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ABSTRACT 
Subthreshold circuit designs have been demonstrated to be a 
successful alternative when ultra-low power consumption is 
paramount.  However, the characteristics of MOS transistors in 
the subthreshold regime are significantly different from those in 
strong-inversion.  This presents new challenges in design 
optimization, particularly in complex gates with stacks of 
transistors.  In this paper, we demonstrate a new optimal sizing 
scheme for subthreshold designs which takes these issues into 
account.  We derive a closed-form solution for the correct sizing 
of transistors in a stack, both in relation to other transistors in the 
stack, and to a single transistor with equivalent current drivability. 
Experimental results show that our framework provides a 
performance improvement of up to 13.5% over the conventional 
logical effort method on ISCAS benchmark circuits, while one 
component circuit demonstrated an improvement of 33.1%. 

Categories and Subject Descriptors 
B.7.2 [Hardware]: Integrated Circuits─Types and Design Styles. 
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Algorithms, Performance, Design 
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1. INTRODUCTION 
Due to the robust nature of static CMOS logic, circuits in this 

technology family can operate with supply voltages below the 
transistor threshold voltage (Vth), while consuming orders of 
magnitude less power than in the normal strong-inversion region. 
The operating frequency of subthreshold logic is much lower than 
that of regular strong-inversion circuits (Vdd > Vth) due to the small 
transistor current, which consists entirely of leakage current. The 
low operating frequency and low supply voltage combine to 
reduce both dynamic and leakage power, leading to the significant 
power savings seen in subthreshold designs.  

Subthreshold logic holds promise for the growing number of 
applications in which minimal power consumption is the primary 
design constraint.  Such circuits have received much attention in 
recent research, and a number of successful designs have been 
demonstrated.  A multiplexer-based SRAM was proposed for  
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subthreshold operation by the authors of [1] at ISSCC 2004.  They 
also introduced new tiny-XOR circuits and demonstrated their 
performance in a Fast Fourier Transform processor running at a 
supply voltage of 180mV.  Dynamic voltage scaling down to the 
subthreshold region was demonstrated by Calhoun et al. [2].  Kim 
et al. showed device-level optimization of subthreshold double-
gate transistors, revealing how the scaling trend of transistors for 
subthreshold operation should be different from those for normal 
strong-inversion operation [3].  In [4] Kim et al. built an ultra-low 
power adaptive filter using subthreshold logic for hearing aid 
applications.  Subthreshold-friendly logic styles and massively 
parallel DSP architectures were used in that work to achieve ultra-
low voltage operation  

The characteristics of MOS transistors in the subthreshold 
region are significantly different from those in the strong-
inversion region. The MOS saturation current, which was a near-
linear function of the gate and threshold voltages in the strong-
inversion region, becomes an exponential function of those values 
in the subthreshold regime [5].  In this work, we show that the 
sizing methods used to obtain maximum performance must be 
reformulated for use in subthreshold designs due to these different 
characteristics.  In particular, we explain how the widely-used 
logical effort method must be modified, and we develop a new 
framework for optimal device sizing in subthreshold based on this 
method.  A closed-form solution for the optimal sizing of stacked 
transistors is derived and shown to match experimental results.  
Finally, we present HSPICE simulation results from ISCAS 
benchmarks and component circuits demonstrating the advantage 
of our approach versus the conventional logical effort method.  
Improvements in performance of up to 33.1% are reported and 
justified with simple calculations based on our framework. 

2. CONVENTIONAL LOGICAL EFFORT 
The logical effort method was presented by Sutherland et al. 

as a simple way to both estimate and optimize the delay of CMOS 
circuits [6].  The gate delay (d) is modeled as d = ghb + p, where g 
is the logical effort, h is the electrical effort, b is a branching 
factor which accounts for off-path capacitance, and p is the 
parasitic delay.  Logical effort is defined as the ratio of the input 
capacitance of a gate to that of an inverter delivering the same 
amount of output current.  The electrical effort represents the ratio 
of output capacitance to input capacitance, the ghb product is 
called the stage effort, and the parasitic delay is defined as the 
delay of a gate driving no load.  This final value is set by the 
parasitic junction capacitance.   

In conventional logical effort calculations, the optimal ratio 
of PMOS width (WP) to NMOS width (WN) for achieving 
equivalent current drivability is approximately 2.5:1, due to the 
mobility difference between charge carriers in PMOS and NMOS 



devices.  In addition, the effective width of a transistor in a stack 
of n devices is roughly 1/n in the strong-inversion region. This 
means that in order for an n-stack to conduct the same amount of 
current as a single transistor, the devices in the stack must each be 
sized up by a factor of n.  Selection of the proper WP:WN ratio and 
effective width of stacked transistors is crucial for achieving 
optimal performance.  We have found that the conventional 
logical effort framework based on strong-inversion operation fails 
to do so for subthreshold logic due to the difference in the 
transistor current behavior.  In the strong-inversion regime, 
current is a first or second-order function of the four MOS 
terminal voltages.  As stated in section 1, the drive-current in 
subthreshold designs is an exponential function of the terminal 
voltages.  Hence we need a new design paradigm for optimal 
device sizing based on the exponential current equation in the 
subthreshold region.  

3. SUBTHRESHOLD LOGICAL EFFORT 

3.1 Optimal Stack Sizing 
The first step we take in developing the subthreshold logical 

effort framework is finding the optimal width ratio between 
transistors in a stack for maximum drive-current. We present a 
closed-form expression for the relative sizing of two transistors in 
a stack, showing that it is beneficial to size up the transistor 
nearest to the supply rail (Vdd for PMOS, ground for NMOS).  The 
starting point is the following pair of current equations for upper 
and lower transistors in the stack (as situated in an NMOS stack, 
so the lower device is connected to ground): 

( ) ( )( )

( ) ( )( )
T

XdddXtXdd

T

Xdd

T

XdddXtXdd

mV
VVVVVV

U

V
VV

mV
VVVVVV

UU

eW

eeWI

−++−−

−−−++−−

≈














−=

λγ

λγ

0

0 )(

1           (1) 

( )











−=

−+−

T

X

T

Xdtdd
V
V

mV
VVV

LL eeWI 1
0 λ

                                      (2) 

Here, WU and WL denote the upper and lower transistor widths, 
respectively, and VX denotes the voltage at the node between those 
devices.  The Drain-Induced Barrier Lowering (DIBL) coefficient 
(a negative number) is represented by λd, and γ is the body effect 
coefficient.  The thermal voltage is represented by VT , while Vt0 
stands for the nominal threshold voltage.  According to simulation 
results, we can approximate VX ≈ 0V, and therefore Vdd–VX ≈ Vdd.  
Moreover, it may be noted that ( ) 0/ ≈−− TXdd VVVe .  We use the 
symbol 
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as well as the fact that m = 1+γ, to further simplify calculations.  
Rewriting the two current equations and equating them yields the 
following relationship: 
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Solving for VX  and using the definition qkTVT /=  gives us 
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We then define WT = WU+WL to eliminate WL, which results in the 
following current equation: 
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We find the optimal size for WU by setting ( )UU WI ∂∂ /  equal to 
zero.  Again using our definition of WT, we then find the optimal 
size for WL.  This derivation shows that 
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According to these results, we expect to achieve a higher drive-
current through the two-transistor stack when the lower device is 
larger than the upper transistor by a factor of α .  For example, 
with a WU of 1µm the optimal WL is 1.189µm at Vdd = 0.3V, and 
1.122µm at Vdd = 0.2V.  As shown in equation (3), α is a function 
of Vdd (see Table 1 for 1+α values), resulting in the different 
optimal width ratios for different Vdd values. 

HSPICE simulations using 0.13µ technology verify that the 
result of our derivation is correct, and that the benefit is more 
pronounced for larger α values (that is, when the supply voltage is 
at the higher end of the subthreshold range).  PMOS transistor 
stacks exhibited the same sizing trends—optimal sizing requires 
the upper transistor (adjacent to the power supply) to be sized up 
by a factor of α .  The results are displayed in Figure 1.  Due to 
the small difference in current with the skewed sizing (~1% 
improvement, which is close to the theoretical improvement), we 
will use a 1:1 width ratio in stacks.  This reduces the design 
complexity for a negligibly small performance penalty.   
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Figure 1: Current measured in DC for a range of WU:WL sizing ratios. 

After deciding to use a 1:1 ratio for the two devices in a 
stack, we must find the amount by which they should be sized up 
to drive the same current as a single transistor.  Defining W = WU 
= WL as the size of each transistor in the stack, we can modify 
equation (6) as follows: 
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For a single transistor, the current equation is: 
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where Weff stands for the effective width of this device.  From 
equations (9) and (10), we have the following relationship:
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According to this equation, two stacked transistors should be 
sized up by a factor of 1+α in relation to a single transistor for the 
same current drivability.  Table 1 lists (1+α) values for a number 
of different Vdd values.   Our derivation indicates that stacks need 
to be sized up by a larger amount in the subthreshold region 
compared to the superthreshold region.  For example, a single unit 
transistor is equivalent to a two-stack with transistor widths of 
2.259 at 0.2V, 2.413 at 0.3V, and 1.6 at 1.2V.  A larger transistor 
is needed in the stack with a 0.3V supply compared to a supply of 
0.2V due to the larger α value. Note that stacked NMOS 
transistors are only sized up by a factor of 1.6 at 1.2V (rather than 
a factor of 2) due to velocity saturation.              

Table 1: 1+α values for stack sizing 
Vdd PMOS/NMOS 1+α 

PMOS 2.428 
0.2V 

NMOS 2.259 

PMOS 2.707 
0.3V 

NMOS 2.413 

PMOS 2.1* 
1.2V 

NMOS 1.6* 

(*Superthreshold values are not calculated with equation (3)—they are 
derived from DC simulation and fit the 1+α sizing factor) 

3.2 Optimal WP:WN Ratio 
The optimal PMOS to NMOS width ratio in the subthreshold 

regime was found by simulating a chain of equally sized inverters 
and observing the rise and fall delays.  Results show that a 1.5:1 
ratio gives equal delays for the rise and fall transitions at Vdd = 
0.2V, and a slightly smaller ratio is optimal for Vdd = 0.3V.  The 
1.5:1 ratio will be used in all subthreshold simulations to maintain 
consistency. 

3.3 New Logical Effort Formulation 
Based on the results from the previous sections, we can now 

summarize our new logical effort values for different types of 
gates operating in the subthreshold region.  Figure 2 compares the 
logical efforts of standard logic gates in strong-inversion 
operation with those in the subthreshold region. 

 
(a) Conventional sizing 

 
(b) This work 

Figure 2: Parasitic delay (p) and logical effort (g) values 

To verify the stack sizing factors based on our derivation, we 
ran DC simulations to compare the current through a single 
transistor to the current through a stack at different supply voltage 

levels. Each device in the stack was sized equivalently to the 
single transistor.  The ratio of the currents indicates by how much 
the stack transistors must be sized up to achieve the same level of 
drive-current observed in the single device.  Table 2 compares the 
simulation results with the stack scaling factor of 1+α derived in 
section 3.1.  The results of our derivation closely match the 
simulation results. 

Table 2: Measured and theoretical sizing factors for 2-stacks 
Vdd = 0.2V Vdd = 0.3V 

 
Measured Theoretical 1+α Measured Theoretical 1+α 

PMOS 2.4 2.428 2.64 2.707 

NMOS 2.25 2.259 2.44 2.413 

3.4 Library Design: Arbitrary Stack Sizes 
Building an extensive cell library based on our new logical 

effort framework requires us to extend our work to stacks of three 
or more devices.  The derivation for the current equation of a 
three-stack, which follows a similar method as the derivation in 
section 3.1 gives us the following result: 
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W1 and W2 stand for the widths of the two lower transistors in the 
stack of NMOS devices (see notation in Figure 3).  WT is defined 
as WT = W1+W2+W3, and is used to eliminate W3, the width of the 
upper device.  This equation is symmetric with respect to the 
widths of W1 and W2 transistors, indicating that the optimal sizes 
for the lower two devices in the stack are equal.  A straight-
forward direct proof confirms the symmetry of the lower n-1 
transistor widths in an n-stack achieving maximum drive current. 

                
            (a) n-stack notation        (b) n-stack sizing for equivalent width 

Figure 3: NMOS n-stack  

We have also proven that the optimal ratio between the n-1 
lower devices and the upper device is α , which is equivalent to 
the two-stack case (equations (7) and (8)).   As in the two-
transistor stack, the scaling factor of α  leads to a trivial 
performance benefit, so sizing all stacked transistors equally is the 
best choice in terms of overall design complexity.  Theory and 
simulation have both show that each device in an n-stack should 
be scaled up by a factor of [1+α(n-1)] to set the effective width of 
the stack equal to that of a single unit transistor.  Note that all 
work done here again applies to PMOS stacks in a similar manner. 

4. EXPERIMENTAL RESULTS 
4.1 ISCAS Benchmark Results 

We tested our sizing framework by synthesizing a number of 
ISCAS benchmark circuits, as well as component circuits used in 
that suite.  Three cell libraries were created, each containing an 
inverter, a two-input NAND, and a two-input NOR.  The cells in 
the first library were optimized for a supply of 1.2V with a 2.5:1 
WP:WN ratio.  The other two libraries contained cells optimized for 
supplies of 0.2V and 0.3V, which use a 1.5:1 WP:WN ratio.  



Critical path delays through circuits using conventional 
superthreshold logical effort sizing and optimized subthreshold 
sizing are compared for 0.2V and 0.3V supplies in Table 4. 

As these results demonstrate, our sizing framework 
consistently provides a performance benefit in subthreshold 
circuits.  Improvements range from 4.38% to 33.1% in different 
cases because performance is highly dependent on circuit 
topology.  This range of speedup values can be explained by 
examining simple cases with the logical effort model.   

For instance, we will analyze the delay through a single 
NAND gate followed by a NOR, within a longer NAND-NOR 
chain, operating at 0.3V.  The logical effort values for 
conventionally sized and optimized gates at this supply level are 
presented in Figure 4.  Notice that the former set of gates have 
separate logical efforts for the pull-up (gu) and pull-down (gd) 
paths, because the reference gate is now the inverter seen in 
Figure 4(b)—that is, the inverter optimized for operation at 0.3V.   

 
(a) Conventional: logical effort of pull-up and pull-down paths 

 
(b) Proposed 

Figure 4: Logical effort values with a supply of 0.3V. 
As an example, the logical efforts for the NAND gate in 

Figure 4(a) are computed as follows: 

( ) ( ) 15.2
1.2/6.15.2

6.15.2;98.0
5.1/5.25.2

6.15.2
=

+
==

+
= du gg

                (13) 

where the ratio in each denominator accounts for the difference 
between the conventional and optimal path sizes.  The nominal 
delay through one NAND-NOR pair is computed with the 
following equation from logical effort theory:                 

totalNORNAND pbhgbhgdelay +⋅⋅+⋅⋅= )()(                         (14) 
where ptotal represents the total parasitic junction capacitance in 
the two gates.  The delay values for two different cases are 
displayed in Table 3.  In both examples, the critical path travels 
through the stack of the NAND gate; however, in the first case, 
both branching factors are equal to one, whereas in the second 

case, the branching factor of the NAND gate is four.  These 
simple calculations show that the 21% improvement seen in 
section 4.1, with no branching, and the performance gains of 
~30% observed in the ISCAS benchmarks match theoretically 
attainable improvements.   Smaller benefits are obtained with 
different combinations of logical effort values and branching 
factors. 

Table 3: NAND-NOR delays at 0.3V computed with equation (14) 

 Conventional New Improvement 

No branching 8.52 6.84 20% 

NAND  b=4 15.74 11.29 28% 

 
5. CONCLUSION 

We have presented a new logical effort optimization 
framework for circuits operating in the subthreshold region.  A 
closed-form solution for the optimal ratio of different devices 
within a stack, as well as the sizing factor for stacked devices, was 
presented and shown to closely match experimental results.  Our 
optimization scheme resulted in performance gains of up to 13.5% 
for ISCAS benchmark circuits and 33.1% for component circuits 
operating in subthreshold, which was shown to match 
theoretically attainable improvements. 
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Table 4: Results from ISCAS benchmarks and component circuits (“CX”: benchmarks; “74X”: components) 

0.3V 0.2V 
Circuit 

conventional  proposed improvement conventional proposed improvement 

C432 12.93 ns 11.55 ns 10.67% 99.44 ns 89.38 ns 10.11% 

C6288 24.71 ns 21.59 ns 12.63% 186.0 ns 170.6 ns 8.31% 

C3540 35.06 ns 33.53 ns 4.38% 270.6 ns 253.6 ns 6.29% 

C1355 12.40 ns 10.73 ns 13.46% 103.1 ns 90.41 ns 12.32% 

74283 43.74 ns 41.45 ns 5.25% 340.7 ns 323.4 ns 5.08% 

74181 47.70 ns 44.74 ns 6.20% 378.8 ns 353.1 ns 6.78% 

74L85 22.88 ns 21.37 ns 6.59% 185.2 ns 170.7 ns 7.80% 

74182 29.18 ns 19.52 ns 33.1% 215.3 ns 146.2 ns 32.1% 




