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ABSTRACT
We propose a scalable and efficient parameterized block-based sta-
tistical static timing analysis algorithm incorporating both Gaussian
and non-Gaussian parameter distributions, capturing spatial corre-
lations using a grid-based model. As a preprocessing step, we em-
ploy independent component analysis to transform the set ofcor-
related non-Gaussian parameters to a basis set of parameters that
are statistically independent, and principal components analysis to
orthogonalize the Gaussian parameters. The procedure requires
minimal input information: given the moments of the variational
parameters, we use a Padé approximation-based moment match-
ing scheme to generate the distributions of the random variables
representing the signal arrival times, and preserve correlation in-
formation by propagating arrival times in a canonical form.For the
ISCAS89 benchmark circuits, as compared to Monte Carlo simula-
tions, we obtain average errors of 0.99% and 2.05%, respectively,
in the mean and standard deviation of the circuit delay. For acir-
cuit with |G| gates and a layout withg spatial correlation grids, the
complexity of our approach isO(g|G|).

1. INTRODUCTION
Technology scaling brings about increased process parameter

variations, causing larger spreads in circuit timing characteristics.
In the face of these variations, traditional corner-based static tim-
ing analysis is inadequate, and there has been much recent work
on developing statistical static timing analysis (SSTA) [1, 2, 3, 4,
5, 6, 7, 8, 9, 10]. SSTA predicts the probability distribution func-
tion (PDF) and the cumulative distribution function (CDF) of the
delay, given the statistical distribution of the process parameters.
Existing SSTA algorithms may be path-based or block-based,may
assume Gaussian or non-Gaussian distributions, may incorporate
spatial correlation effects or not, etc.

The assumption of normality of process variations lends itself
rather well to generating closed-form expressions for the delay and
arrival time PDFs. Although correlation and statistical dependence
between random variables tends to increase the complexity of SSTA,
recent work has presented efficient techniques for handlingsuch
correlations under Gaussian distributions, using principal compo-
nents analysis (PCA) to perform a simple variable transformation
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[1]. This transformation enables efficient SSTA, representing de-
lays and arrival times as functions of a new set of orthogonal, sta-
tistically independent Gaussian random variables.

However, the normality assumption is not always valid [11],and
it is well known that some process parameters deviate significantly
from a Gaussian distribution. For example, via resistancesexhibit
an asymmetric probability distribution [3], and the dopantconcen-
tration density is also observed to be well modeled by a Poisson dis-
tribution: a normality assumption may lead to significant sources of
errors in SSTA. Moreover, it is typically difficult to extract precise
distributions from process data, and it is more realistic toobtain the
moments of the parameter variations from a process engineer.

Some recent works [3, 7] propose SSTA methods that do away
with the assumptions of normality, but none of these is scalable
to a large number of non-Gaussian parameters, and none has pre-
sented a solution in the presence of correlated non-Gaussian param-
eter distributions. The solution in [3] employs expensive numerical
integration, while [7] relies on a highly computational regression
strategy. These methods can efficiently handle only a few non-
Gaussian sources.

In this work, we propose an efficient parameterized block-based
SSTA algorithm that can handle the case where the underlyingpro-
cess parameters may be spatially correlated non-Gaussian as well
as Gaussian distributions. The correlations are describedusing a
grid structure, similar to that used in [1], which works for Gaus-
sian distributions only. Our scheme is general enough to work even
for the cases when the closed-form expression of the PDF of the
sources of variation is not available, and it only requires the mo-
ments of the process parameter distributions as an input. These mo-
ments are relatively easier to calculate from the process data files
than the actual PDFs, and our procedure uses a moment matching
scheme to generate the PDFs of the arrival time and delay variables.

For simplicity, our current implementation ignores the effect of
the input signal transition time on the delay at the output port of
the gate. However, our SSTA procedure can be extended to express
slope at the output pin of the gate as a probability weighted sum
of distributions of the slope from all input pins to the output pin
of the gate [12]. In our SSTA framework, we can efficiently com-
pute these weights as closed-form probabilities, using themoment
matching PDF extraction scheme.

The main steps in our SSTA algorithm are:

1. Preprocessing to obtain an independent set of basis vari-
ables: We employ a technique known as independent com-
ponent analysis (ICA) [13, 14, 15, 16] as apreprocessing
step, with the goal of transforming the random vector of cor-
related non-Gaussian components to a random vector whose
components are statistically independent. We then compute
moments of the independent components from the moments
of the non-Gaussian parameters. We orthogonalize the Gaus-
sian parameters separately, performing PCA as in [1]. To-
gether, we refer to this set of independent variables as the
basis set.



2. Moment matching-based PDF evaluation:Next, we rep-
resent the gate delays as a linear canonical function of the
basis set. From the moments of the basis set, we compute
the moments of the gate delay variables. Finally, we trans-
late the moments into a PDF for the delay variables, using a
Padé approximation-based moment matching scheme [17].

3. Correlation-preserving statistical operations: Our block-
based circuit traversal employs statistical sum and max op-
erations at every step to compute the extracted PDFs of the
arrival time variables. These variables are stored as a linear
canonical form, obtained through a moment-matching pro-
cedure.

During our exposition, it will become amply clear that we borrow
some techniques from existing algorithms from the literature. How-
ever, it is important to note that the overall algorithm is distinctly
different from any existing method. For a circuit with|G| gates
and a layout withg spatial correlation grids, the complexity of our
approach isO(g|G|), similar to the solution for the Gaussian case
in [1].

2. NON-GAUSSIANITY IN SSTA
We use a toy circuit, shown in Figure 1, to illustrate the effects of

non-Gaussian parameters on the delay distribution. We assume the
width Wi and the effective lengthLei

for each inverteri to be the
random parameters of variation. Using a first order approximation,
the delay of this circuit can be written as:

D = µ + a1.W1 + a2.W2 + b1.Le1
+ b2.Le2

(1)

wherea1, a2, b1, andb2 are the sensitivities of the delay with re-
spect to the zero-mean randomly varying parametersW1, W2, Le1

,
andLe2

, respectively, andµ is the nominal delay of the circuit.

1 2

Figure 1: A simple circuit example to illustrate the effect of
non-Gaussian parameters on the PDF of the circuit delay.
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Figure 2: PDF of the delay of the example circuit of Figure 1 for
(a) uncorrelated and (b) correlated non-Gaussian and Gaussian
process variables.

Next, modelingW1, W2 as Gaussians, andLe1
, Le2

as uniformly
distributed random variables in[µLe

−
√

3σLe
, µLe

+
√

3σLe
], we

perform Monte Carlo simulations to evaluate the circuit delay PDF.
The dashed curve shows the actual delay PDF obtained for the cir-
cuit by correctly modelingLe as a uniform distribution, while the
solid curve is the PDF obtained if the non-GaussianLe variables
were modeled as Gaussian variables with the same mean and stan-
dard deviation as the uniform distribution. Figure 2(a) shows the
PDFs for the case where all of the parameters are considered to be
statistically independent, while Figure 2(b) shows the PDFwhen

W1 [Le1
] is considered to perfectly correlated withW2 [Le2

]. In
each case, it is seen that the circuit delay PDF deviates froma Gaus-
sian distribution due to the presence of the non-Gaussians.

Figure 2(b) suggests that the deviation from a normal distribution
becomes more significant when the non-Gaussian random variables
exhibit correlation. The intuition for this can be arrived at by ap-
pealing to the Central Limit Theorem, according to which thead-
dition of independent variables makes them “more Gaussian,” but
this is not necessarily true for correlated random variables. For real
circuits, where many parameters are correlated due to the presence
of the inherent spatial and structural correlations, the presence of
non-Gaussian distributions implies that the circuit delaymay devi-
ate significantly from a normal distribution.

To incorporate the effects of both Gaussian and non-Gaussian
parameters of distribution in our SSTA framework, we represent
all delay and arrival times in a linear form as:

D = µ +
n

X

i=1

bi.xi +
m

X

j=1

cj .yj + e.z = µ +B
T
X+C

T
Y + e.z (2)

whereD is the random variable corresponding to a gate delay or
an arrival time at the input port of a gate,xi [yj ] is a non-Gaussian
[Gaussian] random variable corresponding to a physical parameter
variation,bi [cj ] is the first order sensitivity of the delay with re-
spect to theith non-Gaussian [jth Gaussian] parameter,z is the un-
correlated parameter which could be a Gaussian or a non-Gaussian
random variable,e is the sensitivity with respect the uncorrelated
variable, andn [m] is the number of correlated non-Gaussian [Gaus-
sian] variables. In the vector form,B andC are the sensitivity
vectors forX, the random vector of non-Gaussian parameter vari-
ations, andY, the random vector of Gaussian random variables, re-
spectively. We assume statistical independence between the Gaus-
sian and non-Gaussian parameters.The meanµ is adjusted soX
andY are centered, i.e., eachxi, yj , andz has zero-mean.

3. INDEPENDENT COMPONENT
ANALYSIS

For reasons of computational and conceptual simplicity, itis use-
ful to work with a set of statistically independent random variables
in the SSTA framework. If the components of random vectorX

were correlated Gaussian random variables with a covariance ma-
trix

P

, a PCA transformationR = PxX would yield a random
vectorR comprising of Gaussian uncorrelated random variables
[1]. Since for a Gaussian distribution, uncorrelatedness implies sta-
tistical independence1, the components ofR are also statistically
independent.

However, such a property does not hold for general non-Gaussian
distributions. In Equation (2), the random vectorX consists of cor-
related non-Gaussian random variables, and a PCA transformation,
S = PxX, would not guarantee statistical independence for the
components of the transformed vectorS. Since the PCA technique
focuses only on second order statistics, it can only ensure uncor-
relatedness, and not the much stronger requirement of statistical
independence.

Independent component analysis [13, 14, 15, 16] is a mathemati-
cal technique that precisely accomplishes the desired goalof trans-
forming a set of non-Gaussian correlated random variables to a set
of random variables that are statistically as independent as possible,
via a linear transformation. ICA has been an active area of research
in the area of signal processing, feature extraction and neural net-
works due to its ability to capture the essential structure of data in
many applications. The ICA set up consists of having a vectorS
1Two random variablesX andY are uncorrelated ifE[XY ] =
E[X]E[Y ], while they are independent ifE[f(X)g(Y )] =
E[f(X)]E[g(Y )] for any functionsf andg. For instance, ifX and
Y are independent, thenE[XiY j ] = E[Xi]E[Y j ]. For Gaussian
distributions, uncorrelatedness is identical to independence. For a
general non-Gaussian distribution, independence impliesuncorre-
latedness, but not vice versa.



consisting ofn statistically independent components,s1, · · · , sn,
and observations ofn linear mixtures,x1, · · · , xn, of then inde-
pendent components. The observed components here are the corre-
lated non-Gaussian random variablesX in Equation (2), produced
by a linear mixing of the elements of a vectorS of independent
random variables, as follows:

X = AS (3)

whereA is then×n mixing matrix. Like principal components, the
independent components of vectorS are mathematical abstractions
that cannot be directly observed. Similar to the PCA procedure,
which requires normalization of N(µ, σ) variables to N(0,1) vari-
ables, the ICA methods also require centering and whiteningof the
components of vectorX, i.e., prescaling the variables to have zero
mean and unit variance [15]. The problem of ICA is to estimate
the elements of the unknown mixing matrixA, and the samples
of statistically independent componentss1, · · · , sn, given only the
samples of the observed vectorX. Equation (3) can be alternatively
written as:

S = WX wheresi = W
T

i X =
Pn

j=1 wijxi ∀i = 1, · · · , n

(4)
Here,W is the inverse of the unknown mixing matrixA. Algo-
rithms for ICA estimate the vectorsWi that maximize the non-
Gaussianity ofWT

i X by solving a nonlinear optimization prob-
lem. Typical measures of non-Gaussianity are kurtosis, negentropy,
and mutual information; for a comprehensive reference on ICA, see
[13, 14, 15, 16].

In the context of our SSTA algorithm, we use ICA as a prepro-
cessing step to transform our correlated set of non-Gaussian ran-
dom variablesxi, · · · , xn to a set of statistically independent vari-
ablessi, · · · , sn, by the relationS = WX of Equation (4). As in
[1], the chip area is first tiled into a grid, and the covariance matrix
associated withX is determined. Using the covariance matrix, and
the underlying probability distributions of the variablesin X, sam-
ples of the correlated non-Gaussian variables are generated and are
given as input to the ICA module, which produces as output, the
estimates of the matricesA andW . For a specific grid, the inde-
pendent components of the non-Gaussian random variables must
be computed just once, and this can be carried out as a precharac-
terization step. In other words, ICA need not be recomputed for
different circuits or different placements of a circuit.Thus, the ICA
preprocessing step does not impact the runtime of the SSTA proce-
dure.

ICA is applied to the non-Gaussian parametersX and PCA to
the Gaussian variablesY, to obtain a set of statistically indepen-
dent non-Gaussian variablesS and a set of independent Gaussian
variablesR. We then substitute the respective transformation ma-
tricesA andPy in Equation (2) to arrive at the followingcanonical
delay model:

D = µ + B
′T

S + C
′T

R + e.z

= µ +

n
X

i=1

b
′

i.si +

m
X

j=1

c
′

j .rj + e.z (5)

whereB′T = B
TA [C′T = C

TP−1
y ] is the new sensitivity vector

with respect to the statistically independent non-Gaussian compo-
nents,s1, · · · , sn [Gaussian principal componentsr1, · · · , rm].

4. PREPROCESSING TO EVALUATE THE
MOMENTS OF THE INDEPENDENT
COMPONENTS

The inputs required for our SSTA technique correspond to the
moments of parameters of variation. Consider a process parameter
represented by a random variablexi: let us denote itskth moment
by mk(xi) = E[xk

i ]. We consider two possible cases:
Case I: If the closed form of the distribution ofxi is available, and
it is in a standard form (e.g., Poisson or uniform), thenmk(xi) ∀ k

can be derived from standard mathematical tables and the parame-
ters of the distribution. For a nonstandard distribution,mk(xi) ∀ k
may be derived from the moment generating function (MGF) if a
continuous closed-form PDF of the parameter is known. The mo-
ment generating functionM(t) of a PDFfxi

(xi) is given by

M(t) = E[etxi ] =

Z

∞

−∞

e
txifxi

(xi)dxi (6)

Thekth moment ofxi can then be calculatedmk(xi) = dkM(t)

dtk |t=0.
Case II: If a continuous closed-form PDF cannot be determined for
a parameter, the moments can be evaluated from the process files
as:

mk(xi) =
X

x

x
kProbability(xi = x) (7)

Given the underlying process variables and their moments, the next
step after performing ICA is to determine the moments of the in-
dependent components,si, · · · , sn, from the moments of the corre-
lated non-Gaussian parametersxi, · · · , xn. These moments,mk(xi) =
E[xk

i ], are inputs to the SSTA algorithm.
Referring back to the ICA transformation of Equation (3),X =

AS, we take the expectation of both sides to obtain:

E[xk
1 ] = E[(a11s1 + a12s2 + · · · a1nsn)k]

E[xk
2 ] = E[(a21s1 + a22s2 + · · · a2nsn)k]

...
...

E[xk
n] = E[(an1s1 + an2s2 + · · · annsn)k] (8)

whereaij is an element of the mixing matrixA obtained via ICA.
In the above equation, the LHS, which is thekth moment of each
component ofX, is known. The RHS can be simplified by per-
forming an efficient multinomial expansion using binomial mo-
ment evaluation technique [17]. The moments are computed suc-
cessively, starting from the first to the second to the third,and so
on. For example, after all of the first moments have been computed,
the second moment of eachsi can be computing by rewriting Equa-
tion (8) usingk = 2 as

E[x2
1] =

Pn
i=1 a2

1iE[s2
i ] + 2

Pn
i=1

Pn
j=i+1 a1ia1jE[si]E[sj]

E[x2
2] =

Pn
i=1 a2

2iE[s2
i ] + 2

Pn
i=1

Pn
j=i+1 a2ia2jE[si]E[sj]

...
... (9)

E[x2
n] =

Pn
i=1 a2

niE[s2
i ] + 2

Pn
i=1

Pn
j=i+1 anianjE[si]E[sj]

The only unknowns in the above equation are the second moments,
E[s2

i ], of eachsi, and these can be calculated easily.
In general, while solving for thekth moment ofsi using Equa-

tion (8), all of the(k− 1) moments are known from previous com-
putations. Moreover, since the components ofS are independent,
we can perform the operationE[sa

i sb
j ] = E[sa

i ]E[sb
j ], and effi-

ciently apply the binomial moment evaluation scheme. As indi-
cated by Equation (9), the computation of thekth moment of the
independent components,si, · · · , sn, requires the solution of an
n × n system of linear equations. Thus, to compute2M moments
of the independent components, we must solve2M systems of lin-
ear equations corresponding to (8) fork = 1, · · · , 2M . However,
since this is a part of the preprocessing phase, it may be carried out
off-line for a specific technology, and it does not contribute to the
complexity of SSTA.

5. MOMENT MATCHING-BASED PDF
EVALUATION

To compute the PDF/CDF of the delay or arrival time random
variable we adapt the probability extraction scheme,APEX, pro-
posed in [17]. Given2M moments of a random variable as input



to theAPEX algorithm, the scheme employs an asymptotic wave-
form evaluate (AWE) technique to match the2M moments in order
to generate anM th order linear time invariant (LTI) system. The
scheme then approximates the PDF [CDF] of a random variable
by an impulse responseh(t) [step responses(t)] of theM th order
LTI system. We refer the reader to [17] for details about theAPEX
algorithm.

We return to the example of Figure 1 to explain moment matching-
based PDF evaluation method. To compute the delay PDF for the
example, we must first calculate2M moments ofD from Equa-
tion (1). Assuming (W1, W2) to be perfectly correlated identical
Gaussian random variables, and (L1, L2) to be perfectly correlated,
and uniformly distributed identical random variables, we have:

D̂ = a.W + b.Le (10)

whereD̂ = D − µ, a = a1 + a2 andb = b1 + b2. AssumingW
andLe as statistically independent variables, thekth moment ofD̂
can be computed by using the binomial expansion formula as:

mk[D̂] =

k
X

i=0

 

k

i

!

a
i
b
k−i

mi(W )mk−i(Le) (11)

where all of thek moments ofW andL are known from the un-
derlying normal and uniform distributions. Having computed 2M

moments ofD̂ from Equation (11), we can now employ the AWE-
based PDF evaluation scheme to approximate the PDF ofD̂ by an
impulse response as:

fD̂(d̂) =



PM

i=1 r̂i.e
p̂i.d̂ d̂ ≥ 0

0 d̂ < 0
(12)

wherer̂ [p̂] are the residues [poles] of the LTI approximation.
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Figure 3: Extracted PDF and CDF for the delay of the example
circuit.

Figure 3 shows the evaluated delay PDF (fD(d) = fD̂(d + µ))
and CDF (FD(d) = FD̂(d + µ)) of the circuit of Figure 1 using
M = 10 moments. The evaluated PDF matches closely with the
Monte Carlo simulation; the match for the CDF is even better.

We can generalize the PDF evaluation idea, illustrated in the
above example, to compute the PDF (CDF) of any random delay
variable expressed in the canonical form of Equation (5). For such
a delay variable withl = m + n + 2 terms, the binomial moment
evaluation procedure can be employed to calculate the2M mo-
ments, as long as alll variables in the delay expression are statisti-
cally independent. The canonical form expression of Equation (5)
satisfies this independence requirement by construction.

We have enhanced the PDF evaluation algorithm in [17] for bet-
ter numerical accuracy and stability. Instead of evaluating the PDF
of a random variableD directly, we first prescale it by defining a
new random variablêD = D−µD

σD
, and evaluate the PDF of̂D.

Without the prescaling step, the higher order moments ofD can
become extremely large and affect the numerical accuracy ofthe

moment computation. We compute the flipped PDF of(−D̂), and
reconstruct the final PDF from the flipped and the original PDFto
avoid numerical errors due to the final value theorem, as in [17].
The PDF ofD is retrieved from the PDF of̂D by using the rela-
tionship:

fD(d) =
1

σD

fD̂

„

d − µD

σD

«

In general, given the moments of the independent components,
precharacterized as in Section 4, we can compute the momentsof
the delay and arrival time random variables from Equation (5). For
each gate, given the moments of all random variabless1, · · · , sn,
r1, · · · , rm, andz, which are all statistically independent with re-
spect to each other, we may use the binomial evaluation method to
compute the2M moments of the gate delay; a similar procedure
will be used to compute the arrival times in the canonical form in
Section 6.

6. SSTA PROCEDURE
From the theory explained in the previous sections, we now have

the ability to evaluate the PDF and the CDF of the delay and thear-
rival time random variables, expressed in the linear canonical form,
as a function of Gaussian and non-Gaussian parameters of varia-
tion. In this section, we describe our SSTA framework. It is well
known that a block-based arrival time propagation procedure in-
volves the atomic operations of “sum” and “max.” We will show
how these atomic operations can be performed to produce a result
that can be represented in the canonical form of Equation (5).

6.1 The “sum” Operation
The sum operation to add two random variables expressed in the

linear canonical form of Equation (5) is largely straightforward.
Consider two random variables,D1 andD2 expressed as:

D1 = µ1 +
Pn

i=1 b′i1 .si +
Pm

j=1 c′j1 .rj + e1.z1

D2 = µ2 +
Pn

i=1 b′i2 .si +
Pm

j=1 c′j2 .rj + e2.z2 (13)

The sumD3 = D1 + D2 can be expressed in canonical form as:

D3 = µ3 +
Pn

i=1 b′i3 .si +
Pm

j=1 c′j3 .rj + e3.z3 (14)

whereµ3 = µ1 + µ2, b′i3 = b′i1 + b′i2 , andc′i3 = c′i1 + b′i2 .
The one difference here, as compared to the Gaussian case (e.g.,

in [1]), relates to the computation of the uncorrelated non-Gaussian
parameter,e3.z3. The random variablee3.z3 = e1.z1 + e2.z2,
serves as a place holder to store the moments of(e1.z1 + e2.z2).
In other words, rather than propagating an uncorrelated component
z in the canonical form, we propagate its2M moments.

6.2 The “max” Operation
The PDF of the maximum of the twoindependent random vari-

ablesU andV , given byT = max(U,V ), can be simply computed
as:

fT (t) = FU (t)fV (t) + FV (t)fu(t) (15)

wheref represents the PDF of each random variable andF its CDF.
If U , V are not only independent, but can also be expressed in the
canonical form of Equation (5), then the PDF and CDF ofT can
be easily computed using the PDF evaluation technique described
in Section 6, in a closed form using Equation (15).

However, in general, two arrival time random variablesA1 and
A2, expressed in the canonical form of Equation (5),do not sat-
isfy the independence requirement above, as they may both have
nonzero coefficients associated with ansi and/or anrj . Fortu-
nately, it is possible to work around this by using a simple tech-
nique that permits the application of Equation (15) to compute the
PDF of random variableAmax = max(A1, A2). Let us begin with
the canonical expressions forA1 andA2:

A1 = µ1 +
Pn

i=1 b′i1 .si +
Pm

j=1 c′j1 .rj + e1.z1

A2 = µ2 +
Pn

i=1 b′i2 .si +
Pm

j=1 c′j2 .rj + e2.z2 (16)



The operationAmax = max(A1, A2) can be now simplified as:

Amax = W + max(U,V ) (17)

where

W = b′12
.s1 + c′12

.r1 +
Pn

i=2 b′i1 .si +
Pm

j=2 c′j1 .rj (18)

U = µ1 + (b′11
− b′12

).s1 + (c′11
− c′12

).r1 + e1.z1

V = µ2 +
Pn

i=2(b
′

i2
− b′i1).si +

Pm

j=2(c
′

i2
− c′i1).ri + e2.z2

The above representation of the max operation ensures that the ran-
dom variablesU andV involved in the max operation,max(U,V ),
are statistically independent as they do not share any variables.

Therefore, from Equations (15) and (17), we can writeAmax =
W + T . We begin by calculating the mean and standard deviation
of Amax; next we will expressAmax in the canonical form.

We use Equation (15) to obtain the distribution ofAmax: note
that this is applicable sinceU andV are independent by construc-
tion. Using this closed-form PDF,fT (t), we can computeµT from
the first principles asµT = E[max(U, V )] =

R

∞

−∞
tfT (t)dt, and

the variance asσ2
T =

R

∞

−∞
t2fT (t)dt − (E[max(U, V )])2.

However, Equation (15) does not provideT in the desired canon-
ical form and it must be written in this manner for further propaga-
tion. Given thatAmax = W + T , we use Equation (18) to observe
that W is in canonical form. If we could expressT in canoni-
cal form as well,Amax could be easily written in the canonical
form. We employ the idea of tightness probability [2], to express
T = max(U, V ) as:

T = µT +
Pn

i=1 b′iT
.si +

Pm

j=1 c′jT
.rj + eT zT (19)

Our discussions in the previous sections provide us with allof the
machinery required to efficiently compute the tightness probability,
p = Probability(U > V ). We define a random variablêQ =
V −U , and use the sum operation defined in Section 6.1 to express
the Q̂ in the canonical form. Next, employing the technique in
Section 5, we compute the2M moments ofQ̂, and evaluate the
CDF, FQ̂(q̂), as a step response of the approximated LTI system
as:

FQ̂(q̂) =


PM

i=1
r̂i

p̂i
(ep̂i.q̂ − 1) q̂ ≥ 0

0 q̂ < 0
(20)

wherer̂ andp̂ are the residues and poles of the approximatedM th

order LTI system. The tightness probabilityp is given byFQ̂(0),

since Probability(U > V ) = Probability(Q̂ ≤ 0) = FQ̂(0).
Therefore, we see that unlike [3], we do not need to employ

computationally expensive numerical integration methodsin high
dimensions for non-Gaussian parameters. The ability to compute
the tightness probabilityp analytically, from the evaluated CDF of
(Q̂ = V −U ), makes our SSTA procedure very efficient and allows
us to process a much larger number of non-Gaussian variables.

Having computed the tightness probability,p, the sensitivities
b′iT

, c′iT
, andzT of T = max(U,V ) in Equation (19) can be writ-

ten in terms of the sensitivities ofU andV . Specifically:

b
′

iT
= p.b

′

iU
+ (1 − p).b′iU

∀i = 1, · · · , n

c
′

jT
= p.c

′

jV
+ (1 − p).c′jV

∀j = 1, · · · , m (21)

Recall that theeT .zT term in Equation (19) is a placeholder for the
moments of the uncorrelated parameter: the moments ofzT can
also be computed using the tightness probability:zT assigned the
moments of the random variable(p.eU .zU + (1 − p).eV .zV ).

The use of tightness probabilities is only a heuristic and suffers
from problems of accuracy. Therefore, to reduce the error inthe
heuristic, we use the values of the mean,µT , and variance,σ2

T ,
computed exactly earlier fromfT (t). The coefficienteT of the un-
correlated random variablezT is determined so that we match the
variance of the closed-form PDF ofT , σ2

T , with the variance of

canonical representation of Equation (19). Thus, all of theterms
required to representT = max(U, V ) back to the canonical form
have been determined. As a final step, referring back to Equa-
tion (17), we perform the sum operation betweenW and T =
max(U, V ) to complete the computation ofAmax = max(A1, A2).

7. COMPUTATIONAL COMPLEXITY
ANALYSIS

Considering the steps to generate the ICA mixing matrixA, the
PCA transform, and the moments of the independent components
si, · · · , sn as a one time precharacterization cost, the computa-
tional cost of the main steps in the SSTA procedure consists of
performing the sum and max operations during the circuit graph
traversal. The sum operation has a time complexity ofO(n + m),
wheren is the number of non-Gaussian independent components
andm is the number of Gaussian principal components. The cost
of performing the max operation isO(M(n + m)), where2M is
the number of moments evaluated for each random variable. In
practice,M is upper-bounded by a small constant, and excellent
solutions are obtained forM ≤ 10. Thus, the complexity of the
max operation isO((m + n)). For a circuit with|G| gates, each
with bounded fanin, the overall time complexity of the SSTA pro-
cedure isO((m + n)|G|). Sincem andn are bothO(g), where
g is the number of grids, the time complexity for our SSTA proce-
dure, incorporating both Gaussian and non-Gaussian parameters, is
O(g|G|), which is the same as that of SSTA techniques considering
only Gaussian variables [1, 2].

8. EXPERIMENTAL RESULTS
The proposed SSTA algorithm was implemented in C++, us-

ing theMinSSTA code [1], and tested on edge-triggered ISCAS89
benchmark circuits. All experiments were performed on P-4 Linux
machines with a clock speed of 3.2GHz and 2GB memory. The
FastICA package [18] and theIcasso software [19], were used to
obtain the ICA transform of Equation (3). To generate samples of
correlated non-Gaussian parameters, required as inputs totheFas-
tICA code, we use the method ofnormal copula [20]. For all the
experiments, we generate 5000 samples of each non-Gaussianpa-
rameter to feed to the ICA module. We use the Elmore delay model
and the first order Taylor series terms to represent the canonical de-
lay model of Equation (2). However, clearly this is not a restriction,
as our canonical form is similar in form to that in [1, 2].

We consider the effective channel length,Le, the transistor width
W , and the dopant concentration,Nd as the sources of variation.
The parametersLe andW are modeled as correlated sources of
variations, and the dopant concentration,Nd, is modeled as an in-
dependent source of variation. The same framework can be easily
extended to include other parameters of variations. For simplicity,
our current implementation ignores the effect of the input signal
transition time on the delay at the output port of the gate. However,
according to the technique described in [12], our SSTA procedure
can also be extended to incorporate and propagate the distributions
of the signal transition times. As described in [12], one canexpress
slope at the output pin of the gate as a probability weighted sum
of distributions of the slope from all input pins to the output pin
of the gate. In our SSTA framework, we can efficiently compute
these weights as closed-form probabilities, using the AWE-based
PDF extraction scheme.

We use the grid-based model of [1] to generate the spatial cor-
relations for theW and Le parameters. Due to the lack of ac-
cess to any real wafer data and process data files, we do not have
the required information to realistically model the parameter dis-
tributions. We modelLe of gates in each grid as non-Gaussian
parameters, andW of gates in each grid as Gaussian parameters.
For the correlated non-GaussianLe parameters, we randomly as-
sign to Le in each grid either a uniform distribution in[µLe

−√
3.σLe

, µLe
+

√
3.σLe

], or a symmetric triangular distribution
in [µLe

− 3.σLe
, µLe

+ 3.σLe
]. The independent parameterNd is

assumed to follow a Poisson distribution. Theµ andσ values of



Benchmark Error (SSTA−MC

MC
%) Error (

MCGauss−MC

MC
%) CPU Time (sec)

Name # Cells # Grids µ σ 95% Pt 5% Pt µ σ 95% Pt 5% Pt SSTAGauss[1] SSTA MC
s27 13 4 -0.09% -0.34% -0.75% 0.79% 0.56% 3.23% 8.56% 2.04% 0.0 1.1 6.0

s1196 547 16 -0.23% -0.67% -0.87% -0.53% 0.84% 8.82% 11.27% 2.21% 1.2 8.3 634.2
s5378 2958 64 0.31% 1.12% 1.21% 1.28% 0.98% 10.23% 10.91% 1.21% 17.1 41.6 3214.4
s9234 5825 64 0.82% 1.78% 1.32% -1.48% 1.88% 15.32% 15.28% -1.83% 20.3 137.9 4756.6
s13207 8260 256 1.58% 2.34% -2.54% 2.89% 2.96% 28.13% 18.34% -2.13% 108.6 303.6 8532.1
s15850 10369 256 1.85% -2.12% 3.36% 3.61% 2.63% 22.12% 17.62% 3.16% 110.8 410.8 9587.8
s35932 17793 256 -1.07% 2.78% 4.01% 3.57% 2.34% 26.71% 19.17% 3.31% 315.2 761.4 10156.5
s38584 20705 256 1.65% -3.56% 3.89% 3.91% 2.21% 25.67% 18.28% 2.95% 322.4 910.6 18903.3
s38417 23815 256 1.34% 3.78% 3.37% 3.22% 2.81% 34.62% 21.63% 2.51% 377.3 1235.6 22398.5

Table 1: Comparison results of the proposed SSTA with Monte Carlo simulation

the parameters are based on the predictions from [21]. For90nm
technology, we useµW = 150nm, µLe

= 60nm, σW = 7.5nm
andσLe

= 4nm. For the independent parameterNd modeled as a
Poisson random variable, we useµNd

= 10 × 1017cm−3 for both
nmos and pmos.

Table 1 shows a comparison of the results of the Monte Carlo
(MC) simulations with our SSTA procedure for each benchmark
using 10,000 MC samples, based on the same grid model. The sam-
ples of correlated non-Gaussian parameters for MC simulations are
also generated using the method of normal copula. We comparethe
mean (µ), the standard deviation (σ), the 95% and the 5% quantile
points of the delay distribution obtained from our SSTA scheme
with those generated from the MC simulations as the metrics of
accuracy. As seen in Table 1, the results of the proposed SSTA
scheme are quite close to that of MC simulations. The averageof
the absolute errors, across the nine benchmark circuits, is0.99%
for µ, 2.05 % forσ, 2.33% for the 95% point, and 2.36% for the
1% quantile point. These errors are reasonably small as compared
to the accuracy penalty paid by assuming the incorrect normal dis-
tribution modeling of parameters. Columns eight to eleven of Table
1 show the error incurred when modeling the non-GaussianLe pa-
rameters as normally distributed random variables and performing
MC simulations, termed asMCGauss, for each benchmark circuit.
For instance, for the largest benchmark circuit s38417, when as-
suming that the non-GaussianLe parameters follow Gaussian dis-
tributions, the error observed is 2.81% forµ, 34.62% forσ, 21.63
% for the 95% point and 2.51% for the 5% point. Thus, modeling
the non-Gaussian parameters as normally distributed ones leads to
significant inaccuracy.

As expected, our SSTA procedure is considerably faster thanthe
MC simulations, but has a higher runtime cost as compared to a
Gaussian SSTA [1], due to the additional feature of handlingnon-
Gaussian variables. Our approach can handle a large number of
correlated and independent non-Gaussian parameters. The number
of grids chosen for each benchmark circuit, shown in the third col-
umn of Table 1, is equal to the number of correlated Gaussian and
non-Gaussian variables. The number of independent non-Gaussian
variables is the same as the number of cells in a circuit. For in-
stance, the SSTA procedure for the circuit s13207 processes256
correlated Gaussians variables, 256 correlated non-Gaussian vari-
ables, and 8260 independent non-Gaussian variables in about 5
mins of online run time. Thus, our procedure scales well withthe
number of non-Gaussian parameters. The run time reported inTa-
ble 1 does not include the time spent for the preprocessing steps
of Sections 3 and 4, which are carried out only once for a pro-
cess and a given discretization. For the largest benchmark s38417,
the preprocessing time taken to generate the ICA matrixA, and to
compute the moments of the independent components is about 3.5
hours.

In Figure 4, the PDF and CDF plots for the largest benchmark
circuit s38417 are provided. As seen in the Figure, the PDF and
the CDF as predicted by the proposed SSTA scheme matches well
with the Monte Carlo PDF and CDF. The dashed curves in Fig-
ure 4 represents the case when theLe parameters are incorrectly
modeled as Gaussian variables with the sameµLe

andσLe
as the

original non-Gaussian parameters. The plots in Figure 4 show that
in the presence of correlated non-Gaussian parameters, thereal cir-
cuit delay distribution deviates significantly from the oneobtained

by assuming normality for parameters. The distribution functions
evaluated by SSTA approach are able to match, within reasonably
small errors, the real distribution functions.
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Figure 4: A comparison of SSTA and MC distribution for cir-
cuit s38417.
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