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ABSTRACT

As across-chip interconnect delays can exceed a clock,oyale
pipelining becomes essential in high performance desighk.
though it allows higher clock frequencies, it may changerttie
croarchitecture altogether because of the arbitrary &sgén the
latencies of the paths and cycles of the circuit. This papgpgses
a method to regain the functionality of a wire-pipelinectait. In
this approach, increased cycle latencies are compensateldv-
ing down the issue rate of the inputs. Our method finds therati
value of the slowdown required for a circuit as it directlfeats the
throughput of the circuit. We also incorporate area minatian in
our formulation to minimize the number of extra flip-flops add
to the circuit. The formulation is tested on circuits dedvieom
ISCAS benchmarks and the results suggest that wire pipglini-
creases the overall throughput in most of the cases.
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B.7.2 Hardware]: Integrated Circuits—Besign Aids

General Terms
Performance, Algorithms
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1. INTRODUCTION

Semiconductor industry trends suggest that the operatig f
quencies of leading edge integrated circuits approximpadelu-
ble every process generation [1], in tune with the projetiof
Moore’s Law. However, wire delays have become a dominant fac
tor in determining the system performance, which is mordeawi
in deep submicron (DSM) technologies. In particular, thensh
ing clock periods have made across-chip communication farper
mance bottleneck, where some global wires may have deleyerla
than the intended clock period. The scenario is furtheragded
by the fact that die sizes increase by 7% with every process ge
eration [1], resulting in even longer wire lengths, and leslonger
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wire delays. Even the theoretically best optimizers carowvetr-
come the criticality of the global interconnects. For ins, even
after aggressive optimization, delay of a 2cm global irdarect,

a common occurrence in DSM designs, is projected to be 0.67ns
in 70nm technology [2], placing an upper bound of about 1.58GH
on the operating frequency, much less than the multigigaties-
quencies projected for that technology. This suggestsrttusi-
cycle across-chip communication is a necessity to suppgiten
operating frequencies. Several approaches can be usedresad
the criticality of across-chip interconnects, such as:

e Adopting a Globally Asynchronous Locally Synchronous
(GALS) [3] design methodologyn this approach, the com-
munication between the synchronous subsystems (or blocks)
of a circuit, each of which can have a different clock, is loase
on a full handshake protocol. Several other works have been
proposed based on this approach, such as [4, 5] to cite a few.
Carloni et al., proposed a latency insensitive design in [6].
However, the overhead for the asynchronous interface may
affect both the performance and the area of the design.

e Providing a slower clock for the flip-flops latching signals
from global wires:Each of the signals from the global wires
whose delay is greater than the system clock cycle are latche
by the flip-flops clocked by the new, slower clock network.
However, this approach adds new complications in the form
of routing the extra clock network and synchronization be-
tween the clock domains. Moreover, since the slower clock
must consider the worst case across-chip wire delay, tagchi
signals from wires whose delay is considerably smaller than
the clock cycle degrades the throughput of the circuit.

e Pipelining the global wires of the circuiffhe delay of an in-
terconnect is distributed over several clock cycles byrinse
ing flip-flops, which allows a fully synchronous operation at
higher clock frequencies. A retiming [7] based method for
wire pipelining is proposed in [8]. However, since the la-
tencies of the cycles and input-output paths of the cirauit r
main unchanged in this approach, there is a lower bound on
the achievable clock cycle time. In contrast, the techréque
proposed in [9, 10] insert flip-flops to pipeline an intercon-
nect to enable higher clock frequencies, in conjunctiomwit
repeater insertion. Although pipelining the wires of a aitc
using [9, 10] permits higher operating frequencies, thalres
tant wire-pipelined circuit may be functionally differéndom
the initial circuit. This happens because wire pipeliniag c
arbitrarily increase the latencies of paths and cycles ef th
circuit due to the insertion of extra flip-flops.

This paper will focus on the aftereffects of wire pipeliniri@given
a circuit and a wire pipelined version of the circuit, whiclayrbe



functionally incorrect, we formulate a method to regaint¢berect-
ness of the wire pipelined circuit.

2. PROBLEM DESCRIPTION

A typical design flow may proceed as follows. After the blocks
and modules of the circuit are designed subject to a clock fre
quency, a block-level placement of the circuit is perform@dre
pipelining is then carried out on the global wires of the aitc
sometimes concurrently with routing [10], or sometimesiafout-
ing is done [9], and this may insert flip-flops on a wire if théaye
of the wire exceeds a clock cycle. After the wires of a cireui
pipelined, the following two problems must be resolved:

e Increase in the latencies of the cycles of the circuit.

e Nonuniform increase in the latencies of different paths to a
block from the inputs of the circuit.

ckt; ckt,
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Figure 1: A circuit with two inputs « and b. Signalsy and z are
the input ports of the block By. (a) The circuit before pipelining
its wires (ckt;). (b) The circuit after pipelining its wires (ckt,).

In this paper, we assume that all the flip-flops are edgesdrigs)
Consider Figure 1, which depicts a circuit comprising twonbd
national logic blocksBy and B, before and after pipelining the
wires of the circuit. The two scenarios are labetéd; andckt,,
as shown in Figures 1(a) and 1(b), respectively. The irmedf an
extra flip-flop on the cycl€ increases its latency to 2 itkt, from
1in ckt;. Hence, the output of each block 6f propagates back
to itself after 1 clock cycle irkt;, whereas it takes an extra clock
cycle inckt,, thus altering the original functionality of the cycle.
Moreover, with the insertion of an extra flip-flop betweeandy,
the inputsa andb reachy andz, respectively, after an equal num-
ber of clock cycles irckt,, which is not the case inkt;. Hence,
ckt; andckt, are not functionally equivalent.

o
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Figure 2: A solution to the problem shown in Figure 1. We
refer to this circuit as ckty.
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Wire pipelining can therefore result in a totally differenicroar-
chitecture. This is not the desired result and thereforestrbe
corrected, and this paper proposes a method for doing sosdhe
lution lies in ensuring that every block receives its inpatshe
correct clock cycle. For increased cycle latencies, we usepa
proach similar to the-slowconcept mentioned in [7]. The idea is
to slowdownthe input issue rateof the circuit by some factop,
i.e., inputs are allowed to change only evef{ clock cycle. The
issue rate of the initial circuitkt; is assumed to be 1.

For instance, the cycl€ of ckt, will be functionally equivalent
to the cycleC of ckt;, if the inputsa andb are permitted to change
only every other clock cycle inkt,. As aresultckt, computes its

1 The issue rate is defined as the number of clock cycles betsigmessive
input changes. An issue rate of 1 indicates that the inputslange every
clock cycle.

outputs only every 2 clock cycles, which indicates a reduncith the
throughput of the circuit. Moreover, the latency differefetween
any two paths to a block from the inputs of a circuit must also b
maintained in its wire-pipelined version. Going by thisuargent,
since the latency difference between the péths z anda — y
is 1 inckt,, and O inckt,, one extra flip-flop must be inserted on
the pathb — z in ckt, to make it functionally equivalent tekt;.
However, the slowdown has implications on the path |latencfea
wire-pipelined circuit. For example, the latency diffecerof the
pathsa — y andb — z in ckt; must be amplified by a factor of
p = 21in ckt,, since it receives its inputs only every 2 clock cycles.
Therefore, 2 extra flip-flops must be inserted on the path z in
ckt,, as shown in Figure 2.

Our work finds the minimal value of slowdown required for a
circuit as this directly affects its throughput and alsoimizes the
increase in area due to the insertion of extra flip-flops.

3. PRELIMINARIES

In the example in section 2, it was assumed that all blockg wer
purely combinational. In general, a circuit may have setjakn
as well as combinational blocks, i.e., the blocks may haterial
flip-flops and/or cycles. The existence of cycles in a ciroudty
require that extra flip-flops be inserted within a sequemitia¢k of
the circuit. For instance, consider a scenario where therévwa
paths from an input of a sequential block to one of its outplits
the two paths have different latencies, and if the circuquiees a
slowdownp > 1, then the solution may require that the difference
of latencies be increased by a factopofT herefore, all of the wires
of the block must be considered for the insertion of extrafftps.
However, in most cases, the blocks are internally undefihackb
at an early stage of design, or IP cores, and therefore rampit
insertion of extra flip-flops on the wires within the blocksnist
desirable. To avoid this, we use an abstract model for a s¢iqlie
block that decomposes it into a set of combinational suloksp
interconnected by wires having flip-flops. This ensuresfiraany
sequential block, only those interconnections that hayeflips
on them are considered for insertion of extra flip-flops. Fegd
shows a sequential block and the abstract model of the bibiok.
block is modeled as two combinational sub-blocksandsS., with
flip-flops on the interconnections between them.

Figure 3: A sequential block and its abstracted model.

For a general circuit, we will consider three scenarios: itfie
tial circuit, a wire-pipelinedversion of the initial circuit, and a
corrected wire-pipelinedrersion of the initial circuit. Flip-flops
and repeaters apart, each of the three circuits compriséiseof
same placed and routed combinational block level or subkblo
level netlist. Each net of the circuits is a routed tree thai-c
nects the output of a block/sub-block (source) to the inptitgher
blocks/gates (sinks) through branch points such as Stpuwiets
[11]. We use three edge weighted graphs to model the threeusce
ios. The graphs have the same vertex and edge sets, repckasnt
V and E, respectively. The vertex s&t of the graphs models the
blocks/sub-blocks, the inputs, the outputs and the branattgpof
the circuit. The seF is the collection of the nets of the circuit. The
graphs are described below:



e The graphG; = (V, E,w;) represents thénitial circuit,
which may not satisfy the timing constraints. The weight
wi(e), Ye € E is the number of flip-flops along the wire
modeled by in G;.

The graphG, = (V, E,w,) represents thevire-pipelined
version of the initial circuitG;, obtained using some wire
pipelining method such as [9, 10]. Although, satisfies the
timing constraints, it may not be functionally equivaleat t
G;. The weightw, (e), Ve € E is the number of flip-flops
along the wire modeled byin G,,.

The graphGy = (V, E,wy) represents theorrected wire-
pipelinedcircuit, obtained after altering, to make it func-
tionally correct. Hence(s; satisfies the timing constraints,
and is also functionally equivalent &;. The weightwy (e),

Ve € E is the number of flip-flops along the wire modeled
by ein Gf.

This paper accepts; andG,, as inputs and presents a method to
obtainG¢. The input issue rate @F; is assumed to be 1, i.e., inputs
of G; can be change every clock cycle. As was seen in section 2,
any attempt to correct the functionality 6f, to obtainG; may
involve the insertion of extra flip-flops, thus increasing trea.
We formulate a method to minimize the increase in area, which
in detailed in section 4.2. For this purpose, we define twatitei
functions onE, as shown below:

e The weightr,(e), Ve € E represents the number of re-
peaters along the wire modeled byn G,,.

e The weightrs(e), Ye € E represents the number of re-
peaters along the wire modeled bjn G .

We assume that all repeaters are identical and therefore hav
equal area. We make a similar assumption for the flip-flops as
well, i.e., each flip-flop has equal area. If extra flip-flope &
be inserted along a wire, in going fro64, to G¢, some or all of
the repeaters along the wiresa#, can be replaced with flip-flops.
The repeaters df; are ignored in our model since they do not have
any role in area minimization.

We extend the weight functions;, w, andwy to (simple) paths
and (simple) cycles of the graphs. The weight of a path/cigle
defined as the sum of weights of all edges on the path/cycle. Th
weights of any edge, path and cycle@y must not be less than
the corresponding weights {&,,, as we do not wish tanpipeline
the wires ofG,. However, the weightsu, can be less than the
corresponding weights); in G, indicating the presence of more
than necessary number of flip-flops required to meet the gmen
quirements. Thus, for any edge or patly; can be less thdrthe
correspondingu;. To indicate that is an edge from: andv in the
graphs, we will use the notatian-> v. We will also use the terms
“graph” and “circuit” interchangeably.

4. SOLUTION TECHNIQUE
4.1 Obtaining the optimal p

As explained in section 2, the concept of slowing down theinp
issue rate can be used to correct the functionality of a dyal&,.
By specifying a restriction that inputs are not allowed t@rmie
every clock cycle, we are providing “extra” clock cycles e tcy-
cle in G, to complete its computations. In other words, slowdown
(of input issue rate) can be thought of a compensating fdotor
increased cycle latencies (&, .

Let ¢ be any cycle of the graphs, whose latencie&inand G,
arew;(c) andwy(c), respectively. Consider a block on the cycle,

2This not true for a cycle though. For any cydewy(c) > wi(c), since
plec) > 1.

and suppose it has an inpyt not belonging to the cycfe By
the time the output computed by the block propagates badgels i
through the other blocks of the cycle, the number of timesitpeal
seen ay may have changed is equal4g(c) in G;, andwp(c) in
Gp. For functional equivalence of the two circuits, the numbker
input changes seen gtmust be identical in both circuits, equal
to w;(c). This is achieved when the inpytis permitted to change

only everyfjjé;) clock cycles inGGp,. This ratio gives the slowdown
p(c) required forc in Gp. If w;(c) does not dividev,(c), then the
weight w, (¢) must be increased to the next higher integer. For
instance, if the values af; (c) andw,(c) are 2 and 5, respectively,
then a slowdown of(c) = 3 is required forc in G, and the weight
wp(c) must be increased {0 w;(c) = 6. The same idea can be
applied to the cycl€ of Figure 1, the slowdowp required forC

is the ratio ofw, (C) andw, (C), i.e.,p(C) = 2 = 2.

In general, a circuit may have more than one cycle and each of
these may require a different slowdown. The critical cysl¢hie
cycle which requires the maximum value of slowdown. The slow
down required for this cycle is the lower bound for the slowdo
required for the entire circuit?;. If p(Gy), or p in short denotes
the minimal (or optimal) slowdown required lay;, then we have

{kcl)

whereC is the set of cycles of the graphs.

The equation shown above representmaximum cycle ratio
problem(MCRP) [12] on the graph&'; andG,,, where the time and
cost of each edge € FE is given by the weights, (¢) andw;(e),
respectively. One method of obtainipgs proposed by Lawler in
[12]. The idea is to iteratively apply the Bellman-Ford aitfum
[13] to find the longest paths in the grapgh = (V, E, w;).

wp(c)
wi(c)

wp(e) — p - wile) Vec E @

If there is no cycle inG, (C = 0), thenp is 1, i.e., inputs can
be issued every clock cycle in acyclic circuits. Otherwiae)i-
nary search is performed to find the minimal valugsdbr which
there is no positive cycle if7;. The presence of a positive cycle
in G, indicates that for some cyclein Gi, p - wi(c) < wp(c),
i.e., the slowdown required faris greater tharp. The complexity
of Lawler's method isO(|V||E|log(|V |wmaz)), Wherewmae =
maxecr wi(e). Several other more efficient ways of solving the
MCRP have been proposed in the literature [14].

4.2 Obtaining a solution toG
4.2.1 Afeasible solution

Let ¢ and ¢’ be any two distinct paths from the inputs of the
circuits to any vertex € V. Since the inputs are issued only every
p clock cycles inGy, if the difference of weights of andg’ in
G; is k, then the corresponding difference @ must bep - k.
For example, since the difference of weights of the paths y
andb — z in ckt;, shown in Figure 1(a) is 1, the corresponding
difference must be 2 (sincg = 2 for the circuit) inG for the
circuit, shown in Figure 2. From this observation, we have

wi(e)

w(q) —wr(q') p - (wilq) —wi(q"))
= wy(q) — p-wi(q) wi(q') = p-wilq) 2

If Q, is the set of all paths from the inputs toin the graphs,
then from (2), the difference of the terms; andp - w; must be
equalvg € Q.. We introduce a variable(v) Yv € V such that

z(v) wi(q) —p-wi(g) Vg€ Qy (3)

3An example of such a situation is illustrated by ingtit Figure 1.
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Figure 4: lllustration of the solution technique on the circuit shown in Figure 1. The numbers shown with the edges in thergphs
correspond to the weights of the edges. (a) The initial cirati(G;) depicting ckt,. (b) The wire pipelined circuit (G,), depicting ckt,.
(c) The corresponding graphG;. The optimal slowdown, g is 2. The number shown above each vertex ifi"; is the z value for that
vertex. (d) A Solution (G). The weightsw; shown with the edges are obtained by using (7).

We also havevs(q) > wy(q) forall g € Q,. From this and (3),
the following can be deduced:
() = wplq) —p-wilqg) Vg€ Qo 4)

Let g, be any path starting from the inputs, ending at vertex
Foru = v, we can form a patl, ending atv by addinge to q.,.
Therefore, we have

wp(qw) = wp(qu) +wp(e)
wi(qw) = wilqu) + wile)
and wyi(q) = wyr(qu)+wy(e) 5)

From (4) and (5), we have

(z(v) —2(w) = (wp(go) — wp(gqu)) + p - (wilgw) — wi(gu))
= z(v) > z(u) + (wp(e) — p - wi(e)) (6)

From (6), it is evident that (v) is the weight of the longest path
to v in Gy, defined in section 4.1. When there are no positive cy-
cles in G, longest paths are well defined and the Bellman-Ford
algorithm outputs the: values of the vertices. Therefore, solving
the MCRP by Lawler's method also finds thevalues, along with
/. We will now show that the weights s of G can be determined
from thex values ang obtained by solving the MCRP ai; and
Gp. From (3) and (5), we have

wy(gv) z(v) +p - wi(go)
= wy(qu) +ws(e) = 2(v) +p- (wilgu) +wile))
=wyple) = (z(v) —z(u) +p-wile) (7)

In (7), the weightswy are expressed in terms ofvalues ang.
To summarize, the following steps are involved in obtainifg

1. Solve the MCRP to obtaifiand ther values.

2. From thep and thexr values computed in step 1, determine
the weightswy of Gy using (7).

LEmMMA 1. Let (Gy = (V,E,wy),p > p) be a solution to
(G4, Gp). Then for any cycle in the circuit, we have

wi(e) = p-wie)

The proof of Lemma 1 is omitted due to space limitations. The
lemma indicates that all cycle latencies are increased bytaif of
pin G#. This shows thati; represents a pipelined version@f,
retaining its functionality if the inputs are issued onlggyp clock
cycles. It produces outputs evesyclock cycles.

We demonstrate the solution technique on the circuit shawn i
Figure 1. Figures 4(a) and (b) show the graph mod&landG,,
for the circuitsckt; andckt,, shown in Figures 1(a) and (b), respec-
tively. The blocksB, and B;, and the inputa andb are modeled
as the verticeso, v1, va, vp, respectively. The graphs have one cy-
cleC = v9 — v1 — vo. We have seen at the beginning of this
section that the optimal slowdown required for the circsiij i.e.,

p = 2. Figure 4(c) shows the grapi; obtained by computing
the edge weights using (1). Fpr= 2, it can be observed that the
weight of C in G is 0, which indicates that the longest paths are
well defined inG;. Thex values of the vertices are shown in Figure
4(c). The solution obtained by using thesalues from Figure 4(c)

is shown in Figure 4(d). It can be seen that the gr&ptof Figure
4(d) is identical to the circuitkt ¢ of Figure 2.

4.2.2 A minimum area solution

The solution technique presented in the previous sectidyy on
finds a feasible solution, and does not consider miniminatiche
area increase, incurred due to the possible insertion o ép-
flops. One way of minimizing the number of extra flip-flops is to
retime some or all of the extra flip-flops out of the wires of the
circuit, as illustrated in Figure 5. In this section, we veitend the
solution technique to incorporate area minimization andchfdate
the problem as an Integer Linear Program (ILP) and then iescr
a method to solve the ILP efficiently.

(a)

Figure 5: lllustration of area minimization on a portion of a
circuit. (a) A solution to the problem requires one extra flip-
flop each on the outgoing edges aB, and B., respectively. (b)
The two flip-flops are moved over the blocksB; and B, to the
outgoing edge ofBy, which reduces the flip-flop count by one.

Formulation as an ILP

In section 4.2.1, ther values are computed as the longest path
weights inG;. However, the slacks in the longest path constraints
(henceforth referred to as latency constraints) (6) alloarge of
permissible values far. This flexibility enables the movement of
flip-flops across vertices, which is exploited for area miaation.

We define the area of the edgdan Gy, as(e), as the area of
the repeaters and flip-flops aloaglf area is the total area of the
repeaters and flip-flops @ s, andw, andr, are the areas of a
single flip-flop and repeater, respectively, then for any p,

wy(e) -wq +715(e) -7 Ve€E

> ag(e)
ec

In the event of adding extra flip-flops to the edgesome or all
of the repeaters present aloagn G, can be replaced with flip-
flops. In this paper, we assume that each extra flip-flop cdacep
one repeater from the edge. The available number of sl&s, i.
repeaters along the edgen G, is given byr,(e) and the num-

af(e)
and area

®)
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Figure 6: Insertion of a dummy noded. on an
edgee € E.
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Figure 7: Optimal p may not mean minimum area. It is assumed that the circuits do
not have repeaters. The number shown with each edge in the goas denotes the flip-
flop count of the edge. (a) Initial circuit. (b) Wire-pipelined circuit. (c) A minimum

area solution for p = p = 2: number of flip-flops = 10. (d) A minimum area solution
for p = 4: number of flip-flops = 8.

ber of extra flip-flops to be added to the edgim G is given by
extra(e) = wy(e) — wp(e). If extra(e) exceedsy(e), then all

of ther, (e) will be removed and replaced with flip-flops. In such a
scenario, the repeater coung,(e) will be 0. Otherwiser ¢ (e) will

be equal to the remaining number of repeaters:gf after some
of them were replaced by extra flip-flops. Thereforgie) can be
expressed as follows:

ri(e) = max{ry(e) — (wys(e) —wp(e)),0}  (9)
The objective of the minimum area solution is to minimize:a

given by (8) subject to the constraints (6) and (9), which ban
formulated as an ILP, by expressing (9) as two linear coim&:a

Solving the ILP

Solving an ILP is generalliNP—completeunless the problem ex-
hibits integral polytope structure. The ILP described ia tre-
vious section can be formulated as an instance of the dudieof t
Minimum Cost Network Flow (MCF) problem [15], which exhibit
integral polytope structure and can be efficiently solvedisTan
be accomplished by eliminating the weights from the ILP for-
mulation. For each edge € E, whereu = v, we add a dummy
vertexd, and splite into two edgese; andez, such that, = d.
andd. =3 v, as shown in Figure 6. The edge models the case
where the extra flip-flops to be inserted emeplace the repeaters
of e. Inserting a flip-flop ore; increases the area eby w, — 4.
The edge=> models the case where more thgfie) extra flip-flops
are to be inserted on The firstr,, (e) extra flip-flops to be inserted
one are assigned te; and the remaining te.. Thereforewy (e2)
will be strictly positive only when the number of extra flim{is
exceeds,(e). Inserting an extra flip-flop on; increases the area
of e by w,. We have,

wr(e) = wy(er) +wy(e2)
wy(er) < rp(e) +wple) (10)
ri(e) = 7p(e) — (wyler) —wp(e)) (11)

The weights-; can now be eliminated from the ILP using (11).
The following latency constraints an ande; can be inferred from
the above equations.

z(de) 2 z(u) + (wp(e) — p-wi(e)) (wr(e1) = wp(e))
z(v) = x(de) (ws(e2) = 0)
z(de) < z(u) + (rp(e) +wp(e) — p-wile)) (from (10))

It can be observed that the first two inequalities above adm up
obtain the constraint (6) on We now find the expression far-ca.

ag(e) = ws(e) - wa + (rp(e) +wp(e) —ws(er)) - ra
z(v) —z(u)) - we — (z(de) — x(u)) - 7o + p - const.

=z(v) - we — x(u) - (Wg —Ta) — x(de) - 7o + p - const.

z (kv - z(v)) + p - const.

whereV; is the set of dummy vertices, and#fO(v) and F'I(v)
are the number of outputs and inputsof V, respectively,

k= {

A minimum area solution t67; is formulated as the ILP

Z (kv - z(v)) + p - const

FI(v)-wqs — FO() - (wa — 7a)

—Ta

veV
vEeVy

Minimize area =

veV UV,
Vee B st u>wv
w(u) —x(de) < p-wi(e) —wpy(e)
z(de) —z(v) < 0
2(de) —o(u) < rple) +wple) = p-wile)

For a constanp, the preceding ILP is an instance of the dual of
the minimum cost flow problem, which can be efficiently solved
by several methods such as the network simplex method [15]. A
before, the weightsy; can be computed using (7). There is a min-
imum area solution for each value pf> 4. In addition, the min-
imum area solution fop may not be a global minimum solution,
as demonstrated in Figure 7. However, in most cases, marigniz
throughput (or minimizing) is the primary objective, rather than
minimizing area. In such a scenario, the ILP is solveddet p,
which is obtained by solving the MCRP, as detailed in secfidn

In general, it is not easy to determine how many repeaterbean
removed from a wire without worsening the clock period, whan
extra flip-flop is inserted. In the above procedure, it wasimesl
that every extra flip-flop replaces one repeater on the witgis T
can easily be extended to other complex flip-flop repeateretsod
One such a model can be as follows. For a wire, the number of
repeaters required for a range of number of flip-flops (ieskan
the wire) can be specified. Beyond a certain number of flipsflop
no repeaters may be required to meet the timing requirements

5. EXPERIMENTAL RESULTS

For experimentation, we have used the ISCAS benchmark suite
[16]. An operating frequency of 3GHz was chosen for the sys-
tem and the target technology chosen has a feature size of.70n
After finding a placement using Capo [17], the area of the cir-
cuits was scaled to 4.30¢nto mimic the layout of a realistic chip.
For smaller layouts, the wire lengths are not long enougheto b
pipelined. The dimensions of the circuits were scaled atingly.
Each gate in the original circuit is assumed to be a comlainati
functional block, and each wire is assumed to be latched uiitme
ately, after it leaves the block. In addition, none of thebgllowires
is assumed to have flip-flops. For the wire delays, the priojest
for a 2cm global wire made in [2] were used, where the delayof a
optimized 2cm wire in 70nm technology is projected to be 067
The delays of the wires of the test circuits were determinedss
suming a linear relationship between the delay of a wire &d i
length, which is reasonable for buffered interconnectsis Hlso



Circuit V] [E] G, Gy p | Incr | Time Circuit MaxLen | Delay | MaxFreq SGP p SGf
Rptrs | Flops | Rptrs | Flops (%) (sec) (cm) (ns) (GHz)
s27 15 18 21 19 18 22 1| 51 0.1 s27 1.22 0.41 2.46 122 1] 1.22
s344 110 210 261 229 193 327 2| 178 0.1 s344 1.75 0.59 1.71 1.76 | 2 0.88
s349 114 215 238 231 212 260 1 4.6 0.1 s349 1.45 0.49 2.06 146 | 1 1.46
s1196 360 836 1857 1108 1576 1459 1] 103 1 s1196 3.23 0.92 1.08 278 | 1 2.78
s1238 389 925 2076 1228 1672 1794 | 1 | 16.1 1 s1238 2.91 0.98 1.02 293 | 1 2.93
s1423 | 449 913 1112 998 750 1504 | 2 | 205 1 s1423 2.66 0.89 1.12 267 | 2] 134
s1494 | 364 | 1104 | 2991 | 1571 | 2502 | 2176 | 2 | 11.8 1 s1494 2.83 0.95 1.05 285 [ 2 | 1.43
s13207 | 2014 | 3759 | 4825 | 4118 | 3327 | 5992 | 2 | 17.2 1 13207 3.18 1.06 0.94 319 | 2 | 1.60
s15850 | 3504 | 7215 | 8892 | 7774 | 6010 | 11325] 2 | 17.3 2 15850 2.71 0.91 1.14 273 | 2| 1.37
s38417 | 8029 | 17646 | 27572 | 20411 | 21297 | 28996 | 2 | 15.8 14 s38417 3.64 1.22 0.82 365 | 2 1.83
s38584 | 9616 | 22515 | 35831 [ 26170 | 27240 | 36835 | 2 | 14.4 24 s38584 3.88 1.30 0.77 390 | 2 1.95

Table 1: Experimental results for ISCAS benchmarks. Table 2: Performance issues with wire pipelining.

6. CONCLUSION

This paper has presented an approach to solve the problems cr

assumed that a 2cm wire has 10 repeaters, and accordinglg-the
peater counts of the wires of the circuit were determinec: Jitea
of a flip-flop was assumed to be twice that of a repeater. ated by wire pipelining. The method presented in this pafser a
First, the optimal slowdown was obtained for each circuit by  finds the optimal value of input issue rate slowdown requified
solving the MCRP, as explained in section 4.1. Later, the ILP the circuits, which directly affects the throughput. Thelgem is
was solved using the network simplex implementation of [tt8] formulated as an instance of the dual of minimum cost flow prob
obtain a minimum area solution subject to théor each circuit. lem, to incorporate the minimization of area increase, firexidue
The experiments were performed on a 2.4GHz Pentium 4 machineto the insertion of extra flip-flops. Though wire pipelinimgproves

with 1GB RAM. The results obtained for different benchmaaks
shown in Table 1. The labeRptrs andFlops denote the number
of repeaters and flip-flops, respectively, listed for botieuits G,

overall throughput of most circuits, it may degrade the tigtgout
for some circuits. However, this is still a useful solutiomce clock
frequencies are typically decided by system-wide conatétets,

andGy. It can be seen that the number of repeaters decreases inand the task of the designer is to obtain the best achievaiferp

G, since some of the repeatersGh are replaced by flip-flops in
Gy. For circuits such as s1238 and s1196, a slowdown of 1 indi-

mance under such system-level constraints.
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