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ABSTRACT
Due to increased variability trends in nanoscale integrated
circuits, statistical circuit analysis has become essential. We
present a novel method for post-silicon analysis that gath-
ers data from a small number of on-chip test structures, and
combines this information with pre-silicon statistical timing
analysis to obtain narrow, die-specific, timing PDFs. Ex-
perimental results show that for the benchmark suite being
considered, taking all parameter variations into considera-
tion, our approach can get a PDF with the standard devi-
ation 83.5% smaller on average than the SSTA result. The
approach is scalable to smaller test structure overheads.

Categories and Subject Descriptors
B.7.2 [B.7.3]: Integrated CircuitsDesign Aids, Redundant
Design

General Terms
Performance, Design

Keywords
Post-Silicon Optimization, Statistical Timing Analysis

1. INTRODUCTION
It is widely accepted today that it is imperative to incor-

porate the effects of process variations in nanometer-scale
VLSI circuits. Broadly speaking, process variations can be
classified into inter-die variations, from one chip to another,
and intra-die variations, between different parts on the same
die. Intra-die variations may be spatially correlated for
some process parameters, such as the channel length L and
the transistor width W , while other parameters such as the
dopant concentration NA and the oxide thickness Tox show
no such correlation structure.

These variations have driven a flurry of research in the
area of statistical design to enable a transition from conven-
tional corner-based static timing analysis (STA) to statisti-
cal static timing analysis (SSTA) which provides a proba-
bility distribution for the delay. Parameterized block-based

∗This research was supported in part by the NSF under
award CCF-0205227 and by the SRC under contract 2007-
TJ-1572.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2007, June 4-8, 2007, San Diego, CA, USA
Copyright 2007 ACM 978-1-59593-627-1/07/0006 ... $5.00.

SSTA methods [1, 2, 4] have emerged as effective frame-
works that can incorporate spatial and structural correla-
tions in the circuit, using a canonical form for the delay.
The computational efficiency of these methods is made prac-
tical through a preprocessing step, proposed in [1], which
has shown that Gaussian-distributed correlated variations
can be orthogonalized using Principal Component Analysis
(PCA).

The diagnostics provided by SSTA at the pre-silicon phase
of design can be used to optimize the circuit for robust op-
eration. However, pre-silicon optimizations alone are likely
to be inadequate, particularly when the range of variation
is large. Therefore, post-silicon testing and optimizations,
which improve the probability that a chip meets its speci-
fications after fabrication, form an important and comple-
mentary phase of design. Unlike pre-silicon analysis, which
determines the range of performance (timing or power) vari-
ations over a large population of die, post-silicon analysis
and test is typically directed toward determining the per-
formance of an individual fabricated chip. It is inevitable
that pre-silicon analysis, more generally applicable to the
entire population of manufactured chips, will have a large
standard deviation, and post-silicon optimizations typically
require more information based on measurements specific to
a manufactured die. Moreover, because tester time is pro-
hibitively expensive, it is vital that performance estimations
must be made on the basis of a small number of post-silicon
measurements.

We present a general framework of post-silicon statisti-
cal delay prediction: the role of this step is seated between
SSTA and full chip testing. Given the original circuit whose
delay is to be estimated, the primary idea is to determine
information from specific on-chip test structures to narrow
the range of the performance distribution substantially; for
purposes of illustration, we will consider delay to be the
performance metric in this work. In particular, we gather
information from a small set of test structures such as ring
oscillators, distributed over the area of the chip, to capture
the variations of spatial correlated parameters over the die.
To illustrate this idea, we show a die in Figure 1, whose
area is gridded into spatial correlation regions1. Figure 1(a)
and 1(b) show two cases where test structures are inserted
on the die: the two differ only in the number and the loca-
tions of these test structures. Figure 1(c) shows a sample
test structure consisting of a 3-stage ring oscillator (RO).
The data gathered from the test structures in Figures 1(a)
and 1(b) are used in this paper to determine a new PDF
(Probability Density Function) for the delay of the origi-
nal circuit, conditioned on this data. This has significantly
smaller variance than the result of SSTA, as is illustrated

1For simplicity, we will assume in this example that the
spatial correlation regions for all parameters are the same,
although the idea is valid, albeit with an uglier picture, if
this is not the case.

497

29.1



in Figure 1(d); detailed experimental results are available in
Section 6. When no test structures are used and no tests
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Figure 1: (a), (b): Two different placements of test
structures under the grid spatial correlation model
(c) An example test structure (ring oscillator) (d)
Reduced-variance PDFs, obtained from statistical
delay prediction, using data gathered from the test
structures in (a) an (b)

are performed, the PDF of the original circuit is the same as
that computed by SSTA. As the number of test structures is
increased, more information can be derived about variations
on the die, and its delay PDF can be predicted with greater
confidence: the standard deviation of the PDF from SSTA
is always an upper bound on the standard deviation of this
new delay PDF, as shown in Figure 1(d). In other words, by
using more or fewer test structures, the approach is scalable
in terms of statistical confidence.

A use case scenario for this method corresponds to a post-
silicon optimization method such as Adaptive Body Bias
(ABB) [5,6,7]. Current ABB techniques use a critical path
replica to predict the delay of the fabricated chip, and use
this to feed a phase detector and a counter, whose output
is then used to generate the requisite body bias value. Such
an approach assumes that one critical path on a chip is an
adequate reflection of on-chip variations. In general, there
will be multiple potential critical paths even within a sin-
gle combinational block, and there will be a large number of
combinational blocks in a within-die region. Choosing a sin-
gle critical path as representative of all of these variations
is impractical and inaccurate. In contrast, our approach
implicitly considers the effects of all paths in a circuit (with-
out enumerating them, of course), and provides a PDF that
concretely takes spatially correlated and uncorrelated pa-
rameters into account to narrow the variance of the sample,
and has no preconceived notions, prior to fabrication, as to
which path will be critical. The 3σ or 6σ point of this PDF
may be used to determine the correct body bias value that
compensates for process variations. Temperature variations
may be compensated for separately using temperature sen-
sors, for example, as in [8].

2. PROBLEM FORMULATION
Intra-die variations for some parameters are spatially cor-

related2: this means that devices placed close together are
more likely to have similar characteristics than those placed
far away. Under spatial correlations, while one test structure
may not reveal the characteristic of the whole chip, it can
reveal some characteristics for the devices nearby. There-
fore, our proposed statistical delay prediction approach uses
a number of test structures, placed at different locations on
chip, to provide diverse test data.

We assume that the circuit undergoes SSTA prior to man-
ufacturing, and that the random variable that represents the
maximum delay of the original circuit is d. Further, if the
number of test structures placed on the chip is n, we de-
fine a delay vector dt = [dt,1 dt,2 · · · dt,n]T for the test
structures, where dt,i is the random variable (over all man-
ufactured chips) corresponding to the delay of the ith test
structure.

For a particular fabricated die, the delay of the original
circuit and the test structures correspond, respectively, to
one sample of the underlying process parameters, which re-
sults in a specific value of d and of dt. After manufacturing,
measurements are performed on the test structures to de-
termine the sample of dt, which we call the result vector

dr = [dr,1 dr,2 · · · dr,n]T . This corresponds to a small
set of measurements that can be performed rapidly. The
objective of our work is to develop techniques that permit
these measurements to be used to predict the corresponding
sample of d on the same die. In other words, we define the
problem of post-silicon statistical delay prediction as finding
the conditional PDF given by f(d|dt = dr).

Ideally, given enough test structures, we can compute the
delay of the original circuit with a great deal of confidence
by measuring these test structures. However, practical con-
straints limit the overhead of the added test structures (such
as area, power, and test time) so that the number of test
structures cannot be arbitrarily large. Another factor that
limits the accuracy of these measurements is the fact that
the variations in some parameters, such as Tox and NA, are
widely believed to show no spatial correlation at all. Test
structures are inherently not capable of capturing any such
variations in the original circuit (beyond the overall statis-
tics that are available to the SSTA engine): these parameters
can vary from one device to the next, and thus, variations
in a test circuit will not track variations in the original cir-
cuit. However, even under these limitations, any method
that can narrow down the variational range of the original
circuit through a few test measurements is of immense prac-
tical use.

We develop a method that robustly accounts for the afore-
mentioned limitations by providing a conditional PDF of the
delay of the original circuit with insufficient number of test
structures and/or purely random variations. In the case
when the original circuit delay can actually be computed
as a fixed value, the conditional PDF is an impulse func-
tion with mean equal to the delay of the original circuit and
zero variance. The variance becomes larger with fewer test
structures, and shows a graceful degradation in this regard.

3. STATISTICAL DELAY PREDICTION
3.1 Statistical Static Timing Analysis Frame-

work
We assume the process parameters, which affect both the

original circuit and test structures, are Gaussian distributed.
For the chip being considered, containing the original cir-
cuit and the test structures, it is assumed that there are m
normalized underlying independent sources of variation for

2Inter-die variations can be considered to be a special case
of intra-die variations, where the correlation region is the
entire die.
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spatially correlated variations (equivalent to Principal Com-
ponents (PCs) in [1]), and these can be obtained by applying
PCA to the covariance matrix of each spatially correlated
process parameter variation. In addition, there may also be
other independent uncorrelated sources of variation. Per-
forming a parameterized SSTA technique such as [1], we can
use a canonical form to represent the delay of the original
circuit as:

d = µ +

m
X

i=1

aipi + R = µ + aT p + R (1)

where d is defined in Section 2, and µ is the mean of d
obtained from SSTA, and is also an approximation of its
nominal value. The random variable pi corresponds to the
ith PC, and is normally distributed as N(0, 1); note that
pi and pj for i 6= j are uncorrelated by definition, due to
the property of PCA. The parameter ai is the first order
coefficient of the delay with respect to pi. Finally, R cor-
responds to a variable that captures the effects of all the
spatially uncorrelated variations. For simplicity, we refer
to p = [p1 p2 · · · pm]T ∈ Rm as the PC vector and

a = [a1 a2 · · · am]T ∈ Rm as the coefficient vector for
the original circuit.

Equation (1) is general enough to incorporate both inter-
die and intra-die variations. As is pointed out in [4], for a
spatially correlated parameter, the inter-die variation can be
taken into account by adding a value σ2

inter, the variance of
inter-die parameter variation, to all entries of the covariance
matrix of the intra-die variation of that parameter before
performing PCA.

In a similar manner, the delay of the ith of the n test
structures can be represented as:

dt,i = µt,i + aT
t,ip + Rt,i. (2)

The meanings of all variables are inherited from Equation
(1).

We define µt = [µt,1 µt,2 · · · µt,n]T ∈ Rn as the

mean vector, Rt = [Rt,1 Rt,2 · · · Rt,n]T ∈ Rn as the
independent parameter vector, and At ∈ Rm×n as the co-
efficient matrix of the test structures, respectively, where
At = [at,1 at,2 · · · at,n]. We can then stack the delay
equations of all of the test structures into a matrix form.

dt = µt + AT
t p + Rt (3)

where dt is defined in Section 2.
To illustrate the procedure, we will first assume, in the

remainder of this section and in Section 4, that the spatially
uncorrelated parameters can be ignored, i.e., R = 0 and
Rt = 0. We will relax this assumption later in Section 5,
and illustrate the extension of the method to include those
parameters.

The variance of the Gaussian variable d and the covari-
ance matrix of the multivariate normal variable dt can be
conveniently calculated as:

σ
2 = aT a and Σt = AT

t At. (4)

3.2 Conditional PDF Evaluation
The objective of our approach is to find the conditional

PDF of the delay, d, of the original circuit, given the vector
of delays, dr, measured from the test circuits. To achieve
this, we first introduce a theorem below; a sketch of the
proof can be found in [9].

Theorem 3.1. For a Gaussian-distributed vector

»

X1

X2

–

with mean µ and a nonsingular covariance matrix Σ. Let

us define X1 ∼ N(µ1, Σ11), X2 ∼ N(µ2,Σ22). If µ and Σ
are partitioned as follows,

µ =

»

µ1

µ2

–

and Σ =

»

Σ11 Σ12

Σ21 Σ22

–

, (5)

then the distribution of X1 conditional on X2 = x is multi-
variate normal, and is given by

X1|(X2 = x) ∼ N(µ̄, Σ̄) (6a)

µ̄ = µ1 + Σ12Σ
−1

22 (x − µ2) (6b)

Σ̄ = Σ11 − Σ12Σ
−1

22 Σ21. (6c)

To map our problem to the theorem, we call X1 the orig-
inal subspace, and X2 the test subspace. By stacking d and

dt together, a new vector dall =

»

d
dt

–

is formed, with the

original subspace containing only one variable d and the test
subspace containing the vector dt. The random vector dall

is multivariate Gaussian distributed, with its mean and co-
variance matrix given by:

µall =

»

µ
µt

–

and Σall =

»

σ2 aT At

Ata
T Σt

–

. (7)

We may then apply the result of Theorem 3.1 to obtain the
conditional PDF of d, given the delay information from the
test structures, as:

PDF(dcond) = PDF(d|(dt = dr)) ∼ N(µ̄, σ̄
2) (8a)

µ̄ = µ + aT AtΣ
−1

t (dr − µt) (8b)

σ̄
2 = σ

2 − aT AtΣ
−1

t AT
t a. (8c)

3.3 Interpretation of the Conditional PDF
We now analyze the information provided by the equa-

tions that represent the conditional PDF. From equations
(8b) and (8c), we conclude that while the conditional mean
of the original circuit is adjusted making use of the result
vector dr, the conditional variance is independent of the
measured delay values, dr.

Examining Equation (8c) more closely, we see that for a
given circuit, the variance before testing, σ2, and the coef-
ficient vector a are fixed and can be obtained from SSTA.
The only variable that is affected by the test mechanism is
the coefficient matrix of the test structures, At, which also
impacts Σt. Therefore, the value of the conditional vari-
ance can be obtained by adjusting the value of At, which
is achieved by varying the number of test structures and
their locations. Intuitively, this implies that the value of the
conditional variance depends on how well the test structures
are distributed, in the sense of capturing spatial correlations
between variables.

Due to the nature of our problem, AT
t ∈ Rn×m, where

n is usually less than m. Theorem 3.1 assumes that Σt is
of full rank and has an inverse, which means AT

t must have
full row rank. Detailed discussion about the ranks of AT

t

and Σt can be found in Section 4. For the present, we will
assume that AT

t is of full row rank.
Based on this assumption, consider the special case when

m = n; in other words, that the number of test structures
is identical to the number of PCA components. intuitively,
this means that we have independent data points that can
predict the value of each of these components. In this case,
At is a square matrix with full rank and has an inverse
A−1

t . Substituting Σ−1

t = (AT
t At)

−1 = A−1

t (AT
t )−1 into

Equation (8b), we get µ̄ = µ + aT (AT
t )−1(dr − µt). The

term (AT
t )−1(dr −µt) is the solution of the linear equations

dt = µt + AT
t p = dr (9)
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for p. Therefore, in this case µ̄ is equival to d. And it is easy
to derive that σ̄2 = 0. Equation (8) automatically takes the
special case of m = n into consideration.

We end this section by pointing out that an equivalent
way of looking at the problem is to first stack the PC vector
p and the delay vector dt together, referring to p as the
original subspace, and dt as the test subspace. From this,
we obtain the conditional distribution of p, using Theorem
3.1, as:

PDF(pcond) = PDF (p|(dt = dr)) ∼ N(µ̄p, Σ̄p) (10a)

µ̄p = AtΣ
−1

t (dr − µt) and Σ̄p = I− AtΣ
−1

t AT
t (10b)

where I represents the identity matrix, which is the uncon-
ditional covariance matrix of p. The result (10) tells us
that given the condition dt = dr, the mean and covariance
matrix of pcond are no longer 0 and I. In other words,
the entries in pcond can no longer be perceived as principal
components. Due to the linear relationship between pcond

and the process parameter variations, we are in fact gaining
information on the parameter variations inside each grid.

With the PDF of pcond, using basic statistical properties,
we can get the same result as in (8). However, dividing the
derivation into two steps, as we have done here, provides
additional insight into the problem.

4. LOCALLY REDUNDANT GLOBALLY IN-
SUFFICIENT TEST STRUCTURES

Because the PC vector is obtained by PCA, we do not
know where these independent variation sources lie on the
chip. As a result, it is possible that we place too many test
structures which collectively capture only a small portion of
PCs, with the coefficients of other PCs being zeros. That is
to say, in some portion of the chip, the number of test struc-
tures exceeds the number of PCs with nonzero coefficients,
but overall there are not enough test structures to actually
compute the delay of the original circuit. We refer to this
as a locally redundant but globally insufficient problem.

We show below that in such a scenario Σt would be rank
deficient. The most trivial case is when two rows in AT

t are
identical. Under a grid based spatial correlation model, this
corresponds to placing two test structures in the same grid,
which is an obvious redundancy and can easily be avoided
even before PCA. Therefore, we assume that such redundan-
cies are removed, and that no two rows of AT

t are identical.
With locally redundant but globally insufficient test struc-

tures, the matrix AT
t has the following structure after group-

ing all the zero coefficients together:

AT
t =

»

B11 0
B21 B22

–

(11)

where B11 ∈ Rs×q , with s > q. Since we have prohibited
two test structures from being placed in one grid, B11 must
be of full column rank with rank q. Therefore, the maximum
rank of AT

t is q + n − s, less than n, so Σt also has a rank
less than n and is singular. In this case, Equation (9) can
be divided into two sets of equations:

B11pu = dr,u (12)

B21pu + B22pv = dr,v (13)

where pu, pv, dr,u, dr,v are sub-vectors of the PC vector p
and the result vector dr, correspondingly. Note that B11 is
not square, and Equation (12) is an over-determined system.
This can be solved in several ways, and we take the least-
squares solution as its equivalence.

p̄u = (BT
11B11)

−1BT
11dr,u (14)

Under conditions (14) as well as (13), the conditional PDF of
d can be computed using the same technique introduced in
Section 3. The detailed derivation is omitted due to limited
space.

5. SPATIALLY UNCORRELATED PARAM-
ETERS

In Section 3, we had developed a theory for determin-
ing the conditional distribution of the delay, d, of the origi-
nal circuit, under the data vector, dr, provided by the test
structures. This derivation neglected the random variables
R and Rt in the canonical form of Equation (1) and (3),
corresponding to spatially uncorrelated variations.

We now extend this theory to include such effects, which
may arise due to parameters such as Tox and NA that can
take on a different and spatially uncorrelated value for each
transistor in the layout. While these parameters can show
both inter-die and intra-die variations, because the inter-die
variation of each such parameter can be regarded as a PC
and easily incorporated in the procedure of Section 3, we
hereby focus on the intra-die variations of these parameters,
i.e., the purely random part. Thus, R is the random variable
generated by merging the intra-die variations for each gate
during traversal of the whole circuit [4], with mean 0 and
variance σ2

R. Considering this effect, the variance of the
original circuit is adjusted to be

σ
′2 = aT a + σ

2

R. (15)

The covariance matrix of the test structures must also be
updated as follows:

Σ′
t = AT

t At + diag[σ2

Rt,1
, σ

2

Rt,2
, · · · , σ

2

Rt,n
]. (16)

The same kind of technique from Section 3 can still be ap-
plied. However, in this case, due to the diagonal matrix
added to Σt, σ̄ is never equal to zero, meaning that we can
never compute the actual delay of the original circuit, which
is a fundamental limitation of any testing-based diagnosis
method. Any such strategy is naturally limited to spatially
correlated parameters. The values of uncorrelated parame-
ters in the original circuit cannot be accurately replicated in
the test structures: these values may change from one device
to the next, and therefore, their values in a test structure
cannot perfectly capture their values in the original circuit.

6. EXPERIMENTAL RESULTS
The proposed post-silicon statistical delay prediction ap-

proach can be summarized as follows:

1. Perform SSTA on both the original circuit and the test
structures, get µ, a, µt, At, and σR, σRt,1 ∼ σRt,n if
spatially uncorrelated parameters are considered.

2. After fabrication, test the delay of the test structures
on chip to obtain dr.

3. Compute the conditional mean µ̄ and variance σ̄2 for
the original circuit using the expressions in Equation
(8).

We use the software package MinnSSTA [1] to perform SSTA.
Because of the difficulty in accessing process data, we use
Monte-Carlo methods to test our approach. The original
circuits correspond to the ISCAS89 benchmark suite, and
each test structure is assumed to be a 3-stage ring oscillator
(RO), as shown in Figure 1(c).

The grid model in [3] is used to compute the covariance
matrix for each spatially correlated parameter. Under this
model, if the number of grids is G, and the number of
spatially correlated parameters being considered is P , then
the total number of principal components is no more than
P · G. The parameters that are considered as sources of
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spatially correlated variations include the effective channel
length L, the transistor width W , the interconnect width
Wint, the interconnect thickness Tint and the inter-layer di-
electric HILD. The dopant concentration, NA, is regarded
as the source of spatially uncorrelated variations. For inter-
connects, two metal tiers (each corresponding to one hori-
zontal and one vertical layer) are considered. Parameters of
different metal tiers are different and are not correlated, but
the two metal layers within a tier are taken to have similar
characteristics. Table 1 lists the levels of parameter varia-
tions assumed in this work. The parameters are Gaussian-
distributed, and their mean and 3σ values are shown in the
table. For each parameter, half of the variational contribu-
tion is assumed to be from inter-die variations and half from
intra-die variations; the only exception is NA, where 30% of
the variations are assumed to be due to intra-die effects.
We assume this variation model is accurate in our simula-
tion. In practice the model should be tailered according to
manufacturing data.

Table 1: Parameters used in the experiments
L W Wint Tint HILD NA

(nm) (nm) (nm) (nm) (nm) (1017cm−3)
N/PMOS

µ 60.0 150.0 150.0 500.0 300.0 9.7/10.04
3σ 12.0 22.5 30.0 75.0 45.0 1.45

In the first set of experiments, only one variation is taken
into consideration in the Monte Carlo analysis: in this case,
we consider the effective channel length L, which we observe
to be the dominant component of intra-die variations. Un-
der the grid-based correlation model, there will only be G
independent variation sources in this case, and by providing
G test structures, we can use the techniques in Section 3 to
calculate the delay of the original circuit.

The result is shown as a scatter plot in Figure 2. The
method is applied to 1000 chips: we simulate this by per-
forming 1000 Monte-Carlo simulations on each benchmark,
each corresponding to a different set of parameter values.
For each of these values, we compute the deterministic de-
lays of the test structures3 and the original circuit: we use
the former as inputs to our approach, and compare the delay
from our statistical delay prediction method with the latter.
The fact that all of the points lie closely around the y = x
line indicates that the circuit delays predicted by our ap-
proach matches very well with the Monte-Carlo simulation
results.
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Figure 2: The scatter plot: real circuit delay vs.
predicted circuit delay

The precise test error for each benchmark is listed in Ta-
ble 2. If we denote the delay of the original circuit at a
3Because of the way in which these values are computed
in our experimental setup, variations in the test structure
delays are only caused by random variations. In practice, the
measured test structure delays will consist of deterministic
variations, random variations, and measurement noise. It is
assumed here that standard methods can be used to filter
out the effects of the first and the third factor.

sample point as dorig and the delay of the original circuit,
as predicted by our statistical delay prediction approach,
as dpred, the test error for each simulation is defined as
|dorig−dpred|

dorig
× 100%. The second column of the table shows

the average test error, based on all 1000 sample points,
which indicates the overall aggregate accuracy: this is seen
to be well below 1% in almost all cases. The third column
shows the maximum deviation from the mean value over all
1000 sample points, as a fraction of the mean. The test
error at this point is shown in the fourth column of the
table. These two columns indicate that the results are ac-
curate even when the sampled delay is very different from
the mean value.

Table 2: Test errors considering L
Benchmark Average Maximum Error at

Error Deviation Maximum
(% of mean) Deviation

s1196 0.21% 19.0% 0.09%
s5378 0.73% 25.7% 0.02%
s9234 0.48% 22.7% 0.76%
s13207 0.20% 28.0% 0.16%
s15850 0.27% 24.9% 0.13%
s35932 1.52% 26.1% 1.47%
s38584 0.17% 21.4% 0.37%
s38417 0.18% 22.2% 0.16%

Note that in theory, according to the discussion in Sec-
tion 3, when one test structure is placed in each variational
grid, the prediction should be perfect. However, some inac-
curacies creep in during SSTA, primarily due to the error in
approximating the max operation in SSTA, during which the
the distribution of the maximum of two Gaussians, which is
a non-Gaussian, is approximated as a Gaussian to main-
tain the invariant. For circuits such as s35932, which show
the largest average error among this set, of under 2%, the
canonical form (1) is not perfectly accurate in modeling the
circuit delay. Note that our experimental setup is based on
simulation, and does not include any measurement noise.

For the unoptimized ISCAS89 benchmark suite, one or a
small number of critical paths tend to dominate the circuit,
which is unrealistic. However, s35932 is an exception and
thus is used to compare our approach with the critical path
replica approach currently used in ABB. We assume that
in the critical path approach the whole critical path for the
nominal design can be perfectly replicated, and compare the
delay of that path and the delay of the whole circuit during
the Monte-Carlo simulation. It is observed that the critical
path replica can show a maximum error of 17.3%, while our
approach has a maximum error of 8.46%, an improvement
of more than 50%.

To show the confidence scalability of our approach, in the
second set of experiments, we consider cases in which the
number of test structures is insufficient to completely pre-
dict the delay of the original circuit. In this experiment,
different numbers of test structures are implanted on the
die. Specifically, for circuits divided into 16 grids, we inves-
tigate Case 1, when 10 test structures and Case 2, when 5
test structures are available. For circuits divided into 256
grids, Case 1 corresponds to a die with 150 test structures,
and Case 2 to 60 test structures. To show how much more
information than SSTA we get from the test structures, we
define σreduction as σ−σ̄

σ
× 100% which is independent of

the test results but is dependent on how the available test
structures are placed on the chip. To be as general as possi-
ble, we perform 1000 random selections of the grids to put
test structures in. The µ, σ of the original circuit, obtained
from SSTA, and the average σ̄, σreduction of the statistical
delay prediction approach for both cases, over the 1000 se-
lections, are listed in Table 3 for each benchmark circuit. It
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Table 3: Prediction results with insufficient number of test structures (considering L): Case 1 and Case 2
are distinguished by the number of ring oscillators (RO) available for each circuit

Benchmark SSTA Results Case 1 Case 2
Name #Cells #Grids µ(ps) σ(ps) #RO Avg. σ̄(ps) Avg. σreduction #RO Avg. σ̄(ps) Avg. σreduction

s1196 547 16 577.06 35.32 10 6.48 81.64% 5 11.97 66.1%
s5378 2958 16 475.97 29.84 10 5.96 80.02% 5 10.77 63.9%
s9234 5825 16 775.36 51.51 10 9.50 81.55% 5 18.85 63.4%
s13207 8260 256 1399.8 92.81 150 9.63 89.62% 60 18.56 80.0%
s15850 10369 256 1573.7 100.48 150 8.25 91.79% 60 16.88 83.2%
s35932 17793 256 1359.5 82.17 150 11.08 86.52% 60 27.69 66.3%
s38584 20705 256 1994.0 120.83 150 16.54 86.31% 60 29.96 75.2%
s38417 23815 256 1139.8 76.38 150 9.40 87.69% 60 17.87 76.6%

Table 4: Prediction results considering all parameter variations: Case I, Case II and Case III are distinguished
by different number of ring oscillators(RO) available for each circuit

Benchmark SSTA Results Case I Case II Case III
Name #Grids µ σ #RO σ̄ σreduction #RO Avg. σ̄ Avg. #RO Avg. σ̄ Avg.

(ps) (ps) (ps) (ps) σreduction (ps) σreduction

s1196 16 577.68 42.15 16 9.06 78.5% 10 11.63 72.4% 5 15.85 62.4%
s5378 16 477.04 34.32 16 4.36 87.3% 10 7.07 79.4% 5 11.12 67.6%
s9234 16 777.63 58.28 16 6.64 88.6% 10 12.18 79.1% 5 19.58 66.4%
s13207 256 1403.03 106.68 256 16.3 84.7% 150 19.4 81.8% 60 25.4 76.2%
s15850 256 1578.86 115.67 256 15.15 86.9% 150 17.58 84.8% 60 22.56 80.5%
s35932 256 1372.45 96.35 256 18.50 80.8% 150 22.26 76.9% 60 27.46 71.5%
s38584 256 2006.76 143.64 256 29.16 79.7% 150 34.76 75.8% 60 43.09 70.0%
s38417 256 1144.47 88.80 256 16.16 81.8% 150 19.36 78.2% 60 25.40 71.4%

is observed that there is a trade-off between test structure
overhead and σreduction.

Figure 3 shows the predicted delay distribution for a typ-
ical sample of the circuit s38417, the largest circuit in the
benchmark suite. Each curve in the circuit corresponds to
a different number of test structures, and it is clearly seen
that even when the number of test structures is less than
G, a sharp PDF of the original circuit delay can still be ob-
tained using our method, with a variance much smaller than
than provided by SSTA. The trade-off between the number
of test structures and the reduction in the standard devi-
ation can also be observed clearly. For this particular die,
while SSTA can only assert that it can meet a 1400 ps delay
requirement, using 150 test structures we can be very confi-
dent in saying that it can meet a 1050 ps delay requirement,
and using 60 test structures we can be confident in saying
that it can meet a 1100 ps delay requirement.
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Figure 3: PDF and CDF with insufficient number
of test structures for circuit s38417 (considering L)

Finally, in our third set of experiments, we consider the
most general case in which all parameter variations are in-
cluded. While the first two sets of experiments provided
general insight into our method, this third set shows the
results of applying it to real circuits under the full set of
parameter variations listed in Table 1. In Case I of this set
of experiments, the number of test structures is equal to the

number of grids. The values of σ̄ and σreduction are fixed
in this case. Case II and Case III are set up the same way
as in Case 1 and Case 2, respectively, of the second set of
experiments described earlier. The µ, σ of each benchmark
circuit obtained by SSTA, the σ̄, σreduction for Case I, the
average σ̄ and average σreduction for Case II and Case III ob-
tained from the post-silicon statistical delay prediction are
listed in Table 4. The distribution plot for this set of ex-
periment is similar to that in Figure 3, and the conditional
PDFs of one particular sample of the circuit s1196 for Case
II and Case III are shown in Section 1 as Figure 1(d), with
the SSTA PDF as a comparison. Note that the conditional
PDF obtained by our approach would be even sharper for
Case I.
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