EE 4501 - Sample Questions

The following are sample questions for Part A (each worth 2 points). Part B will be similar in style to the mid-term exam. Solutions are posted separately.

1. Compute the power of the signal $x(t)$ in Figure 1 ($x(t)$ is a periodic signal and extends from $-\infty$ to ∞ in time).

 Figure 1:

 ![Figure 1](image_url)

2. Let $y(t) = \begin{cases} x(t) & \text{if } 0 \leq t \leq 2 \\ 0 & \text{otherwise} \end{cases}$, where $x(t)$ is as defined in Figure 1.

 What is the Fourier Transform of $y(t)$, that is, $\mathcal{F}[y(t)]$?
3. Consider the filter with frequency response $H(f) = \Pi \left(\frac{f}{2F_c} \right)$. This filter is not practically realizable because (place a ✓ mark beside all reasons that apply, there might be more than one):

□ The impulse response has a finite value at $t < 0$, which makes it non-causal
□ The filter is not linear-phase
□ The impulse response is of infinite duration
□ The impulse response has very large or infinite values at certain points of time

4. Let $m(t)$ be an audio signal and $s(t)$ an AM signal modulated according to $m(t)$. Assume that an AM receiver receives $as(t)$ (for some constant $a > 0$) and demodulates this using a synchronous demodulator with a unit-amplitude carrier, at the same carrier frequency (in the MHz range) but with a constant phase mismatch of ϕ. The receiver does not amplify the received or demodulated signal. Assume that the system has no noise or outside interference.

If $\phi = 0$, the output of the demodulator will be (place a ✓ beside the statement that is true):

□ the same as the transmitted audio signal, but with volume (amplitude) proportional to a
□ the same as the transmitted audio signal and the volume (amplitude) is independent of a, as long as a is not too small

If $0 < \phi < \pi/2$ and $a = 1$, the output of the demodulator will be (place a ✓ beside the statement that is true):

□ the same as the transmitted audio signal, but the volume (amplitude) depends on ϕ
□ completely unrecognizable and different from the transmitted audio signal, since $\phi \neq 0$

5. Consider the system in Figure 2. Let $m(t)$ have bandwidth 500 KHz and $-1 \leq m(t) \leq 1$. $y_2(t)$ will be an FM signal. What is its center frequency f_c and Carson-rule bandwidth?

![Figure 2:](image)

\[f_c = \text{_______________} \]

Bandwidth = \text{_______________}
6. Let \(x(t) = 1 + \cos(2\pi(500)t) + \cos(2\pi(1500)t) \). \(x(t) \) is sampled at the minimum rate such that it can be reconstructed without distortion, and each sample is then uniformly quantized (over the range of values \(m(t) \) can take), using 2 bits per sample. Write out the quantized bits that represent the first three samples. Assume that the first sample begins at time \(t = 0 \). Given: \(\cos(\pi/3) = 1/2 \), \(\cos(2\pi/3) = -1/2 \).

7. What is the essential bandwidth of an On/Off line code that transmits \(p(t) = \Delta \left(\frac{t}{2T_b}\right) \) to represent the bit 1, and a 0v signal to represent the bit 0? The signal representing each bit is transmitted every \(T_b \) seconds, and the essential bandwidth is defined as the first value of \(f > 0 \) such that the PSD is zero.
8. A Let $p_1(t)$ be a raised-cosine pulse and $p_2(t)$ be a duo-binary pulse. State true/false (no need to explain why, although adding an explanation might earn you partial credit if your answer is wrong):

(a) $p_1(t)$ will suffer from ISI, while $p_2(t)$ will not. True/False?
(b) $p_1(t)$ has less bandwidth when compared to $p_2(t)$. True/False?

9. Sketch the eye-diagram for a bi-polar line code using a rectangular pulse. That is, a 0v signal is sent to represent the bit 0, $p(t) = \Pi (t/T_b)$ is sent to represent every even occurrence of the bit 1, and $-p(t)$ is sent to represent every odd occurrence of the bit 1. A pulse is sent every T_b seconds.

10. Consider a digital communication system which transmits $a_n \cos(2\pi f_c t) + b_n \sin(2\pi f_c t)$ in the time interval $nT \leq t < (n+1)T$, for $n = 0, 1, 2, \ldots$

 Figure 3:

 ![Figure 3](image)

 a_n and b_n are as defined in Figure 3 for 2 schemes. State true/false (no need to explain why, although adding an explanation might earn you partial credit if your answer is wrong):

(a) Both Schemes I and II have the same power AND bandwidth requirements. True/False?
(b) For both Schemes I and II, the receiver needs to accurately know the phase of the received signal to decode the bits correctly. True/False?
(c) Both Schemes I and II communicate at the same data rate. True/False?
(d) Both Schemes I and II have the same probability of error, assuming that the noise power is the same for both. True/False?