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ABSTRACT
We present an efficient optimization scheme for gate sizing in the
presence of process variations. Using a posynomial delay model,
the delay constraints are modified to incorporate uncertainty in the
transistor widths and effective channel lengths due to the process
variations. Anuncertainty ellipsoid method is used to model the
random parameter variations. Spatial correlations of intra-die width
and channel length variations are incorporated in the optimization
procedure. The resulting optimization problem is relaxed to be
a Geometric Program and is efficiently solved using convex opti-
mization tools. The effectiveness of our robust gate sizingscheme
is demonstrated by applying the optimization on the ISCAS ’85
benchmark circuits and testing the optimized circuits by perform-
ing Monte Carlo simulations to model the process variations. By
varying the size of the uncertainty ellipsoids, a trade-offbetween
area and robustness is explored. Experimental results showthat the
timing yield of the robustly optimized circuits improves manifold
over the traditional deterministically sized circuits. Ascompared
to the worst-case design, the robust gate sizing solution having the
same area, has fewer timing violations.
Categories and Subject Descriptors
B.7.2 [Hardware]: Integrated Circuits—Design Aids
General Terms
Optimization, gate sizing
Keywords
Geometric Program, posynomial, uncertainty ellipsoid

1. INTRODUCTION
Due to shrinking of process geometries, it is becoming increas-

ingly difficult to control the fabrication of critical device parame-
ters. The limitations of the manufacturing process in the current
technologies leads to random variations in various circuitparame-
ters. These random perturbations from the nominal values oftran-
sistor width, channel length, oxide thickness, etc., may cause a
large spread in the circuit performance measures such as thede-
lay, power, etc. Since it is impossible to control the process-driven
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variations, it is essential for the design tools to account for these
uncertainties and design robust circuits that are insensitive to the
device parameter variations as much as possible.

The traditional gate sizing methodologies [1], [2] use Elmore
delay based posynomial delay constraints to formulate the problem
as a Geometric Program (GP). The use of posynomial delay mod-
els for the gate sizing problem enables the use of efficient convex
optimization tools to solve the problem [3]. These conventional
gate sizing tools employ a static timing analysis (STA) routine to
generate the delay constraints,and then solve the GP optimization
problem to determine the widths of the devices in the circuit. The
minimum length is chosen for all the devices. However, due tothe
fact that the nominal designs are perturbed by the random process
variations, a large number of chips may fail to meet the original
delay specifications. This leads to a reduction in thetiming yield of
the circuit defined as the fraction of total chips whose delaydoes
not exceed the original specified value. An obvious way to increase
the timing yield of the circuit is to design for the worst-case sce-
nario, e.g., choose a delay specification of the circuit muchtighter
than the required delay. This could lead to a large overhead in terms
of the circuit area and the power as the optimizer may have to ag-
gressively size the critical as well as the non-critical paths. Hence,
it is necessary to develop smart worst-casing methodologies, in the
presence of process uncertainties, that keep the area and the power
budgets within reasonable bounds.

There have been several recent attempts to perform uncertainty-
aware gate sizing to reduce the timing violations or increase the
timing yield. In [4], the gate sizing problem is formulated as a
non-linear optimization problem with a penalty function added to
improve the distribution of timing slacks. In other works onrobust
gate sizing [5, 6, 7], the central idea is to capture the delaydistri-
butions by performing a statistical static timing analysis(SSTA), as
opposed to the traditional STA, and then use a general non-linear
programming technique to size the gates. To simplify the SSTA
procedure, it is required to make assumptions such as the signal
arrival time and the slope have normal distributions, and approxi-
mations such as the maximum of two or more normal distributions
is also a normal distribution, which may be inaccurate. Someof
these works [6],[7] ignore the significant spatial correlation com-
ponent of the intra-chip parameter variations.

In this paper, we propose a novel gate sizing technique basedon
robust optimization theory [8]. For simplicity, we use the Elmore
delay based model, but our approach is applicable to any posyno-
mial delay model, such as the rich class of generalized posynomial
delay models proposed in [3]. In our method, we first generate
posynomial constraints by performing a STA. We then addrobust
constraints to the original constraints set by modeling the intra-chip
random process variations in the transistor widths (W ) and effec-



tive channel lengths (L) as anuncertainty ellipsoid [9] centered
at the nominal values. Under the ellipsoid uncertainty model, the
resulting optimization formulation is relaxed to be a GP andis ef-
ficiently solved using the convex optimization tools.Furthermore,
using a GP to perform robust gate sizing ensures that the optimizer
finds a global minimum which is not guaranteed in the case of a
general non-linear program. The relaxation of the robust counter-
part of the conventional GP sizing solution as another GP is amajor
contribution of this work because, in general, it is not truethat the
robust versions of convex programs are also convex programs[10].
Our work is related to the conventional design centering approaches
of [11] and [12]. However, unlike these methods which assumethe
design parameters to be normally distributed, the proposedgate siz-
ing scheme does not require any assumptions to be made about the
distributions of the parameter variations. Only the covariance ma-
trix of the random perturbation vector is required as an input to the
optimization problem. Our robust gate sizing scheme is a type of
worst-case design method, but by incorporating spatial correlations
in the design procedure, we reduce some pessimism in the design.
Spatial intra-die correlations between the parameter variations are
incorporated in the optimization scheme by using a grid-based spa-
tial correlation model used in [13] and [14]. We focus on the intra-
die variations inL andW parameters; however, the method can be
easily modified to include inter-die variations. Process-driven vari-
ations in the interconnect widths and thickness can also be included
in our method.

2. PRELIMINARIES
2.1 Conventional Gate Sizing as a GP

The conventional gate sizing problem is formulated as:

Minimize Area =
Pn

i=1
aiWiLi

Subject to Delay ≤ Tspec

and Wmin ≤ Wi, Lmin ≤ Li ∀i = 1..n (1)

where,Wi andLi are respectively, the width and the effective chan-
nel length of gatei, andai is some weight factor.Using the Elmore
delay model1, each gatei in the circuit can be replaced by an equiv-
alentRoni

Ci element, whereRoni
represents the effective on re-

sistance of the pull-up or the pull-down network, and the term Ci

subsumes the source, drain and gate capacitances of the transistors
in the gate. The expressions forRoni

andCi for a gatei are given
by:

Roni
=

αLi

Wi
Ci = βLiWi + γ (2)

where, the constantsα, β andγ can be derived from [2]. Both the
capacitances and the on resistance of the transistors in a gate are
posynomial functions of the vectorsW andL. Consequently, the
termRoni

Ci which is the equivalent delay contribution of gatei in
the circuit is also a posynomial function ofW andL. By breaking
the circuit into a series of RC trees, and applying the Elmoredelay
computations at each node of the the circuit graph, the delaycon-
straint of (1) at the primary outputs of the circuit, can be replaced
by m posynomial delay constraints of the form:

X

l

Kl

Y

j

W
aj

j L
bj

j ≤ ti (3)

where,m is the number of nodes in the circuit graph,Kl is a con-
stant coefficient of thelth monomial term, which can be derived
1The Elmore delay model is used for simplicity. Alternatively, gen-
eralized posynomial delay models [3], which have a higher accu-
racy, can be used for the GP formulation.

from (2), ti is the arrival time at gatei, andaj , bj , the exponents
of thejth components of theW andL vectors,∈ {−1, 0, 1}. By
substituting (3) in (1), for all gates in the circuit, the conventional
transistor sizing is formulated as a GP optimization problem, hav-
ing a posynomial objective function and posynomial constraints,
which can be solved using the GP techniques. In Section 3.2, we
show how the robust version of the standard GP formulation can be
converted to another GP.

2.2 The ellipsoid set
For any vectorsX andX0 ∈ Rn, and a non-singular matrixP ∈

Rn×n, an ellipsoid is defined as a set [9]:

{X : (X − X0)T P−1(X −X0) ≤ 1} (4)

If P is a symmetric and positive semidefinite matrix (PSD), an al-
ternative representation of (4) is realized by making the substitu-
tion, P−1/2(X − X0) = u as:

{X = X0 + P 1/2
u| ‖u‖ ≤ 1} (5)

where‖u‖ = u
T
u is the 2-norm of vectoru. For a symmet-

ric and PSD matrixP , the matrixP 1/2 can be computed by the
Cholesky factors ofP . The ellipsoid represents an-dimensional
region, where the vectorX varies around the center pointX0. The
vectoru characterizes the movement ofX aroundX0.
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Figure 1: An uncertainty ellipsoid in 2 dimensions

Figure 1 illustrates the ellipsoid inR2. The half-lengths of the
axis of the ellipsoid are the square roots of the eigenvalues, λ1 and
λ2, of the matrixP , and the direction of the axis is given by the
eigenvectors ofP , e1 and e2. In Section 3.1, we will introduce
the concept of an uncertainty ellipsoid, based on the ellipsoid set
of (5), to model the process-driven variability and formulate our
robust optimization problem.

3. GATE SIZING UNDER PROCESS
VARIATIONS

The posynomial constraints of (3) can be represented as:

fi(X0) ≤ ti (6)

wherefi(X0) =
P

l
Kl

Q

j
W

aj

j0
L

bj

j0
represents theith constraint

function,X0 is the vector representing the nominalW andL. The
conventional GP optimization assigns a set of optimalW0 andL0

to the vectorX0 so that each delay constraint is satisfied, i.e.,fi ≤
ti for all constraintsi, and the area objective is minimized.

Due to the process variations, the components of vectorX, the
transistorW andL are no longer deterministic quantities, but be-
have as random perturbations around their nominal values. As a re-
sult, the constraint functionfi(X0) changes tofi(X0 + δX). For
the cases when the new value of the constraint functionfi > ti,



the effect of the random process variations leads to the original
constraints being violated and timing failure for the circuit.

Assuming that the random parameter perturbations around the
nominal values are small, the new value of the constraint function
fi can be approximated by a first order Taylor series expansion as:

fi(X0 + δX) = fi(X0) +
X

j

δfi(X)

δ(Xj)0
(Xj −Xj0)

= fi(X0) + ∇X0 fi(X0)δX

=
X

l

Kl

Y

j

W
aj

j0
L

bj

j0
+

∇X0(
X

l
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Y

j

W
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j L
bj

j )δX (7)

where∇X0 represents the gradient calculated at the nominal values
of W andL, andδX represents the random variation in the widths
and channel lengths, around the nominal values.

In (7) the term,∇X0(
P

l Kl

Q

j W
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j L
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j )δX is the variational
term representing the effect of process variations added tothe nom-
inal term

P

l Kl

Q

j W
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j0
L

bj

j0
. To safeguard against the uncertainty

of process variations, it is necessary to meet the constraint, fi < ti,
for the maximum value of the variational term. In other words:
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j )δX) ≤ ti (8)

In the following sections, we show that by employing the concept
of an uncertainty ellipsoid, the constraint of (8) can be formulated
as a posynomial constraint, so that the robust optimizationformu-
lation remains a GP, and can be efficiently solved. Our robustGP
formulation is applicable for all cases where the original constraints
are in the form of a generalized posynomial [3].

3.1 Uncertainty Ellipsoid
For a random vectorX of sizen, with a meanX0 and the co-

variance matrixP , the uncertainty ellipsoid (also called the vari-
ance ellipsoid) is defined by the ellipsoid set of (5) [9]. Theuncer-
tainty ellipsoid represents region of variation of the random vector
X around the mean vectorX0. The variational vectoru charac-
terizes the uncertain movement ofX aroundX0. As seen from
Figure 1 and equation (5), the maximum variation ofX aroundX0

is bounded due to the fact that the vectoru has a norm‖u‖ ≤ 1.
We use the uncertainty ellipsoid to model the process variations

that randomly perturb the transistorW and L around the nomi-
nal values for which they were designed. As the random vectorX
of W andL varies around the nominally designed vectorX0, the
variations are considered to be bounded within the ellipsoid regions
defined by (5). In other words, the variationδX from X0 is given
by δX = P 1/2

u with ‖u‖ ≤ 1.
Alternatively, we could have chosen the variationδX in W and

L to be bounded in an-dimensional box given byXmin ≤ δX ≤
Xmax. However, using the box as model for bounded variation,
ignores any correlation information between the random variables
components ofX, as each component can move independently in-
side a box, assuming any values between the minimum and max-
imum range. Thus, optimizing for a maximum variation in such
a box region would translates to an overly pessimistic design. The
advantage of using the ellipsoid uncertainty model is that any corre-
lations between the components of the random vectorX are directly
captured by appropriately populating the entries of the covariance
matrix P . As will be explained in Section 4, we use this fact to

incorporate the spatial correlations between the random parameter
variations. To generate the uncertainty ellipsoid region,it is not re-
quired to make any assumptions about the distributions of the W
andL. The only inputs needed to generate theP matrix are the
standard deviations of the components ofX, which can be empir-
ically calculated [15], and correlation factors between the compo-
nents ofX, which can be derived from a spatial correlation model
such as the ones used in [13] and [14].

In the next section, we show with the aid of a small example, the
use of the ellipsoid uncertainty model in converting the constraint
of (8) to a posynomial constraint and formulating the robustGP for
gate sizing in the presence of process variations.

1 2

(W1, L1) (W2, L2) Cload

Figure 2: A simple example circuit

3.2 Robust GP formulation
We use a simple example to explain the procedure to incorporate

the process variation effects in the delay constraints set.We use
the toy circuit of Figure 2, comprising of just one driver gate and
one load gate, for this illustration, but the idea can be generalized
to arbitrarily large circuits.

Applying the Elmore delay model to the gates of circuit of Fig-
ure 2, and for simplicity neglecting the interconnect delayand the
effect of drain and source capacitances of the driver gate, the delay
constraint for the circuit can be written as:

K1L1L2W2

W1

+
K2L2

W2

≤ Tspec (9)

whereK1 and K2 are constants. As explained in Section 3, to
ensure that the delay constraint of (9) is met under the effect of
random process variations, the first order Taylor series expansion
of the constraint function results in the following relation:

K1L10
L20

W20

W10

+
K2L20

W20

+

max
∀δW,δL

„

K1L10
L20

δW2

W10

+
K1L20

W20
δL1

W10

+

K1L10
W20

δL2

W10

+
K2δL2

W20

−

K1L10
L20

W20
δW1

W 2

10

−
K2L20

δW2

W 2

20

«

≤ Tspec (10)

whereW0 andL0 represent, respectively, the nominal values of the
transistorW andL, andδW andδL are, respectively, the random
variations inW andL. Employing the ellipsoid uncertainty model
of (5) for the random parameter variations, leads to:

2

6

6

4

δW1

δW2

δL1

δL2

3

7

7

5

=

2

6

6

4

(P 1/2
u)1
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(11)

whereP is the covariance matrix of the random vectorX compris-
ing of the transistorW andL of the driver and the load gate of
Figure 2, andu is the vector characterizing the variation within the
4-dimensional ellipsoid centered at the nominal values ofW andL,
with ‖u‖ ≤ 1. We introduce two vectorsφ1 andφ2 to collect the
positive and negative coefficients, respectively, of the variational



parameters of (10) as:

φ1 =

2
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(12)

From the definitions in (11) and (12), (10) can be rewritten as:

K1L10
L20

W20

W10

+
K2L10

W20

+

max
∀u

“

〈P 1/2φ1,u〉 + 〈P 1/2φ2,u〉
”

≤ Tspec (13)

where〈a, b〉 represents the inner product of vectorsa andb. From
the well known result of the Cauchy Schwartz inequality:2

< a, b > ≤ ‖a‖ · ‖b‖ (14)

and the fact that in the ellipsoid uncertainty model,‖u‖ ≤ 1, a
sufficient condition3 for (13) is:

K1L10
L20

W20

W10

+
K2L10

W20

+

‖P 1/2φ1‖ + ‖P 1/2φ2‖ ≤ Tspec (15)

We then introduce two additionalrobust variables r1 andr2 as:

r1 = ‖P 1/2φ1‖, i.e., r2

1 = φT
1 Pφ1

r2 = ‖P 1/2φ2‖, i.e., r2

2 = φT
2 Pφ2 (16)

The inequality of (15) is then replaced by the following constraints:

K1L10
L20

W20

W10

+
K2L10

W20

+ r1 + r2 ≤ Tspec (17)

φT
1 Pφ1r

−2

1 ≤ 1 (18)

φT
2 Pφ2r

−2

2 ≤ 1 (19)

The inequality of (17) is clearly a posynomial with the robust vari-
ablesr1 andr2 added to the original variable list of the transistor
W andL. By construction, all the elements ofφ1 are posynomi-
als, and all the non-zero elements ofφ2 are negative of posynomi-
als. The covariance matrixP has all non-negative elements, be-
cause a negative correlation between random variables represent-
ing theW and L variations would not have any physical mean-
ing. Thus, the quadratic termsφT

1 Pφ1 =
P

i,j Pijφ1i
φ1j

, and

φT
2 Pφ2 =

P

i,j Pijφ2i
φ2j

are a summation of monomials with
positive coefficients. Consequently, the constraints of (18) and (19)
are also posynomials. Note that the inequality in (18) and (19)
would be forced to equality of (16) by the optimizer, as the robust
variablesr1 andr2, which represent the maximum variation in the
uncertainty ellipsoid, are to be minimized. Hence, by following the
procedure described in the above equations, we convert the non-
robust posynomial constraint of (9) to a set of robust posynomial
constraints of (17-19) by introducing two additional variables.

For a general circuit, the procedure described for the example cir-
cuit of Figure 2 is repeated for each constraint. Thus, by addition
of at most two additional variables for each constraintj, robustness

2In our case, the equality in (14) also holds because there aresome
points in the ellipsoid set which have〈P 1/2φ1,u〉 = ‖P 1/2φ1‖ ·
‖u‖.
3An equivalent condition for (13) is:(

K1L10
L20

W20

W10

+
K2L10

W20

+

‖P 1/2(φ1 + φ2)‖) ≤ Tspec. However, this does not lead to the
formulation of posynomial constraints of (18) and (19).

against the process uncertainties is added to original constraint set,
while still maintaining the desirable posynomial structure of the
constraints. By this procedure, we convert the conventional GP
formulation of the gate sizing problem to a robust gate sizing prob-
lem, which is also a GP and hence, can be efficiently solved using
the convex optimization machinery.

4. INCORPORATING SPATIAL
CORRELATIONS

We use the grid based spatial correlation model of [13] and [14]
to incorporate the intra-die correlations between the deviceW and
L variations.

1

2

4

3

Figure 3: Grid based spatial correlation model

Figure 3 refers to such a model, where the layout area is parti-
tioned intom = 9 grids. The widths (channel lengths) of the de-
vices located in the same grid are assigned perfect correlations, de-
vice widths (channel lengths) in nearby grids are assigned high cor-
relations and low or zero correlations in far away grids. As seen in
Figure 3, gates{1,2} have perfect correlation between their widths
(channel lengths), gates{1,3} and {2,3} have high correlations,
where as gates{1,4} and{2,4} are uncorrelated.

For a random vectorX representing the variations inW and
L and its corresponding covariance matrixP , the entryPij =
σiσjρij denotes the covariance between componentsi andj of X,
whereσ is the standard deviation of each random variable andρij

is the correlation factor between the random variablesi andj. By
employing the spatial correlation model of Figure 3, the correlation
factor between all elements ofX is computed and stamped out in
matrixP . The ellipsoid uncertainty model described in Section 3.1
then automatically incorporates the impact of correlations in the
robust optimization formulation.

The following simple example explains how the correlationsare
captured by the uncertainty ellipsoid. Consider a simple constraint
involving the transistor widths of two gates:

K1W1

W2

≤ ti (20)

For simplicity, we assume that the channel length is not varying and
is included in the constantK1. Furthermore let’s assume that the
gates are placed in the same grid of the spatial correlation model,
hence, the variations in the two gate widths are same, i.e.,δW1 =
δW2. Also if the nominal gate sizes are the identical, i.e.,W10

=
W20

, the effect of process variation cancels out in the numerator
and denominator of (20) and no guard-banding is required. Tover-
ify that the ellipsoid uncertainty correctly incorporatesthis perfect
correlation affect, we apply our robust optimization procedure to
the constraint function of (20). A first order Taylor series expan-
sion of the constraint around the nominal values (W10

, W20
) and

applying the ellipsoid uncertainty yields:

K1W10

W20

+
K1(P

1/2u)1
W20

−
K1W10

(P 1/2u)2
W 2

20

≤ ti (21)



However, since we have perfect correlation betweenW1 andW2,
the correlation factor,ρ12 = ρ21 = 1. Furthermore, since the
variations inW1 andW2 and the mean values are same, we must
haveσ1 = σ2. It then follows that for all vectorsu = [u1, u2],
which characterize the uncertainty ellipsoid, we have(P 1/2u)1 =

(P 1/2u)2 and the variational term in (20):

K1(P
1/2u)1

W20

−
K1W10

(P 1/2u)2
W 2

20

= 0

Thus, the ellipsoid uncertainty model easily captures the effects of
correlations between random variables and incorporates the same in
the optimization procedure. Incorporating the correlations in gate
sizing optimization procedure ensures that the circuit is not over-
designed to achieve robustness against the process variations.

5. THE GATE SIZING PROCEDURE
Figure 4 summarizes the overall flow for the robust gate sizing

procedure. We start by generating the non-robust delay constraints

Generate the non-robust delay constraints by STA.

Use a first order Taylor series expansion for constraint functions.

Employ the ellipsoid uncertainty region to model the variations.

Use the spatial correlation model to construct theP matrix.

Using the procedure of 3.2, generate robust constraints.

Solve the robust GP by convex optimization tools.

Figure 4: Overall flow of the robust gate sizing procedure.

by performing a STA. The effect of process variations on the con-
straints are considered by using a first order Taylor series of the
posynomial constraints around their nominal values. We employ
the uncertainty ellipsoid to model the random process variations.
The P matrix characterizing the variance ellipsoid is constructed
by using the spatial correlation model. Following the procedure
described in Section 3.2, a set of robust constraints are generated.
Finally, the resulting GP is solved to obtain an optimal assignment
of the transistorW andL, which minimizes the area, and meets the
delay constraints in the presence of random process variations.

6. EXPERIMENTAL RESULTS
The proposed robust gate sizing procedure was implemented in

a C program, and an optimization software [16] was used to solve
the final GP. All experiments were performed on a 2.4 GHz Linux
machines having 2 GB of RAM. The robust gate sizing technique
was applied to the ISCAS 85 benchmark circuits. The cell library
selected comprised of inverters and two and three input NANDand
NOR gates. We use a TSMC 180nm technology parameter [17]
to estimate the constants for the on resistance and the source, drain
and gate capacitances. We assume capacitive loading for thegates.
The objective function chosen for the optimization is to minimize
Area =

P

i miWiLi, wherem is the number of transistors in gate
i.

In our method, the amount of guard-banding required in the face
of process variations, is controlled by the size of the uncertainty
ellipsoid, as determined by the entries of the covariance matrix, P .
Each element of theP matrix is given byPij = ρijσiσj , where
the correlation componentρij is obtained from the spatial correla-
tion model described in Section 4. To use the spatial correlation
model, we first place the circuits using the placement tool Capo
[18], and then divide the chip area into different number of grids,
depending on the circuit size, so that each grid size is of theorder
of 60µ × 60µ. We defineσref as the vector of maximum percent-
age deviations from the nominal values ofW andL. The elements
of σref predicted from [15], are 25% of nominal width value and
20% of nominal channel length value. To calculate the elements
of P matrix, we choose the value ofσi = Kσrefi , whereK is a
constant≤ 1.

To verify the results of our method, we generate 10,000 random
samples from a multivariate normal distributionN(X0, Q), where,
the mean vector of the distributionX0 is the vector containing the
optimal set of transistorW andL as determined by the the robust
GP solution, and the elements of covariance matrixQ are given by
Qij = ρijσrefi

σrefj
. We then perform Monte Carlo simulations

using these 10,000 random samples, to determine the frequency of
timing violations of the chip, i.e, the number of times the delay of
the circuit exceedsTspec. The timing yield of the robust design
is compared to that of the conventional gate sizing solutionor the
non-robust design. The Monte Carlo samples for the non-robust
design are generated using a mean vectorX0, containingW and
L, as determined by solving a standard GP optimization. For each
circuit, the value ofTspec is chosen to be the point of 15% slack,
i.e., Tspec = Dmin + 0.15(Dmax − Dmin), whereDmin and
Dmax are, respectively, the minimum and the maximum possible
delays of the circuit. We found that for all the circuits, theoptimizer
assigns a value ofL = Lmin to all channel length variables. This
can be ascribed to the fact that increasing the channel length not
only has an area penalty, it also increases the delay of the circuit
and does not improve the robustness of the circuit in the faceof
variations. However, the robust GP determines a width assignment
such that the random variations for both the width and the length
are accounted for.

Non Robust Design Robust Design
Run Run

# of Area %Delay
Time

Area %Delay
Time

Ckt
Gates Violations (sec) Violations (sec)

C432 616 1.00 78.76% 3.45 1.17 0.00% 18.08
C499 1262 1.00 70.52% 7.49 1.23 0.01% 29.26
C880 854 1.00 72.36% 5.30 1.14 0.00% 22.17
C1355 1202 1.00 68.76% 7.33 1.20 0.00% 36.42
C1908 1636 1.00 65.43% 14.40 1.19 0.00% 307.88
C2670 2072 1.00 60.09% 20.52 1.21 0.03% 310.34
C3540 2882 1.00 67.12% 31.70 1.11 0.02% 342.14
C5315 4514 1.00 62.25% 65.12 1.18 0.01% 817.89
C6288 5548 1.00 63.36% 98.27 1.18 0.02% 1042.44
C7552 6524 1.00 65.12% 120.35 1.22 0.03% 1245.34

Table 1: A comparison of robust and non-robust gate sizing
solutions

Table 1 shows a comparison of the robust designs (R) obtained
by the proposed optimization scheme and non-robust designs(NR)
obtained by the conventional GP solution. For the robust circuits
shown in Table 1, the size of the variance ellipsoid is chosensuch
that the factorK = σ/σref = 1. In this case, theP matrix charac-
terizing the uncertainty ellipsoid around nominal values vectorX0,
is same as theQ matrix used to draw Monte Carlo samples from



the multivariate normal distributionN(X0, Q). This size of uncer-
tainty ellipsoid corresponds to the case of maximum uncertainty-
awareness. The third column in Table 1 shows the normalized area
for the non-robust design, and the fourth column indicates the per-
centage of Monte Carlo chips that failed to meet theTspec con-
straint for the conventional gate sizing solution. For the robust cir-
cuits, the area overhead to incorporate robustness is listed in col-
umn six of Table 1, and the percentage of timing violations incol-
umn seven. The run times for the NR and R designs are listed in
columns five and eight, respectively. As seen from Table 1, the
circuits obtained by the robust gate sizing scheme are able to elim-
inate the effect of process variations and increase the timing yield
by about 3-4 times, e.g., the timing yield for C6288 increases from
33.88% to 99.98%. However, the area overhead for some cases
could be significant, e.g., 23% for C499.

The sensitivity of the delay of a circuit with respect to the pro-
cess variations depends on the amount of timing slack the circuits
have. Circuits with smaller slacks or tighter delay specifications
would be more sensitive to the random process variations. Hence,
the area overhead to guard-band against the uncertainties would be
greater for the robust designs. Figure 5(a) shows the effectof non-
robust optimizing of the C499 circuit for different values of Tspec

as given by the % slack points. As seen from the figure, the number
of violations increase with tighter specs or smaller slacks. Figure
5(b) shows the corresponding robust designs for the C499 circuit
for each of the slack points. As seen from the figure, the area over-
head for R designs to eliminate the timing violations, increases for
tighter specs.
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Figure 5: The non-robust and robust designs for C499 circuit
for different values of Tspec. (a) Timing violations for non-
robust designs. (b) Area overhead for robust designs.

We perform another series of experiments to compare our ap-
proach with a gate sizing methodology employing a worst-case de-
sign approach. The worst-case designs are obtained by iteratively
solving the standard GP, but for delay specs tighter than theorig-
inal required specs, until the area of the worst-case designis the
same as that of the robust design. Furthermore, to explore the area-
robustness trade-off we vary the size of the uncertainty ellipsoid, by
choosing different values of the factorK = σ/σref . We found in
our experiments that the number of timing violations reduces with
increase in area, for both the worst-case and the robust circuits.
However, in all cases, our robust design has fewer violations than
the worst-case design having the same area. On an average, the
robust design has about 12% fewer violations that the worst-case

design having the same area. The better performance of our robust
sizing solution is not surprising because of the fact that the spatial
correlation information, stored in theP matrix, is used by the opti-
mization scheme. The worst-case circuit is expected to havea large
overhead, since designing by setting tighter specs resultsin render-
ing critical some of the earlier non-critical paths. So the optimizer
now has to aggressively size the gates on these paths, which results
in greater chip area than actually required. Since, the runtimes for
our robust gate sizing solutions are reasonably small, the user can
run the optimization for different values ofK = σ/σref , to select
the amount of robustness required against the process uncertainties,
at the cost of additional chip area.

7. CONCLUSION
In this paper, we solve the gate sizing problem in the presence

of process-driven variations. The procedure employs a ellipsoid set
as a bounded variation model and considers the spatial correlations
of the intra-die parameter variations. The original set of posyno-
mial delay constraints are modified and converted to anotherset
of posynomial constraints and the resulting robust GP is efficiently
solved. Experimental results, on several benchmark circuits, show
that the robust design significantly increases the timing yield of the
chip as compared to the conventional gate sizing solutions and has
a better performance than the worst-case designing approach.
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