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True random number generators (TRNGs) are crucial components for the security of cryptographic systems. In contrast
to pseudo random number generators (PRNG), TRNGs provide higher security by extracting randomness from physical
phenomena. In order to evaluate a TRNG, statistical properties of the circuit model and raw bitstream should be studied.
In this paper, a model for the beat frequency detector based high-speed TRNG (BFD-TRNG) is proposed. The parameters
of the model are extracted from the experimental data of a test chip. A statistical analysis of the proposed model is carried
out to derive mean and variance of the counter values of the TRNG. Our statistical analysis results show that mean of the
counter values is inversely proportional to the frequency difference of the two ring oscillators (ROSCs), while the dynamic
range of the counter values increases linearly with standard deviation of environmental noise and decreases with increase
of the frequency difference. Without the measurements from the test data, a model cannot be created; similarly without a
model performance of a TRNG cannot be predicted. The key contribution of the proposed approach lies in fitting the model to
measured data, and the ability to use the model to predict performance of BFD-TRNGs that have not been fabricated. Several
novel alternate BFD-TRNG architectures are also proposed; these include parallel BFD, cascade BFD, and parallel-cascade
BFD. These TRNGs are analyzed using the proposed model, and it is shown that the parallel BFD structure requires less area
per bit, while the cascade BFD structure has a larger dynamic range while maintaining the same mean of the counter values
as the original BFD-TRNG. It is shown that the 3.25M and 4M random bits can be obtained per counter value from parallel
BFD and parallel-cascade BFD, respectively, where M counter values are computed in parallel. Furthermore, the statistical
analysis results illustrate that the BFD-TRNGs have better randomness and less cost per bit than other existing ROSC-TRNG
designs. For example, it is shown that the BFD-TRNGs accumulate 150% more jitter than the original two-oscillator TRNG,
and parallel BFD-TRNGs require one-third power and one-half area for same number of random bits for a specified period.
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1. INTRODUCTION
The security of most cryptographic systems relies on unpredictability and irreproducibility of

digital key-streams that are used for encryption and/or signing of confidential information. These
key-streams are generated by random number generators (RNG), which can be further classified in-
to two categories: true random number generators (TRNG) and pseudo random number generators
(PRNG). The key difference between TRNG and PRNG lies in the entropy source component. A
TRNG derives randomness from an analog physical process (electronic thermal noise, radioactive
decay, etc.), while a PRNG relies on computational complexity, whose outputs are completely deter-
mined by the seed. TRNGs are used for authentication and encryption purposes in systems requiring
a high level of security. On-chip TRNGs typically harvest randomness from a circuit that converts
transistor level noise such as random telegraph noise (RTN), flicker noise and thermal noise [Bred-
erlow et al. 2006; Holcomb et al. 2007; Tokunaga et al. 2008; Majzoobi et al. 2011; Srinivasan et al.
2010; Yang et al. 2014; Rahman et al. 2014] into a voltage or delay signal.

A source of randomness commonly used in FPGA and ASIC implementations of TRNGs is the
unpredictability of signal propagation time across logic gates. This unpredictability is typically ac-
cumulated in so-called ring oscillators (ROSCs), consisting of a series of inverters or delay elements
connected in a ring. The phase jitter of a ring oscillator is then extracted by another ring oscillator
or by an external clock signal. Ring oscillators and the underlying physical phenomena have been
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widely studied in the literature as building blocks for many on-chip TRNGs [Petrie and Connelly
1998; 2000; Epstein et al. 2003; Bock et al. 2004; Kohlbrenner and Gaj 2004; Sunar et al. 2007;
Wold and Tan 2009; Valtchanov et al. 2009]. One major advantage of these TRNG designs is that
no analog component is required, while conventional delay based TRNGs typically involve exten-
sive analog components for amplifying the device noise [Bucci et al. 2003], which makes them less
suitable for practical TRNG devices.

Evaluating TRNGs is a difficult task. Clearly, it should not be limited to testing the TRNG out-
put bitstream. The physical characteristics of the source of randomness and the randomness ex-
traction method determine the principal parameters of the generated bit stream: the bias of the
output bit stream, correlation between subsequent bits, visible patterns, etc. While some of the
non-randomness can be corrected by efficient post-processing, it is better if the generator inher-
ently produces a good quality random bitstream. Furthermore, passing NIST [Rukhin et al. 2001]
or DIEHARD [Marsaglia 1996] tests does not guarantee a TRNG, as these tests were originally
designed to check the performance of PRNGs.

One important requirement in TRNG security evaluation is the existence of a mathematical model
of the physical noise source and the statistical properties of the digitized noise derived from it [Kill-
mann and Schindler 2001]. If a stochastic model of the physical randomness source is available, it
can be used in combination with the raw signal to estimate the entropy and the bias depending on the
random input variables and the TRNG principle. Therefore, in order to provide a proof of security
for a TRNG, an analysis of the statistical property of the underlying mathematical model is needed.
However, creating a model of a TRNG is difficult as the model parameters are unknown. Thus, it
is impossible to predict performance of new TRNG designs as their models cannot be created. On
the other hand, it can be argued that TRNG performance can only be measured from fabricated
chips. Therefore, how good a new TRNG design can only be determined by measurements from a
fabricated design. This paper exploits the synergy between a model and the measurements of the
real device. A new ROSC based BFD-TRNG was fabricated and tested [Tang et al. 2014]. Based
on NIST tests, this TRNG was demonstrated to be an effective TRNG. This paper, for the first time,
presents a model of this BFD-TRNG. The model parameters are derived by fitting the data measured
from the fabricated device. Based on this created model, a rigorous analysis of the BFD-TRNG is
presented. Furthermore, several new BFD-TRNG architectures are proposed and their performances
are predicted based on the proposed model.

The rest of this paper is organized as follows. In Section 2, we review the high-speed BFD-
TRNG design. Section 3 describes statistical modeling of the physical components in ROSC based
TRNGs. In Section 4, we present a comprehensive statistical analysis for BFD-TRNGs. Motivated
by our statistical analysis results, we propose a number of alternate BFD-TRNG architectures in
Section 5. We summarize the performance comparisons between the BFD-TRNG designs and other
existing ROSC based TRNGs in Section 6. Finally, Section 7 presents remarks, conclusions and
future directions.

2. BEAT FREQUENCY DETECTOR BASED HIGH-SPEED TRNG
The oscillator sampling method extracts randomness from phase noise in free-running oscilla-

tors [Petrie and Connelly 1998; 2000; Kohlbrenner and Gaj 2004]. An example of this technique
is shown in Fig. 1, where the output of a fast oscillator is sampled on the rising edge of a slower
ring oscillator using a D flip-flop (DFF). Note that the design parameters for the inverters of the
two ROSCs are not necessarily the same. The timing fluctuations of the edges of the slow signal
relative to the fast oscillator is the source of the randomness in the ROSC based TRNG. Oscillator
jitter causes uncertainty in the exact sample values, ideally producing a random bit for each sample.
Additionally, randomness can be artificially enhanced by carefully selecting the ratio of the fast and
slow oscillator frequencies. Periods of these oscillations vary from cycle to cycle causing jitter in the
rising and falling edges. The goal is to sample the signal at a point in time that is in close proximity
of a transition zone thereby making sampled value unpredictable. In order to accumulate sufficient
jitter when the fast ring oscillator is sampled, a large ratio of the fast and slow oscillator frequencies
is usually desired. Note that the slow oscillator can also be substituted by an external clock, such as
in the IBM M -parallel structure [Liberty et al. 2013].
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Fig. 1: Two-Oscillator TRNG.

Built on the prior work of ROSC based TRNGs, we have proposed a novel TRNG design to har-
vest randomness from jitter variation based on the beat frequency detector (BFD) [Tang et al. 2014].
A beat frequency detector captures the frequency difference between the two ROSCs [Kim et al.
2008] with a very high resolution, which was originally used to measure frequency degradation of
digital circuits. As shown in Fig. 2, the ROSC A is continuously sampled by a ROSC B whose
frequency is slightly different from ROSC A. The output of the DFF exhibits the beat frequency
∆f , which is determined by the frequency difference of the two ROSCs. A counter measures the
beat frequency with ROSC B as the clock. The counter output increments every ROSC period until
it reaches the beat frequency interval after which the count is sampled and reset. The output count
will fluctuate due to the random jitter in the circuit. The mean of the frequency difference of the
two ROSCs is caused by manufacturing process variations, and can be further adjusted by trim-
ming capacitors associated with the ring oscillators [Tang et al. 2014]. The average frequency tune
resolution is 0.1%. The ROSC frequency decreases as we increase the load of each ROSC stage
by enabling more MOS capacitors. For example, if we would like to increase the counter values,
we can either enable additional capacitors on the fast ROSC or disable capacitors on slow ROSC
to achieve the target count range. In our test chip data, the initial count measured from different
chips ranges from 200 to 1000 when using the same trimming capacitor setting. Through extensive
testing, we found that a count range of 200 to 500 provides a reasonable trade-off between speed
and bit efficiency. A simple one-time calibration step shown in Fig. 3 can be used to guarantee that
the initial count is in the desired range (200 to 500) across the different TRNG chips. This can be
readily achieved within a few beat frequency periods using minimal hardware overhead during the
initial startup. Fig. 4 shows the measured average count through a continuous 15 hour operation
test. Without any real-time calibration, the TRNG generates a steady output across a long opera-
tion period. Under the presented setting, we can generate approximately 3.25 bits per sample by
using first 3 least significant bits (LSBs) directly and processing the 4th LSB with the von Neumann
corrector [Von Neumann 1951].
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Fig. 2: BFD-TRNG: (a) basic principle, (b) die microphotograph in 65nm.
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Fig. 4: Stability under continuous operation.

3. PHYSICAL COMPONENT MODELING OF ROSC TRNGS
As discussed above, the statistical tests such as NIST and DIEHARD are designed to check the

performance of PRNGs. The core of a TRNG is its randomness source, which usually generates a
time-continuous analog signal that is digitized by certain harvest mechanism. In order to validate a
TRNG, characterization of the randomness source and the harvest mechanism are needed. In this
section, we investigate the statistical properties of the BFD-TRNG.

The randomness source of the ring oscillator based TRNGs is the timing jitter in each ROSC,
which is a stochastic phenomenon caused by internal random noise such as thermal, shot, and ran-
dom telegraph noise in the transistors of a ring oscillator. Jitter can be considered as a short-term
variation of a digital signal from their ideal position in time. The size of the jitter is determined by
the properties of the hardware device and the operating environment. In these ROSC based TRNG
designs, two or more oscillators are combined to produce a random bitstream. This jitter will create
an accumulated phase drift in each ring so that the transition region in the sampling period is as-
sumed to be unpredictable. In the literature, several studies of the jitter in ring oscillators have been
presented [Petrie and Connelly 1996; Schindler 2003; Abcunas 2004; Coppock 2005; Abidi 2006;
Baudet et al. 2011; Wold 2011]. More precisely, the jitter model should incorporate a Gaussian vari-
able, flicker noise, and a coupling sinusoidal signals [Petrie and Connelly 2000]. However, existing
works [Schindler 2003; Abcunas 2004] report that the durations between the transition times appear
in many cases to be independent and identically distributed Gaussian, as it is the most dominant
component. This allows us to create simple model for ROSC based TRNGs by characterizing the
jitter as a Gaussian random variable with zero mean. Moreover, there are two major reasons that we
do not consider Random Telegraph Noise (RTN) as the major random noise source: First, due to the
averaging effect, the RTN induced jitter is much smaller than that on a single transistor. Second, the
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occurrence of RTN with large amplitude and high frequency is rare [Brederlow et al. 2006; Tang
et al. 2013].

With respect to the flicker noise, we know that the flicker noise will dominate in the low frequency
domain while the Gaussian white noise dominates in the high frequency domain [Schindler 2003;
Abcunas 2004]. However, the frequency of the ROSC in our current test chip is about 356 MHz.
Therefore, the impact of flicker noise will be negligible at this frequency region. Since the counter
values we obtained from our silicon results are in the range of [200, 400], the frequency of counter
output is around 1 MHz, which is still relatively high and is greater than the corner frequency of the
flicker noise. Moreover, based on our silicon results, there is no sign that the flicker noise plays a
significant role in our BFD-TRNG design. Our BFD-TRNG design could pass all NIST tests when
the ROSC has a frequency of 356 MHz and the counter outputs are in the range of [200, 400].
Our silicon results show that the correlation of the 4 LSBs between two successive counter outputs
and the correlation among the 4 LSBs of the same counter output are both very small. Our test
results also show that the first 3 LSBs can be directly concatenated and streamed out without any
post-processing, while the 4th LSB can also pass all the NIST tests after applying von Neumann
correction. In conclusion, in our current test chip, the flicker noise does not play a significant role
in the BFD-TRNG, as the frequency of the counter output is still relative high, which has also been
confirmed by our silicon results. However, it is important to note that if the BFD-TRNG is operated
in a frequency that is lower than the corner frequency in a future fabricated chip, then the flicker
noise must be incorporated into the model, as the flicker noise could be a major contributor.

A ROSC consists of an odd number of inverters connected together in a ring configuration. This
causes the output of the oscillator to change with a period of approximately 2kD, where k is the
number of inverters in a ROSC and D is the delay of a single inverter. If we consider the delay of
each inverter as a Gaussian random variable Di ∼ N(µi, σ

2
i ), a period of the ROSC can be written

as

T = 2

k∑
i=1

Di ∼ N(µ, σ2), (1)

which is also a Gaussian random variable. For simplicity, we directly consider a period of the ROSC
as a Gaussian random variable in this paper. Periods vary from cycle to cycle causing jitter in the
rising and falling edges. Note that this model can incorporate different operating conditions (e.g.,
temperature, supply voltage) by modifying σ accordingly.

4. STATISTICAL ANALYSIS OF BFD-TRNG
Based on the illustrated model above, this section presents a comprehensive statistical analysis to

help resolve some important BFD-TRNG design issues:

(a) How much of the frequency difference is required to produce sufficient random numbers?
(b) How many bits of the counter value can be used?
(c) How can the TRNG performance be further improved?

4.1. BFD Model
As shown in Fig. 2, the BFD-TRNG consists of two ROSCs whose frequencies are slightly dif-

ferent. The period of the two ROSCs can be modeled as TA ∼ N(µA, σ
2
A) and TB ∼ N(µB , σ

2
B),

respectively. Note that the two ring oscillators are implemented identically; therefore their free-
running frequencies are very close but not identical due to the process variation. To prevent injec-
tion locking phenomenon or any other unintended coupling between the two ROSCs, we separated
the frequencies of the two ROSCs using trimming capacitors prior to the testing. Furthermore, the
two ROSCs are oscillating and trimmed independently. Experimental data showed no signs of cor-
relation between the ROSC frequencies [Tang et al. 2014]. An output will be generated once the
beat frequency is obtained, i.e., the faster ROSC completes one more cycle than the slower ROSC.
The output will be the number of cycles completed by ROSC B at this moment. Without loss of
generality, we always assume ROSC A is faster than ROSC B in this paper, i.e., µA < µB . Since
the inverters in ROSC A and ROSC B are almost equivalently designed with only slight frequency
difference and operated under the same environmental condition, we can assume σ = σA = σB .
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Therefore, the probability density function (pdf) of the counter value N can be expressed as

pdf(N) = {min N :

N∑
i=1

TAi <

N−1∑
i=1

TBi} = {min N : TAN <

N−1∑
i=1

(TBi − TAi)}. (2)

However, the N in Equation (2) does not have a standard probability density function. Instead, we
perform Monte Carlo simulations to study the statistical properties of this model. Model parameters
extracted from experimental measurements in [Tang et al. 2014] imply ∆µ

µB
= µB−µA

µB
= 0.28% and

σA = σB = 0.0006. Note that in this paper, without loss of generality, we always assume the mean
of the clock signal of the DFF to be 1 (i.e., µB = 1). Therefore, ∆µ = 0.0028 and µA = 0.9972 in
this setup. The distribution of the counter values is shown in Fig. 5.

330 340 350 360 370 380 390
0

1000

2000

3000

4000

5000

6000

7000

8000

Counter Value

D
is

tr
ib

u
ti
o
n

Fig. 5: Counter Value Distribution (∆µ = 0.28%, σ = 0.0006).

4.2. Effect of Counter Value
4.2.1. Mean of Counter Value. It can be seen from Fig. 5 that the mean of the counter values is

close to 1
∆µ = 357. We repeat the simulation with ∆µ = 0.4% as shown in Fig. 6. The mean is also

close to 1
∆µ = 250. Thus, we observe that the mean of counter values is inversely proportional to

the value of ∆µ.
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Fig. 6: Counter Value Distribution (∆µ = 0.4%, σ = 0.0006).

This property can also be derived by mathematically. Since Equation (2) does not have a closed-
form expression, we consider a simpler case: TA and TB remain unchanged during one measure-
ment time. In fact, this is the original function of a beat frequency detector, i.e., to measure the
frequency difference of ROSC A and ROSC B. In this case, Equation (2) can be simplified to

N = {min N : |N − NTB

TA
| ≥ 1}. (3)

By solving the equation, we can get

ACM Journal on Emerging Technologies in Computing Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.



A:7

N = d TB

|TB − TA|
e. (4)

There is one trivial observation that |TB−TA| cannot be very small; otherwise, the counter value
will be very large (i.e., only one counter value can be obtained in very large number of cycles). If
we consider TA and TB as the average periods ofN cycles, these can be characterized as Gaussian
random variables

∑N
i=1 TAi
N ∼ N(1−∆µ, σ

2

N ) and
∑N
i=1 TBi
N ∼ N(1, σ

2

N ), respectively. Thus,

TB

TB − TA
∼

N(1, σ
2

N )

N(∆µ, 2σ2

N )
, (5)

which can be described as a ratio of two Gaussian random variables. We can approximate the ex-
pected value of TB

TB−TA by a second order Taylor expansion [Stuart and Ord 1994]:

E(
TB

TB − TA
) ≈ E(TB)

E(TB − TA)
− Cov(TB, TB − TA)

E2(TB − TA)
+
V ar(TB − TA)E(TB)

E3(TB − TA)

=
1

∆µ
−

σ2

N

∆µ2
+

2σ2

N

∆µ3

=
1

∆µ
+

1

N

σ2

∆µ2
(

2

∆µ
− 1). (6)

Based on the assumption that TA and TB are uncorrelated, we can obtain that Cov(TB, TB −
TA) = V ar(TB) = σ2. For the parameters ∆µ = 0.28%, σ = 0.0006, the above equation will
equal to

1

∆µ
+

1

N

σ2

∆µ2
(

2

∆µ
− 1) = 357.14 +

32.75

N
. (7)

It can be seen from Fig. 5 that 330 < N < 390. Consequently, the second term of Equation (7)
(i.e., 32.75

N ) is less than 0.1. Consequently, the mean of counter values is approximately 1
∆µ ≈ 357

in this case.
Typically, the second term of Equation (7) will be relatively small compared to 1

∆µ , since ∆µ is

a very small number and σ2

∆µ2 is generally less than 1.
As a result, we can conclude

E(N) ≈ 1

∆µ
. (8)

Thus, in contrast to the original function of the BFD, i.e., to measure the slight frequency dif-
ference of two signals, we should set up an appropriate frequency difference for the two ROSCs.
In other words, trimming capacitors should be used to set an appropriate ∆µ for the two ROSCs,
instead of equalizing their frequencies or making the frequency differences as small as possible.
Therefore, we mainly harvest randomness from the jitter noise instead of the metastability in our
design, as the random numbers are generated from the delay difference variations of the two ROSC-
s, instead of from sampling one ROSC with another ROSC. Note that our current test chips provide
a frequency trimming resolution of 0.1%, this can be further reduced with more trimming capacitor
bank controls.

4.2.2. Dynamic Range of Counter Value. The randomness of the BFD-TRNG comes from the
counter values. If the dynamic range is larger, we could use more bits of the counter value as
random numbers. Therefore, it is important to examine the statistics of the dynamic range of the
counter values. We attempt to use a Gaussian distribution to fit the counter values from experimen-
tal measurements and consider 6σG as the dynamic range based on the fitting result N(µG, σ

2
G).
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An example is shown in Fig. 5, with parameters ∆µ = 0.28%, σ = 0.0006. It is shown that the
distribution of the counter values is close to a Gaussian distribution. In this case, the dynamic range
6σG is equal to 34.6.

We repeat the simulation for different parameters as shown in Fig. 6 and Fig. 7, whose dynamic
ranges are 20.3 and 68.9, respectively. The relationship between the dynamic range of counter values
and ∆µ is shown in Fig. 8, where the mean of counter values is equal to 1

∆µ . It can be seen that the
dynamic range of counter values will increase with the increase of σ, while it will decrease with the
increase of ∆µ. This observation is also conformed from our measured chip data [Tang et al. 2014].
Moreover, it can be seen that only slight change of ∆µ will affect the counter values significantly.
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Fig. 7: Counter Value Distribution (∆µ = 0.28%, σ = 0.0012).
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Fig. 8: The relationship between the dynamic range of counter values and ∆µ (σ = 0.0006%).

0 0.5 1 1.5 2 2.5 3
x 10−3

0

20

40

60

80

100

120

140

160

180

200

sigma

D
yn

am
ic

 R
an

ge
 (

C
ou

nt
er

 V
al

ue
)

Fig. 9: The relationship between the dynamic range of counter values and σ (∆µ = 0.28%).
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We can also examine the variance of counter values by a second order Taylor expansion [Stuart
and Ord 1994]:

V ar(
TB

TB − TA
) ≈ E2(TB)

E2(TB − TA)
(
V ar(TB)

E2(TB)
− 2

Cov(TB, TB − TA)

E(TB)E(TB − TA)
+

2V ar(TB − TA)

E2(TB − TA)
)

=
1

∆µ2
(
σ2

N
− 2σ2

N∆µ
+

2σ2

N∆µ2
)

=
σ2

N∆µ2
(1− 2

∆µ
+

2

∆µ2
). (9)

Since we have demonstrated that the expected value of N is approximately 1
∆µ and ∆µ is a very

small value, we can further approximate the above equation as

V ar(
TB

TB − TA
) ≈ σ2

N∆µ2
(1− 2

∆µ
+

2

∆µ2
)

≈ σ2

∆µ

(
2(

1

∆µ
− 1

2
)2 +

1

2

)
≈ 2σ2

∆µ3
. (10)

Consequently, we can obtain

σG ≈
√
V ar(

TB

TB − TA
) ≈
√

2σ

∆µ
3
2

. (11)

Thus, we can conclude that the dynamic range of counter values increases linearly with σ and is
inversely proportional to ∆µ

3
2 .

4.3. Bounds on Bias of Each Bit
According to the NIST test, the probability of ”1” occurrence, p1, should satisfy 49.91% ≤ p1 ≤

50.09% to pass the frequency test of NIST tests [Rukhin et al. 2001]. For any bit of the counter
values, if the probability of ”1” occurrence is within the acceptance range [49.91%, 50.09%], then
this bit might be used as random numbers directly. Otherwise, certain techniques are required to
post-process the bit. Note that we only consider the biasedness metric in our simulation, as other
metrics are completely dependent on the performance of the employed pseudo random number
generator for simulation. The p1 of each bit for the distribution in Fig. 5 is presented in the second
row of Table I. Since the counter values are less than 512 in our setup, we only need to consider
the first 9 LSBs. It can be seen that the first 3 LSBs are within the acceptance range. In fact, our
chip experimental results show that all of the first 3 LSBs can pass the NIST test individually or
collectively after serializing them.

Table I: The Probability of ”1” Occurrence p1 for Each Bit

Distribution p1(b8) p1(b7) p1(b6) p1(b5) p1(b4) p1(b3) p1(b2) p1(b1) p1(b0)
Fig. 5 1 0 1 0.8384 0.1979 0.4564 0.5003 0.4991 0.4995

Fig. 10 0.5173 0.4827 0.4827 0.4827 0.4838 0.4991 0.4998 0.5007 0.5005

We also present the value of p1 of each bit for the distribution as shown in Fig. 10 with parameters
∆µ = 0.391% and σ = 0.0009 in Table I. The dynamic range 6σG is 30.2 which is less than the dy-
namic range of the distribution in Fig. 5. However, the first 4 LSBs are within the acceptance range.
Furthermore, the higher bits are also less biased compared to counter values in Fig. 5. Therefore,
the counter values in Fig. 10 have better randomness than the counter values in Fig. 5, even though
the dynamic range of the counter values in Fig. 10 is smaller.
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Fig. 10: Counter Value Distribution (∆µ = 0.391% and σ = 0.0009).

As a result, we can conclude that the number of bits that we can use is not only dependent on the
dynamic range, but also dependent on the mean of the counter values. For example, we consider the
two cases as shown in Fig. 11. The counter values in the top and the bottom panels of Fig. 11 have
the same dynamic range. However, the mean of counter values in the top panel is 15.5, which is just
at the boundary of b3 = 0 and b3 = 1. As a result, the expected bias ε will be 0, where ε is defined
as ε = |0.5− p1|. For the counter values in the bottom panel whose mean is 19.5, p1 = 0.11. Thus,
the bias is |0.5− p1| = 0.39. This is because the mean of the counter values is in the middle of the
region where b3 = 0.
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Fig. 11: The biasedness of b3 for different counter values.

For a certain dynamic range of counter values, in the best case, E(N) = 2km − 0.5 for bk
(m is an integer), which leads to ε = 0. In the worst case, E(N) = 2km + 2k−1 − 0.5, which
generates the largest bias ε. Ideally, we can extract more randomness from the counter values by
carefully adjusting the mean. However, in order to ensure the quality of each bit when taking noise
and operating environmental change into consideration, we have to consider the bias in the worst
case. Table II presents the corresponding bias ε for each bit under different σG in the worst case.

It can be seen from Table II that the first LSB is guaranteed to be unbiased if the dynamic range of
counter values is greater than 6σG = 12. Furthermore, if the dynamic range is greater than 30, the
first 3 LSBs might be used as random numbers without any post-processing. As a result, we have to
ensure at least a dynamic range of 30 for the BFD-TRNG [Tang et al. 2014], if we output the first 3
LSBs directly. In addition, we cannot use b4 to b8 directly while the dynamic range is less than 90.
Since the dynamic range increases with the increase of the mean of the counter values, we have to
set an appropriate ∆µ to attain sufficient randomness of the TRNG design.

Fig. 12 shows the relationship between the number of bits that we can output directly and the
dynamic range. The number of unbiased bits can be expressed by fitting the curve perfectly as

number of unbiased bits = blog2
40

23
+ log2σGc = blog2

40

23
+ log2σ −

3

2
log2∆µ+

1

2
c. (12)
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Table II: Bias ε for Each Bit under Different σG in the Worst Case

σG ε(b8) ε(b7) ε(b6) ε(b5) ε(b4) ε(b3) ε(b2) ε(b1) ε(b0)
1 0.5 0.5 0.5 0.5 0.5 0.4999 0.4545 0.1854 0.0046
2 0.5 0.5 0.5 0.5 0.4999 0.4545 0.1854 0.0046 0
3 0.5 0.5 0.5 0.5 0.4923 0.3176 0.0397 0 0
4 0.5 0.5 0.5 0.4999 0.4545 0.1854 0.0046 0 0
5 0.5 0.5 0.5 0.4986 0.3904 0.0926 0.0003 0 0
6 0.5 0.5 0.5 0.4923 0.3176 0.0397 0 0 0
7 0.5 0.5 0.5 0.4777 0.2475 0.0146 0 0 0
8 0.5 0.5 0.4999 0.4545 0.1854 0.0046 0 0 0
9 0.5 0.5 0.4996 0.4246 0.1336 0.0012 0 0 0

10 0.5 0.5 0.4986 0.3904 0.0926 0.0003 0 0 0
11 0.5 0.5 0.4964 0.3542 0.0618 0.0001 0 0 0
12 0.5 0.5 0.4923 0.3176 0.0397 0 0 0 0
13 0.5 0.5 0.4862 0.2816 0.0245 0 0 0 0
14 0.5 0.4999 0.4777 0.2475 0.0146 0 0 0 0
15 0.5 0.4999 0.4671 0.2153 0.0083 0 0 0 0

Therefore, we can conclude that the number of bits that we can use is logarithmically proportional
to the dynamic range of the counter values.
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Fig. 12: The relation between the number of unbiased bits and the value of σG.

Summary
The observations are summarized below.

1. The mean of the counter values is inversely proportional to ∆µ.
2. The dynamic range of counter values is inversely proportional to ∆µ

3
2 and is proportional to σ.

3. The sampling rate is inversely proportional to the mean of counter values.
4. The number of unbiased bits is logarithmically proportional to the dynamic range of counter

values; thus, it is inversely logarithmically proportional to ∆µ
3
2 .

5. The sampling rate is proportional to ∆µ.

As we are only able to control the value of ∆µ, we should set an appropriate ∆µ to achieve
better throughput. Note that a higher σ can be obtained by appropriately sizing the transistor and
choosing number of stage in the ROSCs, but this is out of the scope of this paper. For post-fabrication
throughput optimization, we are able to achieve better throughput with the following two methods
based on ∆µ controlling.

(a) Use a higher ∆µ (i.e., lower counter values), which could improve the sampling rate. But we
may only be able to use limited number of bits from each counter value as random numbers.

(b) Use a lower ∆µ (i.e., higher counter values). The sampling rate is reduced. But we can use
more bits from the counter values as random numbers. Moreover, we can further post-process
the higher bits of the counter values to generate more bits.
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Based on the summary above, we can obtain the relationship between the throughput (i.e., rate ×
number of unbiased bits) of the BFD based design and parameters ∆µ, σ as below:

throughput ∝ ∆µblog2
40

23
+ log2σGc ≈ ∆µblog2

40

23
+ log2σ −

3

2
log2∆µ+

1

2
c. (13)

If we consider Equation (13) without the floor function as

throughput ∝ ∆µ(log2
40

23
+ log2σ −

3

2
log2∆µ+

1

2
). (14)

Equation (14) achieves maximum value at

∆µ = 2( 2
3 log2

40
√

2σ
23 − 1

ln2 ). (15)
For example, the values of Equations (13) and (14) are shown in Fig. 13 when σ = 0.0006.
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Fig. 13: Values of Equations (13) and (14) for different ∆µ’s (σ = 0.0006).

It can be seen from the top panel of Fig. 13 that the BFD-TRNG achieves the best throughput
when ∆µ = 0.0050 (2 bits can be used as random numbers), while the maximum value of Equation
(14) is achieved at ∆µ = 2( 2

3 log2
40

√
2σ

23 − 1
ln2 ) = 0.004768 as shown in the bottom panel. Therefore,

in this case, we can adjust the ∆µ such that the mean of the counter values is about 200 to achieve
higher throughput. Generally, the ∆µ should be adjusted according to the environmental noise σ
based on Equation (15).

4.4. Post-Processing
As discussed above, the number of bits that can be treated as random numbers is determined by

both the dynamic range and the mean of counter values. For those bits with some randomness that
do not meet the NIST test requirement (i.e, 0.0009 < ε < 0.5), post-processing techniques can be
used to generate more random bits.

Post-processing techniques for TRNGs are used to ameliorate non-randomness in the raw bit-
stream, which are basically compression functions that are applied to the raw bitstream before the
output of the TRNG. Furthermore, post-processing techniques can improve the stability of a TRNG,
as it is able to correct the raw bitstream if operating conditions change. In the BFD-TRNG design,
if a certain bit starts out with a high bias, the post-processing step would transform the bitstream
such that the bias becomes more acceptable. The two common techniques we consider in the post-
processing step include block-wise XOR and Von Neumann corrector [Von Neumann 1951]. Other
techniques, such as linear compression functions based on good linear codes can also be used for
de-biasing [Sunar et al. 2007; Dichtl 2007; Lacharme 2008]. The comparison of block-wise XOR
and Von Neumann corrector is illustrated in Table III, where XOR d corresponds to XOR operation
with a block size of d.
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Table III: Comparison of Block-Wise XOR and Von Neumann Corrector (The Bits are Assumed to Be Inde-
pendent)

XOR d Von Neumann
Rate 1

d
1
4
− ε2

bias 2d−1εd 0

Each of these post-processing techniques has its pros and cons. Using Von Neumann corrector
will produce perfect correction with 0 bias but throughput is reduced to less than 25% of its original.
XOR may achieve better throughput with a small d. However, we have to ensure that 2d−1εd is
within the acceptance range. For example, the compression rate is 50% when d = 2. However, the
bias is only improved from ε to 2ε2.

Table IV presents the number of bits that we can generate for different σG in the worst case. Each
value in Table IV represents how many bits can be used as random numbers for a certain counter
value. For example, if a bit has a bias ε < 0.0009, the bit can produce 1 random bit per sample.
However, if the bias ε exceeds the threshold, this bit of the counter value can be used to generate
1
d random bit per sample by using block-wise XOR or 1

4 − ε
2 bit per sample by the Von Neumann

corrector. Entropy is essentially an upper bound on the number of bits that we can generate for a
given dynamic range. Note that the total entropy can be obtained by the sum of the entropy for each
individual bit, according to Table II.

Table IV: Number of bits per Sample for Different σG in the Worst Case

σG Von Neumann XOR Entropy
1 0.51 0.64 2.17
2 1.51 1.64 3.17
3 2.41 2.4 3.75
4 2.51 2.64 4.17
5 3.34 3.29 4.49
6 3.41 3.4 4.75
7 3.46 3.61 4.97
8 3.51 3.64 5.17
9 3.55 3.7 5.34
10 4.34 4.29 5.49
11 4.37 4.3 5.62
12 4.41 4.4 5.75
13 4.43 4.42 5.86
14 4.46 4.61 5.97
15 4.49 4.63 6.07

It can be seen that the block-wise XOR and Von Neumann corrector have comparable perfor-
mances for the BFD-TRNG. However, for the bit with a small bias, XOR will be more favored
than Von Neumann corrector. As we always try to utilize the bits with smaller biases, block-wise
XOR could outperform Von Neumann corrector in general. From the simulation results, besides
the bits of counter values that we can output directly, we may only be able to use 2 more bits by
post-processing, as the rate will be too low for the higher bits. According to Table II, for example,
we can use the first 3 LSBs directly when σG = 7. If we only want to post-process the 4th LSB
to generate more bits, we can generate 3.5 bits per sample by XOR or approximately 3.25 bits per
sample by Von Neumann corrector. Moreover, the output of block-wise XOR is synchronous while
the output of Von Neumann corrector is asynchronous. The challenge of using block-wise XOR is
that we need to determine the value of d for each bit based on the dynamic range of the counter
values. Although we use Von Neumann corrector in our work [Tang et al. 2014], future work will
be directed towards using block-wise XOR to extract more randomness of the BFD-TRNG designs.
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5. ALTERNATE BFD-TRNG ARCHITECTURES
Motivated by the statistical analysis results, in this section, we propose a number of alternate

BFD-TRNG designs, which can further improve the performances.

5.1. Parallel Structure
Parallelizability is also a desired metric of a TRNG. In fact, the BFD-TRNG is notably easy to

parallelize by adding as many extra ROSCs instead of 2 ROSCs to generate multiple outputs, as
shown in Fig. 14, where the block of the Beat Frequency Counter is same as the counter used in the
BFD-TRNG as shown in Fig. 2(a). Our experimental results show that the counter values of the two
adjacent outputs are highly correlated. However, the advantage of the BFD-TRNG is that we can
consider bits of the counter values individually. For example, the simulated correlation coefficients
for a 4-parallel structure are presented in Table V. Note that the ∆µ is assumed to be same for all
the ROSC pairs. According to NIST test, only the bitstreams with correlation coefficients less than
0.073 can pass the test [Rukhin et al. 2001]. It can be seen that the correlation coefficients of the
counter values of two adjacent outputs are large, i.e., around 0.5. However, the correlations of the
first 4 LSBs from two adjacent outputs are very small, while the counter values and individual bits
are not correlated for non-adjacent outputs. Therefore, it can be concluded that the first 4 LSBs from
the outputs in Fig. 14 can still be used as random numbers. In general, we can generate 3.25M bits
per sample by using M + 1 ROSCs and M DFFs, since we can use the first 3 LSBs directly and
generate 1

4 bits per count by postprocessing the 4th LSB with Von Neumann corrector.

ROSC 1

ROSC 2

Output 1

ROSC 3

Output 2

ROSC M

ROSC M+1

Output M

.

.

.

.

.

.

.

.

.

.

.

.

DFF

Beat 

Frequency 

Counter

DFF

Beat 

Frequency 

Counter

DFF

Beat 

Frequency 

Counter

Fig. 14: An M-parallel TRNG structure.

Table V: Correlation Coefficients of Each Bit among the Outputs for a 4-Parallel Structure

Correlation Coefficients
Output (1,2) Output (2,3) Output (3,4) Output (1,3) Output (2,4) Output (1,4)

Counter Value 0.4967 0.4970 0.4974 0.0018 -0.0006 -0.0007
b0 0.0005 0.0005 0.0008 -0.0003 0.0000 0.0009
b1 0.0003 0.0008 0.0016 -0.0006 -0.0004 -0.0018
b2 0.0010 0.0013 0.0005 0.0004 0.0001 -0.0016
b3 0.0027 0.0049 0.0023 0.0014 -0.0006 -0.0004
b4 0.1193 0.1177 0.1190 -0.0008 -0.0009 0.0002
b5 0.2974 0.2966 0.2971 0.0006 -0.0013 0.0001
b6 0.3023 0.2998 0.3001 0.0009 -0.0010 0.0001
b7 0.3023 0.2998 0.3001 0.0009 -0.0010 0.0001
b8 0.3023 0.2998 0.3001 0.0009 -0.0010 0.0001
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5.2. Cascade Structure
A novel cascade structure which could achieve better randomness is shown in Fig. 15. Note that

ROSC B also connects to the clock signal of the counter (not shown in Fig. 15). The dynamic range
of this cascade structure is higher than that of the original BFD-TRNG. Fig. 16 shows the counter
value distributions of the original BFD-TRNG and the cascade structure. Note that in our simulation,
we set the |fA − fB | − |fB − fC | = 0.28% to maintain the same mean of the counter values. In
other words, the frequencies of the 2 DFFs in the first stage are not very close to each other.
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Fig. 15: A cascade TRNG structure.
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Fig. 16: Counter values of the original BFD-TRNG (top figure) and the cascade structure (bottom figure).

The dynamic range is increased from 34.6 to 64.3 by adopting the cascade structure. As a result,
we can also use the 4th LSB directly according to Table II, while maintaining the same mean of the
counter values. Therefore, the randomness is improved by using the cascade structure. Alternatively,
we can reduce the mean of the counter values to increase the sampling rate, while maintaining
considerable randomness. The cascade structure will be extremely useful when the environmental
noise is small. The BFD-TRNG may even be adaptively configured between 3 ROSCs and 2 ROSCs.
For example, if the noise is relatively small, we could use 3 ROSCs as shown in Fig. 15 to increase
the dynamic range of counter values; otherwise, we could use 2 ROSCs as shown in Fig. 14 to output
2 bitstreams of random numbers. Furthermore, this cascade structure provides higher flexibility for
adjusting trimming capacitors associated with the ring oscillators.

5.3. Parallel-Cascade Structure
We can also parallelize the cascade structure, which leads to the so-called parallel-cascade struc-

ture of the BFD-TRNG. For example, a 4-parallel-cascade structure is shown in Fig. 17. Two adja-
cent outputs share two ring oscillators, while the outputs that are separated from one output share
one ring oscillator. We also need to examine the correlation coefficients of the outputs to ensure the
bits that are used as random numbers are not correlated. The simulated correlation coefficients for
the counter values and the individual bits among different outputs are presented in Table VI. Note
that we set all the ∆f ’s in Fig. 17 as 0.0028. It can be seen that the correlation coefficients for the
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first 4 LSBs between any two of the outputs are still very small and satisfy the NIST criteria. The
correlations of the counter values and higher bits (i.e., b4 to b8) between two adjacent outputs are
large, while the correlation coefficients of the counter values and higher bits between the outputs 1
and 3 or the outputs 2 and 4 are smaller but still exceed the threshold (i.e., 0.0073). The outputs 1
and 4 are not correlated for both the counter values and the individual bits, since they do not share
any ring oscillator. Therefore, an M -parallel cascade structure can generate 4M bits per sample by
using (M + 2) ROSCs and (2M + 1) DFFs. Note that in order to generate 4 bits from each output,
we need to ensure the frequencies are either descending or ascending from the first ROSC to the
last ROSC, as ∆f = ||fA − fB | − |fB − fC || = |fA − 2fB + fC | only if fA > fB > fC or
fA < fB < fC . Otherwise, ∆f will equal to |fA − fC |, which leads to the same dynamic range as
the original BFD-TRNG. As a result, only 3.25 bits can be obtained from each output in this case.
However, there is a problem when M is large that the frequency difference between the first ROSC
and the last ROSC will be fairly large if we want to generate 4 bits from each output, which may
exceed the capability of the trimming capacitors. Therefore, the frequencies need not necessarily
be set as either descending or ascending from the first ROSC to the last ROSC, which leads to a
parallel-cascade structure where some of the outputs can generate 4 bits each and the others can
generate 3.25 bits each. The performance is still improved.
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Fig. 17: A 4-parallel-cascade structure.

Table VI: Correlation Coefficients of Each Bit among the Outputs for a 4-Parallel-Cascade Structure

Correlation Coefficients
Output (1,2) Output (2,3) Output (3,4) Output (1,3) Output (2,4) Output (1,4)

Counter Value 0.6640 0.6634 0.6650 0.1666 0.1664 -0.0027
b0 0.0002 -0.0004 -0.0003 0.0001 0.0008 0.0000
b1 -0.0009 0.0012 0.0005 -0.0014 0.0005 -0.0003
b2 -0.0007 0.0011 -0.0007 -0.0006 0.0010 -0.0002
b3 -0.0029 -0.0015 -0.0023 0.0005 0.0006 -0.0004
b4 0.0377 0.0382 0.0388 0.0197 0.0181 -0.0001
b5 0.3539 0.3534 0.3542 0.1032 0.1013 0.0009
b6 0.1771 0.1673 0.1701 0.0163 0.0189 -0.0015
b7 0.1817 0.1721 0.1760 0.0145 0.0177 -0.0011
b8 0.1817 0.1721 0.1760 0.0145 0.0177 -0.0011

6. COMPARISON WITH OTHER EXISTING ROSC BASED TRNGS
Furthermore, by adopting the proposed statistical model, we could also analyze prior ring oscil-

lator based TRNG designs. In this section, we present the performance comparisons of the BFD-
TRNG with other existing ring oscillator based TRNGs.
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6.1. Two-Oscillator TRNG
The most comprehensive model of a two-oscillator TRNG is presented in [Baudet et al. 2011].

In this section, we analyze the two-oscillator TRNG as shown in Fig. 1 based on our simple model,
i.e., assume a Gaussian random variable for the period of a ring oscillator. As discussed in Section
2, the frequency ratio between the two ROSCs plays a very important role in the randomness of the
output. Experimental results have shown that the randomness is the worst when the fast oscillator
frequency is an integer multiple of half the slow oscillator frequency [Petrie and Connelly 1996].
In practice, the ratio is often carefully selected to achieve better randomness [Kohlbrenner and Gaj
2004].

However, even if the TRNG design was originally designed to operate at a suitable oscillator
frequency/sampling frequency ratio, a change in environmental conditions or worse adversarial in-
fluences may shift the frequency ratio to a weak operating point. It is claimed that the amount of
accumulated jitter 6σacc should be at least six times as large as the period of the fast oscillator to
attain sufficient randomness [Balachandran and Barnett 2008]:

6σacc ≥ 6µA, (16)

where σ2
acc ≈ σ2

B + Lσ2
A, since the randomness is generated from the timing fluctuations of the

edges of the slow signal relative to the fast oscillator. Let L represent the number of periods ROSC
A is completed before it is sampled. If we assume the design parameters for the inverters of the two
ROSCs are the same, σ2

B will equal Lσ2
A, since the two ROSCs accumulated approximately with

the same amount of jitter. Consequently, the value of L can be calculated as:

L ≥ µ2
A

2σ2
A

. (17)

In order to ensure sufficient randomness, a large frequency ratio is required. For example, L should
be greater than 1 million when σA = 0.0006. However, in the application of two-oscillator TRNG,
the value of σA is usually much larger. Frequency dividers can also help to achieve a large frequency
ratio [Bucci and Luzzi 2008; Fischer et al. 2008]. Furthermore, a smaller ratio is sufficient to pass
the NIST test in practice (i.e., NIST test is not that strict, compared to the statistical analysis). For
example, experimental results [Amaki et al. 2013] show that the period of a 7-stage ring oscillator
implemented with a 65 nm CMOS process is 220ps from circuit simulation; thus, 220×6 = 1320ps
of jitter is required. On the other hand, the jitter amount of a 251-stage ring oscillator with 64-
frequency dividers is measured as 100ps, which is much smaller than the necessary value. Moreover,
the results in [Liberty et al. 2013] demonstrate that at least a ratio of 500 is required to achieve
sufficient randomness to pass the NIST test.

6.2. ROSC TRNG with XOR Tree
A ROSC TRNG with XOR tree has been proposed in [Sunar et al. 2007], which does not require

large frequency separation of the fast and slow ring oscillators. The outputs from the oscillator
rings are XOR-ed together and sampled with a DFF. A series of ring oscillators are combined to
compensate for the imbalance between the number of zeros and ones in the random signal. In this
structure, the jitter is accumulated spatially instead of temporarily. The TRNG structure is shown
in Fig. 18.

A stochastic approach of this TRNG is presented in [Sunar et al. 2007]. It shows that in order to
increase the entropy of the generated binary raw signal and to make the generator provably secure,
large number of ROSCs needs to be employed. Experimental results show that the outputs of at
least 114 supposedly independent ROSCs are XOR-ed and sampled using a reference clock with a
fixed frequency can pass the NIST test. Only a small frequency ratio of 5 to 20 is required (e.g.,
approximately 6 in [Sunar et al. 2007]).

However, some weakness of this TRNG design has been pointed out in [Dichtl and Golić 2007].
The main concern is that the XOR-tree and the sampling D flip-flop cannot handle the high num-
ber of transitions from the oscillator rings. With many oscillator rings in parallel, the number of
transitions during a sampling period will be too high to meet the setup/hold-time requirements. Ex-
perimental results show that approximately 50% of the transitions get lost [Rozic and Verbauwhede
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Fig. 18: ROSC TRNG with XOR Tree.

2009]. To cope with the problem with many transitions in the sampling period, an enhanced TRNG
based on the ROSCs has been proposed in [Wold and Tan 2009] by adding an extra DFF after each
ring oscillator before the XOR gate Fig. 19. This TRNG design can generate desirable raw bitstream
with a significantly reduced number of ROSCs. Its outputs can pass the NIST and DIEHARD tests
without postprocessing.
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Fig. 19: Enhanced ROSC TRNG with XOR Tree.

The mathematical models for the ROSC TRNG with XOR tree as shown in Fig. 18 and the
enhanced structure as shown in Fig. 19 are the same [Bochard et al. 2009]. Similar to the two-
oscillator based TRNG, the variance of the accumulated jitter of the ROSC TRNG with XOR tree
can be expressed as

σ2
acc ≈ σ2

B +MLσ2
A, (18)

where M is the number of ROSCs in parallel and L is the frequency ratio.
The number of ROSCs can be reduced by using the enhanced ROSC TRNG with XOR tree [Wold

and Tan 2009]. Experimental results in [Wold and Tan 2009] show that 50 ROSCs in parallel are
required to achieve sufficient randomness to pass the NIST test. However, this TRNG design is still
not very efficient, since most of the ROSCs in this structure do not improve the entropy of random
numbers if their transition regions are not sampled.

6.3. Comparison
There are a number of advantages of the BFD-TRNG designs. First of all, the random numbers

of the BFD-TRNG are generated from counter values, which is a better harvest mechanism that can
utilize more of the entropy. The bits per sample can be increased by post-processing or appropriately
adjusting the counter values, while other existing ROSC based TRNGs are only able to generate
maximum 1 bit per sample. Moreover, we could also choose to post-process with the counter values
instead of individual bits.

Furthermore, other existing ROSC based TRNGs are sampled continuously. If the accumulated
jitter is not sufficient between consecutive samplings, these samples will be correlated. However,
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for the BFD-TRNG, the counter will be reset after collecting the data. As a result, the correlation
between consecutive samples is reduced.

We continue to compare their performances according to evaluation metrics as below.

6.3.1. Randomness. In fact, the BFD-TRNG can be considered as a faster ROSC B that is sam-
pled by a slower ROSC with frequency |fA − fB |. Therefore, the variance of the accumulated jitter
between two consecutive samplings is

σ2
acc ≈ 22σ2

B + Lσ2
A, (19)

where L is equal to the counter value N in this case. This is similar to the sum of the jitter in ROSC
A and two times of the jitter in ROSC B. If we still assume the clock signal is generated from
a slower ROSC and the design parameters for the inverters in the two ROSCs are the same (i.e.,
σ2
B = Lσ2

A), the value of σ2
acc for the BFD-TRNG is

σ2
acc ≈ 5Lσ2

A. (20)

Similarly, the cascade structure as shown in Fig. 15 can be considered as a faster ROSC B which
is sampled by a slower ROSC with frequency |fA − 2fB + fC |. In this case, the accumulated jitter
will be the sum of the jitter in ROSC A, the jitter in ROSC C, and three times of the jitter in ROSC
B. As a result, the value of σ2

acc for the cascade structure will be

σ2
acc ≈ (1 + 1 + 32)Lσ2

A = 11Lσ2
A. (21)

The value of σ2
acc for each TRNG design is summarized in Table VII.

Table VII: Comparison of σ2
acc for Different ROSC based TRNG Designs

σ2
acc σ2

acc per ROSC
Two-Oscillator TRNG (Fig. 1) 2Lσ2

A Lσ2
A

ROSC TRNG with XOR tree (Fig. 18, Fig. 19) (M + 1)Lσ2
A Lσ2

A

BFD-TRNG (Fig. 2) 5Lσ2
A 2.5Lσ2

A

M -parallel BFD-TRNG (Fig. 14) 5MLσ2
A

5M
M+1

Lσ2
A

Cascade BFD-TRNG (Fig. 15) 11Lσ2
A 3.67Lσ2

A

M -parallel Cascade BFD-TRNG (Fig. 17) 11MLσ2
A

11M
M+2

Lσ2
A

It can be seen that the BFD-TRNG has greater σ2
acc per ROSC than prior ROSC based TRNGs,

which could lead to better randomness, as it accumulates a larger amount of jitter before it is sam-
pled. Moreover, it can be seen that the σ2

acc of BFD-TRNG is 150% higher than the σ2
acc of two-

oscillator TRNG. The parallel, cascade, and parallel-cascade structures of the BFD-TRNG can fur-
ther improve the randomness. Note that the σ2

acc is just a rough estimate of the randomness when
the TRNG is sampled.

6.3.2. Cost. We summarize the performance of different ROSC based TRNG designs in Table
VIII. We measure the area and power consumptions for the 7-stage ROSC, DFF, and 10-bit counter
from the test chip in 65nm, as shown in Table IX. Consequently, the cost comparisons (only con-
sidering the components) for different ROSC based TRNGs are presented in Table X. It can be seen
that the BFD-TRNGs can generate more bits per sample. Furthermore, the BFD-TRNGs have less
cost per bit in general, compared to prior ROSC based TRNG designs. We can further improve the
performance by setting an appropriate ∆µ as discussed in Section 4. Moreover, the parallel and
the parallel-cascade structures of the BFD-TRNG can further reduce the cost per bit, as only one
extra ROSC is required for each extra output. When M is large, the costs of the parallel and the
parallel-cascade structures will be significantly less than prior existing ROSC based TRNG designs.
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We now compare the area and power performance of the M -parallel BFD-TRNG and the 64-
parallel IBM TRNG in [Liberty et al. 2013]. Since the M -parallel BFD generates 3.25M bits per
count, for 64 parallel bits, M = 64/3.25 ≈ 20. With M = 64 for IBM TRNG and M = 20 for
BFD-TRNG, the (power)(sample period)/bit products for the two designs are given by 522.2125
and 182.2308, respectively. The (area)(sample period)/bit products for the two designs are give
by 534.0625 and 285.0000, respectively. Thus, we conclude that the M -parallel BFD-TRNG has
approximately 3 times power advantage and 2 times area advantage for a specified number of bits
per same period, compared to the IBM TRNGs. Similar calculations show that the power and area
consumptions of M -parallel cascade BFD-TRNG are only 30.9% and 45.4% of the IBM TRNG,
respectively. However, we caution that the M -parallel and M -parallel-cascade BFD-TRNG results
are not based on actual measurements, but are predicted from models.

Table VIII: Summary of Different ROSC based TRNG Designs

# Bits per Sample Sample Period Component
Two-Oscillator TRNG (Fig. 1) 1 > 500 2 ROSCs, 1 DFF

M -parallel Two-Oscillator TRNG ([Liberty et al. 2013]) M > 500 (M + 1) ROSCs,M DFFs
ROSC TRNG with XOR tree (Fig. 18) 1 5 ∼ 20 115 ROSCs, 1 DFF†

Enhanced ROSC TRNG with XOR tree (Fig. 19) 1 5 ∼ 20 51 ROSCs, 50 DFFs†

BFD-TRNG (Fig. 2) 3.25 500 2 ROSCs, 1 DFF, 1 Counter
M -parallel BFD-TRNG (Fig. 14) 3.25M 500 (M + 1) ROSCs,M DFFs,M Counters

Cascade BFD-TRNG (Fig. 15) 4 500 3 ROSCs, 3 DFFs, 1 Counters
M -parallel Cascade BFD-TRNG (Fig. 17) 4M 500 (M + 2) ROSCs, (2M + 1) DFFs,M Counters

† the cost of XOR is negligible

Table IX: Area and Power Consumptions for ROSC based TRNG Components

Power Normalized Power Area Normalized Area
ROSC 21.19µ 1 40 × 10µ2 1
DFF 0.61µ 0.0288 3 × 7µ2 0.0525

Counter 2.24µ 0.1057 30 × 10µ2 0.75

Table X: Cost for Different ROSC based TRNG Designs
Total Power (Power)(Sample Period)/Bit Total Area (Area)(Sample Period)/Bit

Two-Oscillator TRNG (Fig. 1) 2.0288 > 1014.4 2.0525 > 1026.25
M -parallel Two-Oscillator TRNG ([Liberty et al. 2013]) 1.0288M + 1 > 514.4 + 500/M 1.0525M + 1 > 526.25 + 500/M

ROSC TRNG with XOR tree (Fig. 18) 115.0288 575.144 ∼ 2300.576 115.0525 575.2525 ∼ 2301.05
Enhanced ROSC TRNG with XOR tree (Fig. 19) 52.44 262.2 ∼ 1048.8 52.625 263.125 ∼ 1052.5

BFD-TRNG (Fig. 2) 2.1345 328.3846 2.8025 431.1538
M -parallel BFD-TRNG (Fig. 14) 1.1345M + 1 174.5385 + 153.8461/M 1.8025M + 1 277.3077 + 153.8461/M

Cascade BFD-TRNG (Fig. 15) 3.1921 399.0125 3.9075 488.4375
M -parallel Cascade BFD-TRNG (Fig. 17) 1.1633M + 2.0288 145.4125 + 253.6/M 1.855M + 2.0525 231.85 + 256.5625/M

7. CONCLUSION AND FUTURE WORK
This paper has presented a comprehensive statistical analysis for the high-speed BFD-TRNG.

The relationships of period difference of the two ROSCs, environmental noise and the counter val-
ues have been investigated. Furthermore, how the counter values affect the number of random bits
per sample that we can use has also been examined. We have concluded that an appropriate frequen-
cy difference of the two ROSCs should be set based on the environmental noise to achieve higher
throughput. Other aspects of the BFD-TRNG design, such as post-processing techniques, have also
been explored. Based on statistical analysis results, we have proposed several alternate BFD-TRNG
designs, which include the parallel structure, the cascade structure, and the parallel-cascade struc-
ture. These novel structures could achieve improved performances. Comparisons of the BFD-TRNG
with other existing ROSC based TRNGs have also been conducted. We have shown that the BFD-
TRNG designs have better performances from both the randomness and the cost perspectives. Future
work will be directed towards improving the BFD-TRNG design by utilizing our statistical analysis
results, which would also include the aspects of transistor sizing and trimming capacitors selection.
Novel TRNG designs need to be fabricated and tested. Our statistical analysis can also be verified
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by new silicon data. Moreover, since we are unable to include the analysis of flicker noise in this
paper as it is not possible for us to collect test data at frequencies below the corner frequency of
flicker noise in our current high-speed BFD-TRNG chip, we leave the analysis as a future work.
The current model can be refined and improved in future efforts by embedding models of flicker
noise from data collected from future fabricated chips.
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