
GNOMO: Greater-than-NOMinalVdd Operation for BTI Mitigation

Saket Gupta and Sachin S. Sapatnekar
Department of Electrical and Computer Engineering

University of Minnesota, Minneapolis, MN 55455, USA.

Abstract—This paper presents a novel scheme for mitigating delay
degradations in digital circuits due to bias temperature instability (BTI).
The method works in two alternating phases. In the first, a greater-
than-nominal supply voltage, Vdd,g is used, which causes a task to
complete more quickly but causes greater aging than the nominal supply
voltage,Vdd,n. In the second, the circuit is power-gated, enabling the BTI
recovery phase. We demonstrate, both at the circuit and the architectural
levels, that this approach can significantly mitigate agingfor a small
performance penalty.

I. I NTRODUCTION

A major component of run-time delay changes in digital cir-
cuits is attributable to negative/positive bias temperature instability
(NBTI/PBTI) in PMOS/NMOS devices; collectively, these effects are
referred to as BTI. In a CMOS gate, when an NMOS (PMOS) device
is stressed under BTI, typically by applying a logic 1 (logic 0) at its
gate input, its threshold voltage degrades, resulting in an increase in
the gate delay. When the stress is removed, there is partial (but not
complete) recovery in the threshold voltage, and hence the delay.

Various approaches have been proposed to overcome this degra-
dation. Some methods introduce delay guardbands using sizing or
resynthesis [1] to add a delay margin to the nominal (t = 0) design.
At the circuit level, adaptive body bias/adaptive supply voltage
schemes [2], [3] compensate for BTI by dynamically increasing the
values ofVdd andVbb voltages to speed up the circuit, compensating
for aging-related degradation. Since the optimum for each circuit
block may be different, this could involve the generation of a large
set ofVdd andVbb values, which poses a significant challenge.

Chip-level dynamic voltage scaling (DVS) schemes [4]–[6] to
recapture lost performance overcome this problem by dynamically
varying the supply voltage at the processor level. These methods also
mitigate BTI by managing the workload amongst multiple cores. DVS
schemes, however, have benefits only in the early lifetime [7] of the
chip as the BTI degradation occurs rapidly in the first few months.

State-based schemes detect the idle states of the circuit during
computation [8], [9], and apply a suitable recovery mechanism to
lower the degradation. Other methods in this class distribute tasks
over partitioned functional units to balance aging [10] and perform
node vector control [11] or power gating [12] during idle times.

Such idle-state approaches have some common limitations. First,
the idle states are workload/circuit configuration dependent: the
precise idle times tend to be unpredictable, or difficult to predict dy-
namically. Hence, the schemes require a complex hardware/software
control mechanism that can (a) dynamically detect the idle times
during execution, (b) apply the appropriate recovery mechanism, and
(c) keep track of which parts of the circuit have partially recovered
after the idle time, and by how much. Second, it may not be easy
to exploit such idle times fully, for modern out-of-order execution
and multi-threading endeavor to hide idle periods. A better approach
would be to have predictable idle times of fixed durations, requiring
a potentially much simpler control mechanism.

We propose GNOMO, a novel and superficially counterintuitive
scheme for mitigating BTI that works both at the circuit and the
architecture-level by introducingpredictable idle times. Going against
the conventional wisdom that operation at a higherVdd will result in

a higher delay degradation, we show that by elevatingVdd to an
optimal, greater-than-nominal value, we can achieve a lower delay
degradation than that incurred at the nominalVdd.

Computation Time

∆D
 /

D
 (

0)
 (

%
)

 t
n

 t
i

V
dd, g

 = 1.1V

Reduction in
Delay

Degradation t
g

V
dd, n

 = 1.0V

(a)

Computation Time

∆D
 /

D
 (

0)
 (

%
)

V
dd

 = 1.3V V
dd

 = 1.2V
V

dd
 = 1.1V
V

dd
 = 1.0V

V
dd

 = 0.9V

V
dd

 = 0.8V

(b)
Fig. 1: The delay degradation patterns of MCNC benchmark alu4
at (a) nominal supply voltageVdd,n = 1V and greater-than-nominal
supply voltageVdd,g = 1.1V, and (b)Vdd ∈ [0.8V, 1.3V] values.

We illustrate this idea in Fig. 1(a) through the example of an
ALU (MCNC benchmark alu4). Note that monotone degradation
under stress shown here captures the effect of alternate stress/recovery
cycles and plots theenvelopeof BTI degradation [13].

With a nominal supply voltage valueVdd,n = 1.0V, the ALU
requires a computation timetn for a given workload. In GNOMO
(greater-than-nominal operation), at a higher supply voltageVdd,g,
the ALU has a lower delay and works at a higher clock frequency,
requiring onlytg < tn time for completing the whole computation.
As Vdd,g > Vdd,n, the degradation rate while in GNOMO is higher
during t ∈ [0, tg]. However, sincetg < tn, additional idle time
ti = tn − tg is generated during which the ALU can be power-gated
while maintaining the same throughput. This enables recovery, which
may lower the overall delay degradation of the ALU att = tn, as
compared to the nominal operation. Fig. 1(b) illustrates this for a
different baseline voltage,Vdd,n = 0.8V, and severalVdd,g values.
Note that the idle times show diminishing returns asVdd,g increases.

An additional consideration in GNOMO is the increased power
consumption at the higherVdd,g value. The generated idle times,
however, serve to lower these overheads. Thus, there is a trade-
off with an optimal operating point that can appreciably reduce the
degradation while incurring small power/performance overheads (and
as we show, even some power gains). Our paper presents the approach
for exploring such an operating point, and its practical adoption at
the circuit/architectural level. The salient features and contributions
of our work can be summarized as follows:
First, given a nominalVdd, GNOMO statically determines the optimal
greater-than-nominalVdd for each functional block. We then present
a simple architectural-level control framework for operating the entire
processor at a common greater-than-nominalVdd, thus bridging the
gap between circuits and architecture.
Second, we show that GNOMO enables a reduction of about 20%-
45% in delay degradation. For the same lifetime, this reduction
in degradation implies that reduced guardbands are necessary as
compared to the nominal voltage case. This yields a reduction of
up to about 2x in the area and power overheads.
Third, GNOMO does not require fine-grained voltage sup-
plies/control, nor does it require the detection of idle times (or the

potentially complex associated circuitry) for idle times aregenerated,
and not detected, and are hence predictable-by-construction.

We first present the preliminaries for this work in Section II.
Section II-B then presents the control framework for GNOMO,
followed by our methodology for finding the optimal GNOMOVdd

for a particular circuit in Section IV. We then present our results and
conclusion in Sections V and VI.

II. PRELIMINARIES

A. BTI Modeling

We work with a widely adopted model [13] for predicting delay
degradation due to BTI. We present an expression for PMOS NBTI
under alternate stress/relax cycles, for a givenVdd and signal proba-
bility α at the input of the PMOS (for PBTI, similar equations may
be used since the mechanism of NMOS delay degradation is similar
to that of PMOS, albeit with a lower degradation magnitude [3]):

Stress:∆Vth(t) =
(

Kv
√
t− t0 + 2n

√

C(t− t0)
)

2n (1)

Recovery:∆Vth(t) = ∆Vth(t0)
(

1−
2ξ1te +

√

ξ2C(t− t0)

2tox +
√
Ct

)

(2)

Long-term model:

∆Vth(t) =
(K2

vαTclk)
n

(1− β
1/2n
t)2n

; βt = 1−
2ξ1te +

√

ξ2C(1− α)Tclk

2tox +
√
Ct

(3)

where equations (1) and (2) model all-stress and all-recovery. The
long-term model in equation (3) predicts the envelope of the BTI
degradation pattern with alternating stress and recovery. The precise
definitions of the symbols above may be found in [13], but it is
important to note that:
• the exponentn = 1/6.
• Kv (and hence∆Vth(t)) is a superlinear function ofVdd.

B. Delay and Power Modeling

As in past research, we use compact sensitivity-based performance
models for the delay (D) and the logarithm of the leakage power
(logL) in terms ofVth [3]. For X ∈ {D, logL}, we characterize

X (t) = X0 +

n∑

i=1

∂X

∂Vthi

∆Vthi
(t) (4)

where ∂X/∂Vthi
denotes the sensitivity of the quantityX with

respect to theVth of the ith transistor along the input-output path.

III. GNOMO : GREATER-THAN-NOM INAL Vdd OPERATION

We now employ architectural-level analysis to present the GNOMO
framework for BTI mitigation. We use the termVdd,n to refer to the
nominal supply voltage andVdd,g to the GNOMO value.
A. Voltage Supplies and Operational Frequencies

It is important to emphasize that GNOMO isnot an adaptive
supply voltage scheme (ASV) for BTI mitigation: under GNOMO,
the processor operates at a constant voltage and frequency (however,
it is possible to apply the GNOMO framework when ASV is required
for power management). In our implementation, the elevatedVdd may
take one of several values; each such value corresponds to a different
frequency of operation for the processor. We assume processor
operation with realistic discrete supply voltage/frequency (Vdd/f)
pairs, adopted from Intel’s recent 48-core IA-32 Processor [14]as
shown in Table I, whereVdd lies in the range [0.7V, 1.3V] (this
choice is only for illustration purposes; any otherVdd/f framework
can be used instead). This allows us to operate within the framework
of existing technologies to illustrate the principles of GNOMO.

TABLE I: OperationalVdd/f pairs adopted from Intel’s IA-32 Pro-
cessor [14]

Vdd (Volts) 0.7 0.8 0.9 1.0 1.1 1.2 1.3
Frequency (GHz) 0.25 0.47 0.68 0.86 1.03 1.17 1.30

Tclk (ns) 4.00 2.13 1.47 1.16 0.97 0.85 0.77

It is worth noting that Table I shows that with a linear increase in
the value ofVdd, the increase in the clock frequency is only sublinear.
The effect of this will be discussed further in Section IV-A.

B. Circuit Recovery through Power Gating

1) Motivating Intuition: The essential idea of GNOMO is inspired
by the intuition depicted through Fig. 1. In principle, for a fixed
clock period, GNOMO finishes the computations early in every clock
cycle. We can then potentially “switch-off” the circuits during the
fraction of the clock cycle when they do not function (i.e., they remain
idle), so that the circuits can recover sufficiently to gain a lower
delay degradation after every clock cycle. This recovery can then be
accumulated over all the clock cycles as the circuit functions, and
lower its overall delay at the end-of-lifetime.

However, it is completely impractical to implement such a scheme,
where circuits must be put to sleep and woken up within a single clock
cycle. However, the idea can be extended to a realistic architectural
framework: instead of switching-off/waking-up the circuit within each
cycle, we run the circuit for a large number of cycles and then
introduce a predetermined amount of idle time (also corresponding
to a large enough number of cycles so that the overheads of
sleep/wake-up are amortized). This idea effectively provides the same
sleep/wakeup “duty cycle” as in the concept above. By the concept of
frequency independence of BTI, the degradation/recovery depends on
the duty cycle rather than the precise distribution of on/off periods,
and therefore this alternative, more practical formulation results in the
same amount of recovery as the conceptual idea presented earlier. In
such a scenario, it is easy to switch-off the circuit (e.g., by power
gating) as both computational and idle times are significantly larger
than the switch-off time.

2) Mechanism:The practical implementation of GNOMO works
as follows: the processor runs at GNOMO supply voltage,Vdd,g,
for a certain number of cycles, and then sleeps for some cycles. It
continues execution in this intermittent way throughout its lifetime.

For a given workload, consider the operation of the processor
during one of these periods, corresponding to a fixed number of clock
cycles,cf . Let the number of instructions executed, while operating
atVdd,n (Vdd,g), beIn (Ig), and let the corresponding execution time
be tn (tg) time units. Clearly,

tn = cf · Tclk,n and tg = cf · Tclk,g (5)

These durations are termed as thecompute-phases. Since the
computation is completed earlier under GNOMO, an additionalidle
phaseof time durationti (ci cycles) is generated after the compute
phase, during which the circuits do not perform any computation.
Note that this idle phase is deliberately inserted and therefore easily
predictable, and is thus different from the idle periods that may occur
within the compute phase due to cache misses, TLB misses, branch
mispredictions, etc. Fig. 2 depicts the GNOMO scheme, showing the
time (in cycles as well as seconds) along the x-axis, andVdd along
the y-axis. During the compute phase, the processor is active with
Vdd = Vdd,g, and transitions to the idle state withVdd = 0V when
the computation is finished. Upon the completion of the idle phase,
the processor then enters the next compute phase.

For circuit recovery during this idle phase, power gating (using the
existing on-chip power gating framework) is applied to all the circuits,
incurring an overhead ofts time units (cs cycles) for the circuits to

Fig. 2: The compute and idle phases in GNOMO in the practical
implementation.

transition to the sleep state. This operation is applied to computational
units rather than caches (which may need to preserve state): the
internal nodes of computational units do not need to save their logical
states since the computation is complete; therefore, during the idle
phase, these circuits undergo recovery. The circuits are then woken
up again before the idle phase completes (to execute the instructions
in the nextcf cycles), incurring an overhead oftw time units (cw
cycles) for wakeup. The sleep/wake-up transitions are deliberately
designed to occur inside the idle phase, ensuring that the execution
of instructions is not affected by the GNOMO scheme.

3) Overheads:Existing power gating frameworks offer sleep tran-
sition times (cs) of about 10 to 50 cycles for various circuits in a
processor [12]. The wakeup time (cw) is typically about 5-10 cycles.
Since these transitions are designed to occur within the idle phase,
the effective idle time may decrease significantly ifcs and cw are
comparable toci. Moreover, the sleep/wake-up transitions consume
power, which incur a power overhead. These overheads, however, are
easily compensated for and become negligible by addressing some
of the architectural-level issues that arise in implementing GNOMO,
as discussed shortly in Section V-B.

C. Idle Time Generation – Practical Considerations

Recall that the number of instructions executed incf cycles at
Vdd,n andVdd,g areIn andIg, respectively.
“Ideal” Case: If the frequencies of all the components in a CPU (both
on-chip and off-chip components) were to scale at the same rate as
Vdd is changed, as dictated by Table I, the number of instructions
executed incf cycles would be the same, i.e.,In = Ig. The idle
time ti,1 may be computed as:

ti,1 = tn − tg = cf · (Tclk,n − Tclk,g) (6)

Idle time ti,1 is shown in Fig. 3(a), which presents both the nominal
operation and GNOMO, over one set ofcf cycles, with time along the
x-axis and percentage delay degradation along the y-axis. Fig. 3(a)
shows that during the nominal operation (Vdd = Vdd,n andTclk =
Tclk,n), cf cycles taketn time to execute. At GNOMO (Vdd = Vdd,g

andTclk = Tclk,g), the samecf cycles take less amount of time,tg,
to execute, generatingti,1 idle time.

Note that the extra computation depicted byto in Fig. 3(a) does
not occur in this ideal case, but is seen in a more realistic case as
discussed next.
Realistic Case:In practice, the voltages and frequencies are scaled
only for on-chip components (processor, cache, on-chip buses, etc.),
but remains the same for off-chip components (memory, memory
buses, and memory controllers). Hence, the accesstime for off-chip
memory (upon a cache miss) remains the same at bothVdd,n and
Vdd,g, but this time corresponds to a larger number of cycles under
the faster clock atVdd,g. Therefore, during the fixed number ofcf

(a) (b)

Fig. 3: The illustration of our scheme for generating (a) fixed idle
time, ti,1, and (b) variable idle time,ti,2.

clock cycles, the number of instructions executed under GNOMO
will be smaller:Ig = In − Io, whereIo is the number of overhead
instructions that still need to be executed. Let theseIo instructions
require an overhead ofco number of clock cycles (to time units) for
completion.

This overhead can be accommodated in two ways: first by keeping
the duration of idle phase fixed (=ti,1) and deferring the execution
of Io instructionsafter the idle phase, as shown in Fig. 3(a). This
incurs a performance penalty ofto time units (we show that this
performance penalty is small in Section V-B). The alternative way
is to execute theIo instructionswithin the idle phase, as shown in
Fig. 3(b) (which shows the same operations as in Fig. 3(a), except
for the placement of the execution overhead). This reduces idle time
from ti,1 to ti,2:

ti,2 = tn − (tg + to) = ti,1 − to (7)

This reduction in idle time also reduces the overall recovery possible,
albeit without a performance penalty. Further, for a specific value of
Vdd,n, the value ofti,1 is fixedas it depends only on the fixed number
of cyclescf and the frequency corresponding toVdd,n, which is also
fixed according to Table I. On the other hand, the value ofti,2 varies
with the number of off-chip accesses during execution.

Based on these observations, we now outline a mechanism for
generating idle times: after completingcf cycles, this scheme uses
ti,1 time units (ci,1 cycles) as the fixed idle time, for gaining recovery
for BTI mitigation.

D. Idle Time Generation – Framework

In this scheme, we generate a fixed amount of idle timeti,1, given
by equation (6), by applying power gating after completing thecf
number of clock cycles. Since the idle phase duration is fixed, this
ensures a fixed and predictable amount of recovery.

As seen in Section III-C, in practice, an overhead ofco cycles is
required to complete the remainingIo instructions atVdd,g. Since the
idle times are fixed, the completion time ofIg + Io instructions is
delayed byco cycles, i.e., there is a performance penalty involved,
but the amount of recovery time is guaranteed. The total performance
penalty for a particular workload is given by:

Performance Penalty=
to
tn

=
co · Tclk,g

cf · Tclk,n
(8)

Our scheme relies on the assumption that given aVdd,n for nominal
operation, all the circuits in a chip are operated at the same value of
Vdd,g for GNOMO (as theVdd/f pairs and power gating framework
work for all circuits in the chip). We show in Section IV-C that this
is indeed true for our scheme.

IV. OPTIMAL CHOICE FORGNOMOVdd

The framework of idle time generation was presented through
architectural-level considerations in the previous section. We now
examine the implications at the circuit level and determine the optimal
GNOMO Vdd value based on circuit-level considerations.

A. Delay Degradation as a Function ofVdd,g

The fraction of the required idle time at the GNOMOVdd,g value
in the “ideal” case, to the execution time forcf cycles atVdd,n,
can be computed as valid combinations of (Vdd,n, Vdd,g). These are
computed as follows:

ti,1
tn

=
cf · (Tclk,n − Tclk,g)

cf · Tclk,n
= 1−

Tclk,g

Tclk,n
(9)

Table II shows this percentage: note that it is a reasonable approxi-
mation of the realistic time,ti,2, since our experiments show that the

performance penalty is never more than 5.5%, and often much less.
We observe the following diminishing returns in idle times:
• For a particular value of the nominal supply voltageVdd,n (say

0.8V), a linear increase in the value ofVdd,g (along the row
from 0.9V to 1.3V) increases the idle time durations only in a
sublinear fashion. The corresponding increase in the degradation
rate, however, is almost quadratic [13]). This implies that the time
for recovery at higher values ofVdd,g will not sufficiently reduce
the additional degradation that occurs with GNOMO.

• At higher values ofVdd,n (≥ 1.1V), the available idle time is low.

TABLE II: Percentage idle timeti,1 for various(Vdd,n, Vdd,g)

Vdd,g → 0.8 0.9 1.0 1.1 1.2 1.3
Vdd,n ↓

0.7 46.8% 63.2% 70.9% 75.7% 78.6% 80.8%
0.8 – 30.8% 45.3% 54.3% 59.8% 63.9%
0.9 – – 20.9% 34.0% 41.9% 47.7%
1.0 – – – 16.5% 26.5% 33.6%
1.1 – – – – 12.0% 20.8%
1.2 – – – – – 10.0%

These idle times correspond to available time for BTI recovery, and
therefore the delay degradation improvements also show diminishing
returns. Fig. 4(a) shows the variation in percentage delay degradation
at the end-of-lifetime for benchmark alu4 withVdd,n = 0.8V and for
various values ofVdd,g (similar trends are seen for other values of
Vdd,n). The data in the figure assumes a random workload for the
ALU (a random distribution of signal probabilities at the PIs), which
mimics the variation in workload on the ALU at the architectural
level. AsVdd,g is increased, percentage∆D first decreases, reaches
a minimum at 1.1V, and then increases again. The initial trend can
be attributed to the large recovery times; for higherVdd,g values, this
is counteracted by the increased BTI effects. Therefore, there is the
notion of an optimal value ofVdd,g for a given value ofVdd,n.

B. Power Dissipation as a Function ofVdd,g

GNOMO impacts the power dissipation as follows:
• With the supply voltage increased toVdd,g, dynamic power in-

creases quadratically and leakage increases exponentially [15].
• Even though theVth increase due to BTI degradation is small,

the exponential relationship in leakage power leads to a significant
reduction over the lifetime of the chip [3]. This effect is more pro-
nounced at higherVdd values (due to increased BTI degradation).

• A further reduction in the average dynamic and leakage power
consumption occurs due to generation of idle time, since power
dissipation now occurs only in the compute-phase and not in the
idle-phase (except during sleep/wake-up cycles), which is a fraction
of the total nominal computation time.
Fig. 4(b) illustrates the variations of the normalized (by the nominal

value) average dynamic, leakage and total (dynamic + leakage) power
consumption for a typical case withVdd,n = 0.8V andVdd,g = 0.9V
to 1.3V (plotted under the same workload conditions as Fig. 4(a)).
Similar trends are seen for other values ofVdd,n. It can be seen that
the dynamic power increases subquadratically withVdd due to the

0.8 0.9 1 1.1 1.2 1.3
5

10

15

20

25

V
dd

 (V)

∆D
 /

D
 (

0)
 (

%
) V

dd,n

V
dd,g

(a)

0.8 0.9 1 1.1 1.2 1.3
0

0.5

1

1.5

V
dd

 (V)

P
ow

er

(N
or

m
al

iz
ed

 to
 T

ot
al

)

V
dd,n

V
dd,g

Dynamic Leakage Total

(b)
Fig. 4: (a) Delay degradation and (b) normalized dynamic, leakage
and total power for for alu4 as a function ofVdd,g; Vdd,n = 0.8V.

effect of idle times, but the leakage increases significantly, especially
at higher values ofVdd. The total power consumption remains about
flat until Vdd,g = 1.0V and then begins to increase beyond this point.

C. Choosing the Optimal GNOMO Supply Voltage

The discussion above is summarized as follows: forVdd,n = 0.8V,
the delay degradation, dynamic power, leakage power, and total power
are minimized atVdd,g = 1.1V, 0.8V, 1.1V, and 1.0V, respectively. An
optimal choice ofVdd,g must balance these individual optima.

0.8 0.9 1 1.1 1.2 1.3
5

10

15

20

25

V
dd

 (V)

P∆
D

 P
ro

du
ct V

dd,n

V opt
dd,g

V
dd,g

Fig. 5: P∆DP variation with for alu4, forVdd,n = 0.8V and forVdd,g

= 0.9V to 1.3V, illustrating the optimality criterion for choosing the
optimal Vdd,g for GNOMO.

Fig. 5 captures this by plotting the Power-∆D-product (P∆DP),
the product of the percentage delay degradation and the normalized
total power. We choose an optimal point on this plot, subject to the
requirements that the power overhead should be within 10% of the
optimal value. From simulations, we find that the forVdd,n ≤ 1.1V,
the total power overhead is less than 7% with GNOMO. For the data
shown in the figure, the optimal GNOMO supply voltage isV opt

dd,g

= 1.0V. This value corresponds to end-of-lifetime delay degradation
improvement from 19.5% to 10.4%.
TABLE III: The optimal Vdd,g values for various values ofVdd,n

Vdd,n (V) 0.7 0.8 0.9 1.0 1.1 1.2
V

opt
dd,g (V) 1.0 1.0 1.1 1.1 1.2 1.2

The above arguments can be used to find the best choice ofVdd,g

for each value ofVdd,n for the circuit alu4. We have performed the
same analysis for a large number of ISCAS85, MCNC, and ITC99
benchmarks: their details are described in Section V.

Interestingly, the optimal(Vdd,n, Vdd,g) pairs for each circuit are
identical, and the results are recorded in Table III. Intuitively, this is
because all circuits use the sameVdd/f pairs, which yields the same
idle time, as shown in equation (9). This can be formally proved, and
the proof is omitted due to space limitations. Loosely, it is based on
the idea that, using the models in Section II-A, the delay degradation
at time tn is proportional to the delay degradation at timetg, where
the proportionality constant depends on theti/tn ratio. Since the
ti/tn ratio is strictly determined by the values ofVdd,n andVdd,g,
and not by the circuit, the result follows.

We make the following observations about the table data:
• For Vdd,n = 1.2V, V opt

dd,g = Vdd,n and no gain is possible. This is
attributed to the fact that the total power increases by 15.5% for
Vdd,g = 1.3V candidate value, exceeding the 10% threshold: this
is primarily attributed to a steep increase in the leakage power due
to the higher voltage value and also due to the low idle time.

• GNOMO scheme works best when the value ofVdd,n is lower, but
it provides significant improvements for allVdd,n ≤ 1.1V.

V. RESULTS

We now present the results of applying GNOMO at the circuit and
architectural levels.

A. Circuit-level Results

At the circuit level, we examine the application of GNOMO on
various ISCAS85, MCNC and ITC99 benchmarks, synthesized using
ABC [16] on the 32nm PTM [17] based library. Our library consists

TABLE IV: Delay degradation and area, power overhead results for end-of-lifetime BTI compensation, for 3 sets of (Vdd,n, V opt
dd,g)

Circuit
∆D (%) ∆A (%) ∆P (%)

Vdd,n V
opt

dd,g
Vdd,n V

opt

dd,g
Vdd,n V

opt

dd,g
Vdd,n V

opt

dd,g
Vdd,n V

opt

dd,g
Vdd,n V

opt

dd,g
Vdd,n V

opt

dd,g
Vdd,n V

opt

dd,g
Vdd,n V

opt

dd,g

0.8V 1.0V 0.9V 1.1V 1.0V 1.1V 0.8V 1.0V 0.9V 1.1V 1.0V 1.1V 0.8V 1.0V 0.9V 1.1V 1.0V 1.1V
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19
alu4 19.5 10.4 20.9 12.6 23.1 15.9 16.8 4.5 19.9 6.3 25.0 10.4 15.1 5.5 17.9 8.6 22.5 13.1
b12 25.0 13.7 27.3 17.1 28.9 20.9 28.3 8.0 33.1 12.1 35.9 19.1 29.2 9.8 34.2 15.4 37.0 23.4
b15 23.9 12.6 25.4 15.4 27.9 19.7 36.0 8.8 40.7 12.5 46.7 22.6 43.4 12.1 49.1 18.0 56.2 31.0
c1908 19.9 10.3 22.0 12.6 24.5 16.8 13.7 3.6 17.2 5.4 23.0 9.5 15.1 5.5 18.9 8.8 25.3 14.2
c2670 20.0 10.6 21.3 12.7 23.1 16.1 23.7 7.5 27.9 9.0 33.6 13.7 25.7 9.7 30.3 12.6 36.5 18.6
c5315 20.8 11.4 22.6 14.0 25.0 18.0 18.9 6.3 22.9 8.3 28.4 13.6 23.0 9.2 27.8 12.9 34.5 20.2
c6288 21.1 11.8 22.8 14.3 24.9 18.0 27.2 8.2 32.5 10.7 39.4 18.1 30.7 10.7 36.7 15.0 44.5 24.1
dalu 23.8 12.8 25.3 15.5 27.7 19.6 26.7 6.5 30.6 9.8 36.4 16.9 28.1 8.4 32.3 13.2 38.4 21.5
des 20.4 11.2 22.0 13.7 24.2 17.6 24.8 7.8 29.9 10.0 37.3 17.1 29.9 10.9 36.1 15.0 44.9 24.3
i10 20.9 11.6 22.3 14.0 24.3 17.7 15.2 4.6 17.8 6.6 22.5 10.5 12.3 5.2 14.4 8.3 18.1 12.2
Avg. 21.8 11.8 23.4 14.4 25.6 18.3 23.8 6.8 28.1 9.4 33.7 15.7 26.4 9.1 31.1 13.2 37.3 21.1

consists of INVs; BUFs; 2-4 input NANDs and NORs; 2 input XORs
and XNORs; all with different sizes. We choosetlife = 10 years.
We optimize the circuits by introducing delay margins to compensate
for BTI aging, using the algorithms in [3].

1) Degradation Reduction and Area Savings:To begin with,
consider the application of GNOMO to the circuit alu4 with (Vdd,n,
V opt
dd,g) = (0.9V, 1.1V). The area vs. delay curve for this circuit, for

various target delay specifications, is shown in Fig. 6. The area values
are normalized to point A, which corresponds to the uncompensated
circuit for which no delay margins are added. The uncompensated
circuit is designed to have a delay specificationDuc

spec = 722 ps near
the “knee” of the area-delay curve since efficient area-delay trade-
offs can be achieved in this region. We compare optimizations using
the nominal and the GNOMO supply voltages:
• At Vdd,n, the ALU incurs a 20.9% delay degradation which is

compensated by mapping the circuit with a tighter specification,
Dc,n

spec, using the delay margin algorithm in [3]. This corresponds
to point B on the curve, which incurs an additional area overhead
of 19.9% over point A.

• At the GNOMO voltage,Vdd,g, the BTI degradation is reduced to
12.6%, and hence the delay margin is relaxed, corresponding to
a delay specification ofDc,g

spec at Point C. This reduces the area
overhead to 6.3%. Thus, the area overhead for BTI compensation
is reduced by 3× for GNOMO as compared to theVdd,n case.

600 700 800 900
0.8

1

1.2

1.4

A

D uc
spec

B

D c,n
spec

C

D c,g
spec

Delay (ps)

A
re

a
(N

or
m

al
iz

ed
)

Fig. 6: The normalized-area vs. delay curve for alu4, with area
normalized by the area of the uncompensated circuit.

Similar results are presented for other benchmark circuits in
Table IV, which lists the end-of-lifetime percentage delay degradation
(∆D), the corresponding percentage area overheads (∆A) and the
power overheads (∆P, as discussed next in Section V-A2) incurred
for achieving BTI-compensation against this degradation, for three
different (Vdd,n, V opt

dd,g) pairs listed in Table III: (0.8V, 1.0V), (0.9V,
1.1V) and (1.0V, 1.1V).

For the purposes of our discussion, we use the notation Cm
to denote Columnm. For various benchmarks listed in C1, the
percentage∆D incurred with nominalVdd operation are listed in
C2, C4 and C6. The corresponding percentage∆D values at the
optimal GNOMO are shown in C3, C5 and C7. We then show the
percentage∆A incurred with nominal design in C8, C10 and C12,
with the corresponding percentage∆A at optimal GNOMO listed in
C9, C11 and C13.

It can easily be seen from this data that GNOMO achieves
significant reductions in delay degradation. This impacts the reduction
in area overheads significantly. Further, our gains are higher when
starting with lower values ofVdd,n, which corresponds with the trend
of diminishing returns in idle times.

2) Power Savings:In Section IV-B, we had analyzed and shown
the increment in power due to GNOMO, considering the uncompen-
sated design (point A in Fig. 6) as the baseline for both theVdd,n and
Vdd,g circuits1. We did not, however, consider the change in power
consumption due to compensation. As discussed in Section V-A1,
if we consider the uncompensated design at point A in Fig. 6 as
the baseline, theVdd,g circuit at Point C has much lower area
overheads as compared to theVdd,n circuit at Point B2. Reductions
in area overheads imply that the power overheads are also reduced
further than our previous analysis. In this section, we conduct a more
thorough analysis to determine the precise power overheads. Our
analysis proceeds as follows:
• TheVdd,g circuit corresponds to a delay-margined circuit at a sup-

ply voltage ofVdd,g, and this circuit is guaranteed to be functional
throughout the projected chip lifetime. The power overheads in this
circuit come from two sources: operation at the GNOMOVdd, and
from compensation.

• Similarly, theVdd,n circuit is delay-margined at a supply voltage
of Vdd,n, and is guaranteed-functional throughout the projected
chip lifetime. The power overheads in this circuit come only from
compensation.

• As indicated by comparing the pairs of columns (C14, C15),
(C16, C17), and (C18, C19) in Table IV, theVdd,g circuit has
a significantly lower power overhead than theVdd,n circuit. This
shows that the total power overheads of theVdd,g circuit are
reduced by the decrease in power due to lower area requirements.
This reduction can be further elaborated upon as follows. From

Table IV, the power overhead forVdd,n circuit is in a range from
26.4% to 37.3%. When GNOMO is used, the corresponding power
overhead ranges from 9.4% to 21.1%. This includes the power
overhead in Section IV-B, which never exceeds 5% (uptoVdd,n =
1.0V as shown in the Table IV). This range is significantly below the
range atVdd,n, implying that overall power savings are achieved. Note
that these∆P values exclude the power associated with the caches and
cache-like structures, which may increase at the higherVdd,g value.
When we take this into account,GNOMO not only reduces aging,
but remains approximately neutral in terms of power dissipation, as
compared to the nominal case.

1For brevity, we will refer to the compensated circuit at pointB in Fig. 6
as the “Vdd,n circuit” and that at point C as the “Vdd,g circuit.”

2It should be noted that the uncompensated baseline does not meet the
specifications over the life of the circuit, and hence is nonfunctional. The
comparison should be made between the two functional versionsof the circuit.

B. Analyzing the Architectural Performance Penalty

To determine the architectural performance penalty of the GNOMO
scheme, SPEC 2000 benchmark suite was simulated using Sim-
pleScalar on an out-of-order MIPS-like processor, described in Ta-
ble V under the MinneSPEC input set [18]. The cycles in the
workload execution were divided into sets (in the order of execution),
each of sizecf cycles. We recorded the values ofto required
by every set ofIo instructions. Fig. 7 shows the average of the
performance penalty (from equation (8)), over all the sets ofcf cycles
for different workloads and a choice ofVdd,n = 0.7V to 1.1V and
the correspondingV opt

dd,g value from Table III.
We find that choosingcf = 10 million ensures that atVdd,n =

0.7 (which shows the largest penalty), the performance penalty for
GNOMO is under 2% for most of the workloads, and is 3.2% and
5.5% for the remaining two. Further, our simulations show that for
the workloads with the largest overheads, such cases are rare: over
90% of thecf sets for these workloads have< 2% overheads.

This choice of a large value ofcf has other benefits. The repeated
compute-standby operation in our scheme may seem to create regular
interruptions in workload execution. Sincecf = 10 million, these
occur much less frequently (and also predictably) as compared to
the unpredictable interruptions and pipeline flushes caused by cache
read/write misses, branch mispredictions, etc., which occur much
more frequently and cause performance bottlenecks.

Further, the power gating overheads of 10 to 50 cycles, discussed
in Section III-B, become completely negligible.

Fig. 7: The average performance penalties for various SPEC CPU
2000 workloads.

We noted that ascf is increased from 100,000 to 10 million cycles,
the maximum performance penalty over the execution of a benchmark
decreases. This can be explained by the fact that a larger value of
cf corresponds to a larger number of on-chip operations, offering a
greater potential for hiding latencies for off-chip operations through
out-of-order execution. Thus it is better to choose a higher value of
cf . The average penalty, however, remains approximately the same.

With an increase inVdd,n, the penalty decreases sublinearly. This
is because the off-chip latency in cycles is directly related to the clock

TABLE V: Configuration of the processor

Fetch/Decode/ 4/4/4/4
Issue/Commit width (instructions/cycle)
RUU size 64 entries
LSQ size 32 entries
Private L1 16KB, 4-way set associative,
Data cache 32B block size
Private L1 16KB, 4-way set associative,
Instruction cache 32B block size
Private L2 Unified 512KB, 8-way set associative,
Data and Instruction cache 64B block size
Memory access bus width 8 bytes
Data Translation 512KB, 4-way set associative,
Lookaside Buffer 4KB block size
Instruction Translation 256KB, 4-way set associative,
Lookaside Buffer 4KB block size
Number of integer ALUs 4
Number of integer multiplier/dividers 4
Number of floating point ALUs 2
Number of floating point multipliers/dividers 2
Number of memory system ports available to CPU 2 (1 read, 1 write)

frequency shown in Table I, which also decreases sublinearly.

VI. CONCLUSION

This paper introduces the idea of GNOMO, where a processor
is operated at a higher-than-nominalVdd value with interspersed idle
periods. We demonstrate at the architectural and circuit levels that this
scheme is viable, and that it provides significant gains in aging with
low performance overheads. The current implementation focuses ona
constant nominalVdd; however, in principle, the idea can be extended
when the nominal case uses dynamic voltage and frequency scaling.

ACKNOWLEDGMENT

This work was supported in part by the NSF under award CCF-
1017778.

REFERENCES

[1] S. V. Kumar, C. H. Kim, and S. S. Sapatnekar, “NBTI-aware synthesis
of digital circuits,” inProceedings of the Design Automation Conference,
pp. 370–375, 2007.

[2] X. Chen, Y. Wang, Y. Cao, Y. Ma, and H. Yang, “Variation-aware supply
voltage assignment for minimizing circuit degradation and leakage,” in
Proceedings of the International Symposium on Low Power Electronics
and Design, pp. 39–44, 2009.

[3] S. V. Kumar, C. H. Kim, and S. S. Sapatnekar, “Adaptive techniques for
overcoming performance degradation due to aging in CMOS circuits,”
IEEE Transactions on Very Large Scale Integration Systems, vol. 19,
pp. 603–614, April 2011.

[4] U. R. Karpuzcu, B. Greskamp, and J. Torrellas, “The bubblewrap many-
core: popping cores for sequential acceleration,” inProceedings of the
International Symposium on Microarchitecture, pp. 447–458, 2009.

[5] J. Abella, X. Vera, and A. Gonzalez, “Penelope: The NBTI-aware
processor,” inProceedings of the International Symposium on Microar-
chitecture, pp. 85–96, 2007.

[6] L. Zhang and R. P. Dick, “Scheduled voltage scaling for increasing
lifetime in the presence of NBTI,” inProceedings of the Asia and South
Pacific Design Automation Conference, pp. 492–497, 2009.

[7] T.-B. Chan, J. Sartori, P. Gupta, and R. Kumar, “On the efficacy of NBTI
mitigation techniques,” inProceedings of the Conference on Design,
Automation and Test in Europe, pp. 1–6, 2011.

[8] J. Shin, V. Zyuban, P. Bose, and T. M. Pinkston, “A proactive wearout re-
covery approach for exploiting microarchitectural redundancy to extend
cache SRAM lifetime,” inProceedings of the International Symposium
on Computer Architecture, pp. 353–362, 2008.

[9] L. Li, Y. Zhang, J. Yang, and J. Zhao, “Proactive NBTI mitigation for
busy functional units in out-of-order microprocessors,” inProceedings of
the Conference on Design, Automation and Test in Europe, pp. 411–416,
2010.

[10] T. Siddiqua and S. Gurumurthi, “A multi-level approach toreduce the
impact of NBTI on processor functional units,” inProceedings of the
Great Lakes Symposium Symposium on VLSI, pp. 67–72, 2010.

[11] D. R. Bild, G. E. Bok, and R. P. Dick, “Minimization of NBTI
performance degradation using internal node control,” inProceedings
of the Conference on Design, Automation and Test in Europe, pp. 148–
153, 2009.

[12] A. Calimera, E. Macii, and M. Poncino, “NBTI-aware clustered power
gating,” ACM Transactions on Design and Automation of Electronic
Systems, vol. 16, pp. 1–25, November 2010.

[13] S. Bhardwaj, W. Wenping, R. Vattikonda, C. Yu, and S. Vrudhula, “Pre-
dictive modeling of the NBTI effect for reliable design,” inProceedings
of the Custom Integrated Circuits Conference, pp. 189 –192, 2006.

[14] J. Howard, S. Dighe, S. Vangal, G. Ruhl, N. Borkar, S. Jain, V. Erra-
guntla, M. Konow, M. Riepen, M. Gries, G. Droege, T. Lund-Larsen,
S. Steibl, S. Borkar, V. De, and R. Van Der Wijngaart, “A 48-core IA-32
processor in 45 nm CMOS using on-die message-passing and DVFSfor
performance and power scaling,”IEEE Journal of Solid-State Circuits,
vol. 46, pp. 173–183, January 2011.

[15] S. Bhunia and S. Mukhopadhyay,Low-power variation-tolerant design
in nanometer silicon. Springer, 2010.

[16] Berkeley Logic Synthesis and Verification Group, ABC: ASystem for
Sequential Synthesis and Verification, Release 70930.

[17] Predictive Technology Model. http://www.eas.asu.edu/∼ptm.
[18] A. J. KleinOsowski and D. J. Lilja, “MinneSPEC: A new SPEC bench-

mark workload for simulation-based computer architecture research,”
Computer Architecture Letters, vol. 1, pp. 7–7, 2002.

