Chapter 14: Redundant Arithmetic

Keshab K. Parhi

- A non-redundant radix-r number has digits from the set{0, 1, ..., r - 1} and all numbers can be represented in a unique way.
- A radix-r redundant signed-digit number system is based on digit set $S \equiv \{-\beta, -(\beta 1), ..., -1, 0, 1, ..., \alpha\}$, where, $1 \le \beta$, $\alpha \le r 1$.
- The digit set S contains more than r values ⇒ multiple representations for any number in signed digit format. Hence, the name redundant.
- A symmetric signed digit has $\alpha = \beta$.
- Carry-free addition is an attractive property of redundant signed-digit numbers. This allows most significant digit (msd) first redundant arithmetic, also called <u>on-line arithmetic</u>.

Redundant Number Representations

• A symmetric signed-digit representation uses the digit set $D_{<r,\alpha>} = \{-\alpha, ..., -1, 0, 1, ..., \alpha\}$, where r is the radix and α the largest digit in the set. A number in this representation is written as :

$$X_{} = X_{W-1} X_{W-2} X_{W-3} ... X_{0} = \sum X_{W-1-i} r^{i}$$

The sign of the number is given by the sign of the most significant non-zero digit.

Digit Set D _{<r.α></r.α>}	α	Redundancy Factor p
Incomplete	< (r – 1)/2	< 1/2
Complete but non-redundant	= (r – 1)/2	$= \frac{1}{2}$
Redundant	≥[r/2]	> 1/2
Minimally redundant	=[r/2]	> ½ and < 1
Maximally redundant	= r – 1	= 1
Over-redundant	>r-1	> 1

<u>Hybrid Radix-2 Addition</u> $S_{<2.1>} = X_{<2.1>} + Y$

where, $X_{<r.\alpha>} = x_{W-1}.x_{W-2}x_{W-3}...x_0$, $Y = y_{W-1}.y_{W-2}y_{W-3}...y_0$. The addition is carried out in two steps :

1. The 1st step is carried out in parallel for all the bit positions. An intermediate sum $p_i = x_i + y_i$ is computed, which lies in the range $\{\overline{1}, 0, 1, 2\}$. The addition is expressed as:

$$x_{i} + y_{i} = 2t_{i} + u_{i}$$

where t_i is the transfer digit and has value 0 or 1, and is denoted as t_i^+ ; u_i is the interim sum and has value either 1 or 0 and is denoted as $-u_i^-$. t_{-1} is assigned the value of 0.

2. The sum digits s_i are formed as follows:

$$s_i = t_{i-1}^{+} - u_i^{-}$$

LSD-first adder

MSD-first adder

<u>Hybrid Radix-2 Subtraction</u> $S_{<2.1>} = X_{<2.1>} - Y$

where, $X_{<r.\alpha>} = x_{W-1}.x_{W-2}x_{W-3}...x_0$, $Y = y_{W-1}.y_{W-2}y_{W-3}...y_0$. The addition is carried out in two steps :

1. The 1st step is carried out in parallel for all the bit positions. An intermediate difference $p_i = x_i - y_i$ is computed, which lies in the range {2, 1, 0, 1}. The addition is expressed as:

$$x_i - y_i = 2t_i + u_i$$

where t_i is the transfer digit and has value 1 or 0, and is denoted as $-t_i^-$; u_i is the interim sum and has value either 0 or 1 and is denoted as u_i^+ . t_{-1} is assigned the value of 0.

2. The sum digits s_i are formed as follows:

$$S_i = -t_{i-1} + U_i^+$$

Chap. 14

Hybrid Radix-2 Addition/Subtraction У 7 У 6 У 5 У4 Уз У 2 У 1 Уo A/Sbar MUX MUX MUX MUX MUX MUX MUX MUX $x_{5}^{+}x_{5}^{-}$ $x_{4}^{+}x_{4}^{-}$ x 3 x 3 $x_{2}^{+}x_{2}^{-}$ $x_{6}^{+} x_{6}^{-}$ $x_{1}^{+}x_{1}^{-}$ $x_{0}^{+}x_{0}^{-}$ $x_{7}^{+}x_{7}^{-}$ + -+ - + -+ -+ + --+ -+ -PPM PPM PPM PPM PPM PPM PPM PPM + + S_{s}^{+} - + 8686 $\frac{5}{4}$ $\frac{5}{4}$ $\frac{1}{4}$ - + 8383 - + s₂s₂ - + 8585 s ₀ s ₀ 5 7 5 7 (Discard)

Hybrid radix-2 adder/subtractor (A/ \overline{S} = 1 for addition and A/ \overline{S} = 0 for subtraction)

•This is possible if one of the operands is in radix-r complement representation. Hybrid subtraction is carried out by hybrid addition where the 2's complement of the subtrahend is added to the minuend and the carry-out from the most significant Chiposition is discarded.

Signed Binary Digit (SBD) Addition/Subtraction

- $Y_{<r.\alpha>} = Y^+ Y^-$, is a signed digit number, where Y^+ and Y^- are from the digit set {0, 1, ..., α }.
- A signed digit number is thus subtraction of 2 unsigned conventional numbers.
- Signed addition is given by:

$$S_{} = X_{} + Y_{} = X_{} + Y^{+} - Y^{-},$$

$$\implies S1_{} = X_{} + Y^{+},$$

$$S_{} = S1_{} - Y^{-}$$

- Digit serial SBD adders can be derived by folding the digit parallel adders in both lsd-first and msdfirst modes.
- LSD-first adders have zero latency and msd-first adders have latency of 2 clock cycles.

Chap. 14

(b) Definition of the switching box

Chap. 14

(b)

Digit serial SBD redundant adders. (a) LSD-first adder (b) msd-first adder

<u>Maximally Redundant Hybrid Radix-4 Addition</u> (MRHY4A)

• Maximally redundant numbers are based on digit set D_{<4.3>}.

$$S_{<4.3>} = X_{<4.3>} - Y_4$$

• The first step computes:

$$\mathbf{x}_{i} + \mathbf{y}_{i} = 4\mathbf{t}_{i} + \mathbf{u}_{i}$$

Replacing the respective binary codes from the table the following is obtained :

 $(2x_i^{+2} - 2x_i^{-2} + 2y_i^{+2}) + x_i^{+} - x_i^{-} + y_i^{+} = 4t_i^{+} + 2u_i^{+2} - 2u_i^{-2} - u_i^{-}$ A MRHY4A cell consisting of two PPM adders is used to compute the above.

• Step 2 computes computes $s_i = t_{i-1} + u_i$. Replacing s_i , u_i , and t_{i-1} by corresponding binary codes leads to $s_i^{+2} = u_i^{+2}$, $s_i^{-2} = u_i^{-2}$, $s_i^{+}=t_{i-1}^{+}$ and $s_i^{-} = u_i^{-2}$.

Digit	Radix 4 Digit Set	Binary Code
x _i	{3, 2, 1, 0, 1, 2, 3}	$2x_i^{+2} - 2x_i^{-2} + x_i^{+} - x_i^{-}$
У _і	{0, 1, 2, 3}	$2y_{i}^{+2} + y_{i}^{+}$
$p_i = x_i + y_i$	{3, 2, 1, 0, 1, 2, 3, 4, 5, 6}	$4t_i + u_i$
u _i	{3, 2, 1, 0, 1, 2}	$2u_i^{+2} - 2u_i^{-2} - u_i^{-1}$
t _i	{0, 1}	t _i +
$S_i = U_i + t_{i-1}$	$\overline{\overline{(3, 2, 1, 0, 1, 2, 3)}}$	$2S_i^{+2} - 2S_i^{-2} + S_i^{+} - S_i^{-}$

Digit sets involved in Maximally Redundant Hybrid Radix-4 Addition

Minimally Redundant Hybrid Radix-4 Addition (mrHY4A)

Minimally redundant numbers are based on digit set D_{<4.2>}.

$$S_{<4.2>} = X_{<4.2>} - Y_4$$

• The first step computes:

$$\mathbf{x}_{i} + \mathbf{y}_{i} = 4\mathbf{t}_{i} + \mathbf{u}_{i}$$

Replacing the respective binary codes from the table the following is obtained :

 $(-2x_i^{-2} + 2y_i^{+2}) + (x_i^{+} + x_i^{++} + y_i^{+}) = 4t_i^{+} - 2u_i^{-2} + u_i^{+}$

A mrHY4A cell consisting of one PPM adder and a full adder is used to compute the above.

• Step 2 computes computes $s_i = t_{i-1} + u_i$. Replacing s_i , u_i , and t_{i-1} by corresponding binary codes leads to $s_i^{-2} = u_i^{-2}$, $s_i^{++} = t_{i-1}^{++}$ and $s_i^{+} = u_i^{+}$.

Digit	Radix 4 Digit Set	Binary Code
x _i	{2, 1, 0, 1, 2}	$-2x_{i}^{-2} + x_{i}^{+} + x_{i}^{++}$
y _i	{0, 1, 2, 3}	$2y_i^{+2} + y_i^{+}$
$p_i = x_i + y_i$	{ <u>2</u> , <u>1</u> , 0, 1, 2, 3, 4, 5}	$4t_i + u_i$
u _i	{2, 1, 0, 1}	$2u_i^{+2} - 2u_i^{-2} - u_i^{-1}$
t _i	{0, 1}	t _i +
$S_i = U_i + t_{i-1}$	$\{\overline{2}, \overline{1}, 0, 1, 2\}$	$2S_i^{-2} + S_i^{+} + S_i^{++}$

Digit sets involved in Minimally Redundant Hybrid Radix-4 Addition

Non-redundant to Redundant Conversion

 Radix-2 Representation : A non-redundant number X = x₃.x₂.x₁.x₀ can be converted to a redundant number Y = y₃.y₂.y₁.y₀, where each digit y_i is encoded as y_i⁺ and y_i⁻ as shown below:

- Radix-4 representation :
 - <u>radix-4 maximally redundant number</u>: X is a radix-4 complement number, whose digits x_i are encoded using 2 wires as $x_i = 2x_i^{+2} + x_i^{+}$. Its corresponding maximally redundant number Y is encoded using $y_i = 2y_i^{+2} - 2y_i^{-2} + y_i^{+} - y_i^{-}$. The sign digit x_3 can take values $-3_i - 2_i - 1$ or 0, and is encoded using $x_3 = -2x_3^{-2} - x_3^{-}$.

- <u>radix-4 minimally redundant number</u>: X is a radix-4 complement number, whose digits x_i are encoded using 2 wires as $x_i = 2x_i^{+2} + x_i^{+}$. Its corresponding minimally redundant number Y is encoded using $y_i = -2y_i^{-2} + y_i^{+} + y_i^{++}$. To convert radix-r number x to redundant number $y_{< r. \alpha > \prime}$ the digits in the range [α , r - 1] are encoded using a transfer digit 1 and a corresponding digit x_i - r where x_i is the ith digit of x. Thus,

$$2x_{i}^{+2} + x_{i}^{+} = 4x_{i}^{+2} - 2x_{i}^{+2} + x_{i}^{+}$$
$$= y_{i+1}^{++} - 2y_{i}^{-2} + y_{i}^{+}$$

