1b.
To elucidate the design, we color-code some of these
types into three categories: Y and R in red; G in
green; and X and B in blue.

In the group of reactions (3), the concentration of X
is transferred to A and to C, a fanout operation. The
concentrations of A and C are both reduced to half –
scalar multiplication operations. The concentration of
A is transferred to the output Y and the concentration
of C is transferred to R. (The transfer to R is the first
phase of a delay operation. We discuss this operation
below.) Once the signal has moved through the delay
operation, the concentration of B is transferred to the
output Y . Since this concentration is combined with
the concentration of Y produced from A, this is an
addition operation.

The group of reactions (4) implements the delay op-
eration. The concentration of R is transferred to G and
then to B. Transfers between two color categories are
enabled by the absence of the third category: red goes

to green in the absence of blue; green goes to blue in
the absence of red; and blue goes to red in the absence
of green. The reactions are enabled by molecular types
r, g, and b that we call absence indicators. (We discuss
these types below.) The absence indicators ensure that
the delay element takes a new value only when it has
finished processing the previous value.

In the group of reactions (5), molecules of types
R′, G′, and B′ are generated from the signal types
that we color-code red, green, and blue respectively.
The concentrations of the signal types remain un-
changed. (These reactions appear to violate conser-
vation of mass. In fact, when mapped to DNA re-
actions, there are external “fuel” types.) Meanwhile,
R′, G′, and B′ are consumed by external sinks,
denoted by ∅. (When mapped to DNA, these reac-
tions include “waste” types.) Here, all reactions are
expressly designed to have two reactants; as discussed
in Section 2, this permits us to map the reactions to
DNA strand displacement reactions effectively. This
generation/consumption process ensures that equilibria
of the concentrations of R′, G′, and B′ reflect the
total concentrations of red, green, and blue color-coded
types, respectively. Accordingly, we call R′, G′, and
B′ color concentration indicators. They serve to speed
up signal transfers between color categories.

In the group of reactions (6), molecules of the
absence indicator types r, g, and b are generated from
external sources Sr, Sg , and Sb. At the same time,
they are consumed when R′, G′, and B′ are present,
respectively. Therefore, the absence indicators only
persist in the absence of the corresponding signals: r
in the absence of red types; g in the absence of green
types; and b in the absence of blue types. They only
persist in the absence of these types because otherwise
“fast” reactions consume them quickly.

Finally, the group of reactions (7) provides positive
feedback kinetics. These reactions effectively speed up
transfers between color categories as molecules in one
category are “pulled” to the next by color concentration
indicators.

Note that the concentration of the input X is sam-
pled in the green-to-blue phase. We assume that an
external source supplies the input. The output Y is
produced in the blue-to-red phase. We assume that an
external sink consumes these molecules.

4. General DSP System Synthesis

Building on the example in the last section, we
present a general methodology for performing DSP
with molecular reactions. DSP operations are specified
in terms of four basic modules: fanout, scalar mul-
tiplication, addition, and delay elements. We discuss

3



constructs for each of these modules. We illustrate the
general design method with a second detailed example,
a biquad filter.

4.1. Scalar Multiplier

Scalar multiplication performs the operation

y =
c2
c1

x

where c1 and c2 are constants. This operation is im-
plemented by choosing reactions with the appropriate
coefficients:

c1X −→ c2Y. (8)

Every time this reaction fires, c1 molecules of X get
transferred to c2 molecules of Y . Once the reaction has
fired to completion, i.e., fully consumed all molecules
of X , the requisite operation of scalar multiplication
is complete.

As discussed in the introduction, a constraint on
our designs is that all reactions should be bimolecular
reactions. Accordingly, c1 should be a power of 2.
Suppose c1 = 2n. Then reaction (8) can be replaced
by the set of reactions

2X
kfast−→ X2

2X2
kfast−→ X4

...

2X2n−1
kfast−→ c2Y.

(9)

We use the notation

Multiply(X,Y, c1, c2)

to denote the collection of Reactions (9), where c1 =
2n.

4.2. Adder

Addition performs the operation

y = x1 + x2.

This operation is implemented by choosing two or
more reactions with the same product:

2X1
kfast−→ 2Y

2X2
kfast−→ 2Y.

(10)

Again, we choose bimolecular reactions instead of

unimolecular transfers, such as X1
kfast−→ Y . Once

both of these reactions have fired to completion, the
concentration of Y will be the former concentration of
X1 plus the former concentration of X2.

4.3. Fanout

The fanout operation duplicates concentrations. It is
implemented by choosing a reaction producing several
different products from a single reactant:

2X
kfast−→ 2Y1 + 2Y2. (11)

Once this reaction has fired to completion, both the
concentration of Y1 and the concentration of Y2 will
be equal to the former concentration of X .

A transfer module is a special case of a fanout
module. It simply transfers a molecular concentration
from one type to another:

2X
kfast−→ 2Y. (12)

Transfer modules are used to resolve type assignment
conflicts.

4.4. Delay Element

Delay elements are at the core of digital signal
processing. They stores signals values temporarily,
allowing for iterative processing. We implement de-
lay elements by transferring concentrations between
molecular types based on the absence of other types.
Each delay element DEi is assigned three molecular
types R(ed)i, G(reen)i and B(lue)i. It is imple-
mented by the following reactions.

Phase 1 reactions:

b+Ri
kslow−→ Gi

G′ +Ri
kfast−→ Gi

(13)

Phase 2 reactions:

r +Gi
kslow−→ Bi

B′ +Gi
kfast−→ Bi

(14)

Phase 3 reactions:

g +Bi
kslow−→ Computations

R′ +Bi
kfast−→ Computations

(15)

We use the notation

Delay(Ri, Gi, Bi, {output list})
to represent Reactions (13), (14), and (15). Here,
{output list} is a list of molecular types that Bi

should be transferred to during Phase 3. In addition,
system input X is labeled blue, therefore, reactions

g +X
kslow−→ Computations

R′ +X
kfast−→ Computations

(16)

4



(a) The three-phase transfer scheme.

B1G1R1 B2G2R2

Delay 1 Delay 2

(b) Cascaded delay elements.

Figure 2: Implementing delay elements.

also fire in Phase 3. We use

Input(X, {output list})

to represent these reactions.

A computation cycle, in which an input value is
accepted and an output value is computed, completes
in three phases. The input X is injected in Phase 2
and the output Y is collect in Phase 1. In each phase
the signals are transferred from molecular types in one
color category to the next. Computations, including
scalar multiplication, addition, and fanout, are carried
out in Phase 3, during the transfer from blue to red:

Computations
kfast−→ Rj . (17)

This is illustrated in Figure 2a. The computation re-
actions fire much faster than the transfer reactions,
so molecules of Rj are immediately produced from
molecules of Bi. Thus, reactions in Phase 3 effectively
transfer blue signals to red signals.

Note that Rj produced in Phase 3 will be a red
type of any succeeding delay element DEj along the
signal path from DEi. In Figure 2b, R1 and R2 are
red; G1 and G2 are green; B1 and B2 are blue. The
multiplier is the computation that occurs between the
delay elements. DE2 is a succeeding delay element
of DE1, so molecules of B1 are transferred to R2 in
Phase 3.

For each delay element, the color concentration
types R′, G′, and B′ are generated and consumed in

the following reactions:

2Ri
kfast−→ 2Ri +R′

2Y
kfast−→ 2Y +R′

2Gi
kfast−→ 2Gi +G′

2Bi
kfast−→ 2Bi +B′

2X
kfast−→ 2X +B′

2R′ kfast−→ ∅

2G′ kfast−→ ∅

2B′ kfast−→ ∅

(18)

So molecules of R′, G′, and B′ are generated by
types of the corresponding color categories; they are
consumed by external sinks. The equilibrium levels of
these three types are determined by total concentrations
of all the red types, blue types and green types,
respectively. Note that these reactions are in the “fast”
category, since the color concentration types cannot lag
the signal types.

We use

Conc(R′, {red type list})
Conc(G′, {green type list})
Conc(B′, {blue type list})

to represent Reactions 18. For example,

Conc(R′, {R1, Y })
represents

2R1
kfast−→ 2R1 +R′

2Y
kfast−→ 2Y +R′

2R′ kfast−→ ∅.

For delay elements, the following reactions generate
the absence indicator types r, g, and b:

2Sr
kslow−→ 2Sr + r

R′ + r
kfast−→ R′

2Sg
kslow−→ 2Sg + g

G′ + g
kfast−→ G′

2Sb
kslow−→ 2Sb + b

B′ + b
kfast−→ B′

(19)

We use

Abs(Sr, Sg, Sb, r, g, b, R
′, G′, B′)

to represent these reactions.
Here r, g and b are continually and slowly generated.

However, they only persist in the absence of the cor-
responding color-coded types, since they are quickly
consumed by R′, G′, and B′, respectively, if these are
present.

5



All transfers are initiated by absence indicators and
then sped up by the color concentration indicators. The
transfers initiated by the absence indicators are slow
and those initiated by the color concentration indicators
are fast. This mitigates against “leakage”, e.g., some
transferring from Gi to Bi before all of transferring
from Ri to Gi is complete.

Note that, in any system, there are only three color
concentration indicators (R′, G′ and B′) and three
absence indicators (r, g and b), regardless of the
number of delay elements. These types help enable
and speed up signal transfers for all reactions in the
corresponding color categories. Through these com-
mon indicators, the corresponding phases of all delay
elements are synchronized: all the delay elements must
wait for each to complete its current phase before they
can move to the next phase.

4.5. Example of a Biquad filter

We illustrate our synthesis method with a second
example, an infinite impulse response (IIR) biquad
filter. Biquad filters are basic building blocks of
modern DSP systems. Highly stable, high-order
filters can be implemented by cascaded biquad
blocks [1]. A biquad filter is shown in Figure 3a
and the corresponding molecular types are labeled in
Figure 3b. It is realized by the following reactions.

Delay elements:

Delay(R1, G1, B1, {R2, F, C})
Delay(R2, G2, B2, {H,E}) (20)

System input:

Input(X, {R1, A}) (21)

Scalar multiplications:

Mult(A, Y, 8, 1)
Mult(C, Y, 8, 1)
Mult(E, Y, 8, 1)
Mult(F,X, 8, 1)
Mult(H,X, 8, 1)

(22)

Concentration indicators:

Conc(R′, {R1, R2, Y })
Conc(G′, {G1, G2})
Conc(B′, {B1, B2, X})

(23)

Absence indicators:

Abs(Sr, Sg, Sb, r, g, b, R
′, G′, B′) (24)

(a) Schematic of the biquad filter.

(b) The filter in a three-phase configuration.

Figure 3: A biquad filter.

5. Synthesis Flow

We present guidelines for an automated synthesis
flow. The DSP system is represented by a block
diagram G(V,E), where the vertex set V represents
basic modules – scalar multiplication, addition, fanout
and delay element – and the edge set E represents
connections. Each edge ei is assigned a molecular
type. The concentration of this type represents the
signal flowing through ei. The system is synthesized
as follows:

1) Each delay element DEi ∈ V is assigned three
color-coded molecular types Ri, Gi and Bi. Here
Ri corresponds to the input edge, Gi is the in-
ternal storage molecule type, and Bi corresponds
to the output edge.

2) The system input and output are assigned types
X and Y , respectively. (For simplicity, we only
consider systems with a single input and a single
output. However, the method easily generalizes
to systems with multiple inputs and outputs.)

3) The incoming edges of each adder are assigned

6



DD
Input

Output

Y

X

(a) A filter with two delay elements directly connected.

(b) Molecular type assignment.

Figure 4: An example of molecular type assignment.
Transfer modules are denoted by a circle with letter
“T”.

the same molecular type as the outgoing edge.
With all the inputs assigned the same type, the
system implicitly performs an addition opera-
tion: each reaction produces a concentration that
is added to the sum.

4) If there are assignment conflicts, transfer mod-
ules are included. For instance, if an adder has
been assigned two conflicting types T1 and T2,
say because its inputs are from different delay
operations, then a transfer reaction is included:

2T1
kfast−→ 2T2.

This reaction transfers the concentration of T1 to
T2.

5) Next, if there are any unassigned edges, these
are assigned arbitrary molecular types (without
creating conflicts).

6) With all edges assigned non-conflicting molecu-
lar types, reactions are generated for each vertex
according to the template of Reactions (8) to
(16).

7) Finally, the common indicator reaction set (18)
and (19) are included.

Figure 4 gives an example of transfer modules.
Figure 4a shows a simple filter for time-interleaved
input data. It contains two delay elements. Since these
two delay elements are directly connected, a transfer
module is included for converting B1 to R2. Similarly,
a second transfer module is included for transferring
B2 to Y , the molecular type for the adder. These
molecular type assignments are shown in Figure 4b.

Figure 5: An example of DNA strand displacement.

For a DSP system with n delay elements, there
are 3n + 2 molecular types to represent the n delay
elements as well as the system input and output.
Accounting for the absence and color concentration
indicators, there are an additional 9 molecular types.
The number of intermediate types will vary according
to system architecture.

6. Simulations

6.1. Mapping to DNA Strand Displacement

Given a specification of an abstract molecular reac-
tion network that implements the requisite computa-
tion, the next step is to map it to specific molecular
reactions. We describe a mapping to DNA strand
displacement reactions. The reader is referred to [11]
for a detailed discussion of this mechanism. Here we
illustrate with an example.

Consider the DNA strand displacement reaction
shown in Figure 5. Here a single strand of DNA R1

replaces the top strand of a double-strand DNA L; this
generates a double strand H and a single strand B.
(This reaction is reversible.) One of the top strands of
the double strand H can be replaced by a single strand
R2, generating a single strand O. Then O replaces the
top strand of T , releasing P . (Note that the strands
L, G and T are “fuel” sources. It is assumed that
there is an abundant source of these; the concentrations
do not matter.) The signals are the concentrations of
R1, R2 and P . This sequence of strand displacements
implements the abstract chemical reaction:

R1 +R2
k−→ P.

6.2. Simulation Results

To validate our designs for the moving-average
and biquad filters, we map the reactions presented
in Section 3 and 4 to DNA strand displacement re-
actions, using the method in [11]. We generate the
corresponding system of kinetic differential equations

7



0 100 200 300 400 500 600
0

5

10

15

20

25

30

35

40

Time (hrs)

C
on

ce
nt

ra
tio

n 
(n

M
)

 

 

Input

Theoretical Output

Simulated Output

(a) The moving-average filter.

0 100 200 300 400 500 600 700 800
0

5

10

15

20

25

30

Time (hrs)

C
on

ce
nt

ra
tio

n 
(n

M
)

 

 
Input

Theoretical Output

Simulated Output

(b) The biquad filter.

Figure 6: Simulation results for DNA-level designs.

and simulate these. We use similar parameters to [11]:
The initial concentrations of auxiliary complexes is
Cmax = 10−5M and the maximum strand displace-
ment rate constant is qmax = 106M−1s−1. The rate
constant for the “slow” reactions is set to kslow =
5.56 × 104M−1s−1. For “fast” reactions it is set to
kfast = 3× kslow. The initial concentrations of Sr, Sg ,
and Sb are set to 1nM .

The simulation results for the moving-average filter
are shown in Figure 6a. The input is a time-varying
signal concentration X with both high-frequency and
low-frequency components. The output is a time-
varying signal concentration Y . Molecules of X are
injected and molecules of Y are collected from the
system every 20 hours. The figure shows the theoretical
output, i.e., an exact calculation of filtering, as well as
simulation results.

We see that our design performs very well, filtering

out the high-frequency component as expected. The
simulated output concentration does not quite track
the theoretical output concentration; it is higher than
it should be for high input concentrations. The expla-
nation for this is that, for high input concentrations,
the reactions fire quickly, so the computational cycle
completes early. Before the next cycle begins, some
“leakage” of the output concentration occurs.

The simulation results for the biquad filter are shown
in Figure 6b. Here molecules of X are injected and
molecules of Y are collected from the system every 50
hours. We supply step-like and impulse-like changes in
X . The figure shows the theoretical output, i.e., an ex-
act calculation of filtering, as well as simulation results.
As expected, the system performs notch filtering.

The simulation results show that even for a ratio
λ = kfast/kslow as low as 3, the systems perform
well. In fact, in experimental implementations of DNA
strand displacement systems, a ratio λ greater than
1000 is readily achievable. When λ is close to 1, i.e.,
fast reactions are not much faster than slow reactions,
the concentrations of the absence indicators r, g, and
b are high even when the concentrations of R′, G′,
or B′ are high. Also, the computational modules slow
down. Accordingly, the accuracy of the computation
degrades.

7. Remarks

The methodology presented in this paper is self-
timed and asynchronous in the sense that computa-
tional cycles only begin when all molecules of the
output type Y are consumed by an external sink.
The computation itself is essentially rate-independent,
meaning that within a broad range of values for the
kinetic constants, the computation is exact and inde-
pendent of the specific rates.

An alternative strategy would be to use clocking
to implement synchronous computation. We have pre-
sented such a strategy in [6]. In that work, we describe
a strategy for generating a clock signal through robust,
sustained chemical oscillations. We implement mem-
ory elements by transferring concentrations between
molecular types in alternating phases of the clock.

Although pertaining to biology, the contributions of
this paper are not experimental nor empirical; rather
they are constructive and conceptual. Certainly, en-
gineering complex new reaction mechanisms in any
experimental domain is a formidable task; for in vivo
systems, there are likely to be many experimental
constraints on the choice of reactions. However, the
techniques that we have presented here are robust
and scalable. Such features could be transformative

8



for applications such as drug delivery and metabolic
engineering.

Acknowledgement

This work is supported by NSF grants #CCF-
0946601 and #CCF-1117168. A preliminary publica-
tion of this work has appeared as [12].

References

[1] K. K. Parhi, VLSI Digital Signal Processing Systems.
John Wiley & Sons, 1999.

[2] A. Arkin and J. Ross, “Computational functions in
biochemical reaction networks,” Biophysical Journal,
vol. 67, no. 2, pp. 560 – 578, 1994.

[3] Y. Benenson, B. Gil, U. Ben-Dor, R. Adar, and
E. Shapiro, “An autonomous molecular computer for
logical control of gene expression,” Nature, vol. 429,
no. 6990, pp. 423–429, 2004.

[4] L. Qian and E. Winfree, “Scaling up digital circuit
computation with DNA strand displacement cascades,”
Science, vol. 332, no. 6034, pp. 1196–1201, 2011.

[5] M. N. Win and C. D. Smolke, “higher-order cellular
information processing with synthetic RNA devices,”
Science, vol. 322, no. 5900, pp. 456–460, 2008.

[6] H. Jiang, M. D. Riedel, and K. K. Parhi, “Synchronous
sequential computation with molecular reactions,” in
Design Automation Conference, 2011, pp. 836–841.

[7] P. Senum and M. D. Riedel, “Rate-independent con-
structs for chemical computation,” PLoS ONE, vol. 6,
no. 6, 2011.

[8] J. C. Anderson, E. J. Clarke, A. P. Arkin, and C. A.
Voigt, “Environmentally controlled invasion of cancer
cells by engineered bacteria,” Journal of Molecular
Biology, vol. 355, no. 4, pp. 619–627, 2006.

[9] S. Venkataramana, R. M. Dirks, P. W. K. Rothemund,
E. Winfree, and N. A. Pierce, “An autonomous poly-
merization motor powered by DNA hybridization,”
Nature Nanotechnology, vol. 2, pp. 490–494, 2007.

[10] S. Venkataramana, R. M. Dirks, C. T. Ueda, and N. A.
Pierce, “Selective cell death mediated by small condi-
tional RNAs,” Proceedings of the National Academy of
Sciences, vol. 107, no. 39, pp. 16 777–16 782, 2010.

[11] D. Soloveichik, G. Seelig, and E. Winfree, “DNA as a
universal substrate for chemical kinetics,” Proceedings
of the National Academy of Sciences, vol. 107, no. 12,
pp. 5393–5398, 2010.

[12] H. Jiang, A. P. Kharam, M. D. Riedel, and K. K.
Parhi, “A synthesis flow for digital signal processing
with biomolecular reactions,” in IEEE International
Conference on Computer-Aided Design, 2010, pp. 417–
424.

9


