
INVITED: Optimizing device reliability effects at the
intersection of physics, circuits, and architecture

Deepashree Sengupta, Vivek Mishra, and Sachin S. Sapatnekar∗

Department of Electrical and Computer Engineering
University of Minnesota, Minneapolis, MN, USA.

ABSTRACT

Over the years, there has been tremendous progress in devel-
oping new methods for modeling and diagnosing reliability
at the level of individual transistors and interconnects. The
thrust to propagate these models to higher levels of abstrac-
tion to predict the reliability of larger circuits is much more
recent. This paper addresses the intersection of physics, cir-
cuits, and architecture for reliability modeling and optimiza-
tion that must come together for cross-layer optimization.
For various device reliability phenomena, this paper shows
how physical models can be leveraged at the circuit level, or
circuit models at the architecture level, to deliver composite
solutions that comprehend chip-level design goals.

Keywords

Reliability, bias temperature instability, hot carriers, oxide
breakdown, electromigration, cross-layer optimization.

1. INTRODUCTION
Aging-related effects, which cause process drifts or fatal

errors in chips over their lifetimes, have become increasingly
important in recent years. The classical bathtub curve [1]
pictorially explains the effect of temporal variations: after a
steep initial failure rate, the number of failures levels off for
a while before rising again. Process variations form a spe-
cial case on this curve, corresponding to the static variations
baked into the chip at time zero, while aging variations are
represented on the rest of the curve. Many of these vari-
ations have strong sensitivity to the on-chip temperature.
In recent years, the (formerly) flat region of the bathtub
curve in intermediate years has seen by a greater propensity
to failure. Therefore, it is essential to consider aging as a
first-class objective during all levels of design.

This paper surveys methods for analyzing and optimiz-
ing reliability effects, and begins by providing an overview
of reliability models at the physical and gate levels. This
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is followed by a discussion of circuit-level reliability issues:
the expression of supposedly catastrophic errors at the de-
vice level as parametric faults at the circuit level, interac-
tions between reliability mechanisms, and finally, presilicon
and post-silicon circuit level aging mitigation. Finally, we
discuss cross-layer system-level optimization where architec-
tural methods are combined with circuit methods, using ap-
propriate device-level models, to improve system reliability.

2. PHYSICS: RELIABILITY MODELS
Bias temperature instability: Bias temperature insta-
bility (BTI) is a phenomenon that causes threshold volt-
age shifts over long periods of time, eventually causing the
circuit to fail to meet its specifications. The degradation
is caused when a voltage bias is applied across the gate
node of a transistor, and is sensitive to the temperature.
A PMOS transistor in an inverter experiences negative BTI
stress when its gate node is at logic 0, and the resulting
increase in the threshold voltage is partially reversed when
the voltage stress is removed (i.e., a logic 1 is applied). A
similar phenomenon of positive BTI affects the threshold
voltage of NMOS devices when they are stressed, and re-
laxes the degradation on the removal of stress. There are
two theories for BTI, based on the reaction-diffusion (R-D)
model [2, 3] and charge trapping (CT) [4, 5], with the latter
being related to the phenomenon of 1/f2 random telegraph
noise [6], with fast shifts and large variations.

Empirically, BTI degrades the threshold voltage at the
rate of tn, where t is the stress time and n ∼ 0.1− 0.2. The
impact of BTI on gate delay shifts can be determined by
determining the stress probability (SP), i.e., the probability
that a signal is at a stressing level (e.g., logic 0 for a PMOS).
The effective stress time, t, is computed by multiplying the
age of the circuit by the stress probability, SP.
Hot carrier injection: Hot carrier injection (HCI) effects
in MOSFETs are caused by the acceleration of carriers (elec-
trons/holes) under lateral electric fields in the channel, to
the point where they gain enough energy and momentum to
cause damage, degrading mobilities and threshold voltages.
At the device level, the HCI rate increases as t1/2, where
t is the time variable. Since the proportionality constant
is relatively small, in the short term, HCI is overshadowed
by BTI effects, where the exponent of t is smaller but the
proportionality constant is larger. However, particularly for
longer lifetime parts, the impact of HCI can be significant.

The traditional theory of HCI mechanisms was based on
a field-driven model where the peak energy of carriers was
determined by the lateral field of the channel, based on the
theory of the so-called lucky electron model [7], but this
does not capture HCI in scaled technologies. Newer energy-



driven theories [8,9] have been introduced to explain carrier-
induced degradation for short-channel devices at low Vdds.
These include the effects of electrons of various energies,
from high-energy channel hot carriers to medium-energy car-
riers to low-energy channel cold carriers, and degradation
arises chiefly from medium- and low-energy carriers.

For large-scale circuit analysis, some scalable approaches
for timing analysis under HC effects have been developed.
The approach in [10] applies a duty factor to capture the ef-
fective stress time for HC effects, modeling the duty factor to
be proportional to the transition time. The method in [11]
uses the new energy-driven theories described above, and
defines an age gain per transition using quasistatic charac-
terization. Using abstractions based on the SP and activity
factor (AF), the effective age is computed, and is used to
determine device degradation.
Time-dependent dielectric breakdown: Time-dependent
dielectric breakdown (TDDB) in gate oxides, illustrated in
Fig. 1, is an irreversible reliability phenomenon that results
in a sudden discontinuous increase in the conductance of the
gate oxide at the point of breakdown, as a result of which
the current through the gate insulator increases significantly.
This is of concern as oxide thicknesses become thinner with
technology scaling, increasing breakdown susceptibility.
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Figure 1: Schematic of gate oxide breakdown.

The time to breakdown can be modeled statistically using
a Weibull distribution [12]. At the circuit level, the effect of
TDDB on memory has been addressed in [13]. For logic cir-
cuits, a conventional area-scaling based method is presented
in [14]. However, as will be discussed in Section 3.1, logic cir-
cuits are inherently resilient, and the area-scaling model can
be pessimistic by about half an order of magnitude [15,16].
Electromigration: When a current flows through an on-
chip wire over a long period of time, it can cause a physical
migration of atoms in the wire, particularly if the current
density is high. The current conducting electrons can form
an electron wind, which leads to momentum exchange with
the constituent atoms of metal. This effect will lead to a
net flux of metal atoms in the direction of electron flow
(opposite of current direction), creating voids (depletion of
material) upstream and hillocks (accumulation of material)
downstream at locations of atomic flux divergence. Elec-
tromigration can cause uneven redistribution of resistance,
dielectric cracking, and undesired open circuits.

3. CIRCUITS: ANALYSIS/OPTIMIZATION

3.1 Catastrophic vs. parametric faults
Traditionally, BTI and HCI have been considered to be

parametric faults that can alter the performance of a circuit
but not its functionality. By degrading the threshold voltage
and drive current of a transistor, these phenomena result in
a reduction in the speed of a circuit. On the other hand,
TDDB and EM are often regarded as catastrophic faults, in
that one failure can render a circuit nonfunctional.

In this section, we show that the dichotomy between para-
metric and catastrophic faults is not as stark when one con-
siders the impact of these faults at the circuit level. Specifi-
cally, we point out that the weakest-link approach that has
been used for reliability analysis of TDDB and EM, whereby
the system fails when a single part fails, is far too pessimistic
and therefore results in overdesign.

For the case of TDDB, consider the scenario [15] where a
fault is induced in a transistor, as shown in an NMOS tran-
sistor in Cell n of Fig. 2. The breakdown is modeled using
the resistors Rd and Rs whose values depend on the loca-
tion of the breakdown on the transistor gate, i.e., whether
it occurs closer to the source or the drain of the transistor,
as illustrated in Fig. 1. This structure induces a resistive
divider in the circuit, whereby the PMOS transistors in Cell
m try to drive its output to logic 1, while the breakdown
attempts to bring it down to logic 0, and the stronger of
the two wins. Specifically, a breakdown that is close to the
source provides an easy path for the output of Cell m to be
incorrectly discharged – a catastrophic fault, but one that
is in the middle of the transistor or close to the drain may
be likely to preserve the logic 1, but slow down the output
transition for Cell m – a parametric fault.
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Figure 2: Cell-level analysis of the breakdown case.

A second example relates to the effect of electromigration
in power grids or clock grids. A break in a wire can result in
an open-circuit, but in a highly-redundant circuit, such as a
power grid or a meshed clock grid, alternative pathways for
carrying current can help mitigate the impact of this open-
circuit. Specifically, it has been shown that if one considers
circuit-level metrics such as the IR drop in power grid [17]
or the clock skew in clock meshes [18], electromigration may
cause small variations in these parameters, tantamount to a
parametric shift, rather than a catastrophic failure.

3.2 Interactions between aging phenomena
To a great extent, reliability effects have been handled in-

dependently in the literature [19] since their root causes are
typically orthogonal: BTI is caused by stress during the non-
switching state, while HCI relates to switching events; BTI,
HCI, and gate oxide TDDB are device-level effects while EM
is an interconnect effect, and so on. While this is largely
true, it is possible to see relationships between the impact
of these aging phenomena at the circuit level.

As an example, consider the effect of AC EM degradations
in a wire. This degradation is related to the average current
density in a wire, accounting for a recovery factor (which de-
termines the electron wind force) and the RMS value (which
determines Joule heating, which further degrades EM). For



an EM-susceptible wire, a breakdown becomes more likely
as the wire ages. However, the device is driven by a gate
whose transistors also degrade with time, implying that the
current carried through the wire reduces with time.

Normalized J Normalized TTF
(a.u) (a.u)

With BTI 1 1
Without BTI 0.99 1.04

Table 1: How driver BTI affects wire EM.

Table 1 shows a preliminary result for a 32X sized inverter
(INVX 32) connected to a minimum width, 200um wire in
16nm technology. The normalized average EM current den-
sity, J , and the normalized EM time to failure (TTF) for
the wire are shown for two cases: when BTI on the driver is
ignored, and when it is considered. Even though the thresh-
old voltage of the device shifts significantly over this period,
the impact on the average current is very slight. This can be
explained by the fact that switching current flows only over
a small fraction of an entire cyclee therefore, in computing
the average current, any changes in the nonzero currents are
attenuated by the long periods of zero current. Despite the
small reduction in average current density, there is a visible
impact on the mean TTF.

3.3 Presilicon design for device aging
Since the delay of a circuit increases due to aging-induced

parametric shifts in the drive current, a simple way to inoc-
ulate a circuit against failure is to provide it with sufficient
delay margin to incorporate the impact of aging. An exam-
ple is illustrated in Fig. 3 [20]. The topmost curve shows
the results for the case where the circuit is designed to meet
specifications at time zero, but no aging margin is main-
tained; clearly, this cannot be guaranteed to meet timing
over the part lifetime. The next lower curve shows the case
where the stress probabilities (SPs) for all gates are known,
in which case the delay margin can be adjusted exactly to
ensure that the circuit meets specifications throughout its
lifetime (in this case, 10 years, as shown by the dotted line to
the right). However, predicting the SP for all manufactured
parts over all workloads is difficult, and therefore, it is com-
mon to use a worst-case SP over all workloads. This yields
a larger delay margin, shown by the bottom-most curve.
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Figure 3: Circuit delay degradation under BTI.

The impact of variations on BTI depends on the specific
mechanism being considered. While variations under the
R-D mechanism are relatively small [21–23], they can be
significant under the CT mechanism. Charge trapping and
detrapping at each defect are random events that are charac-

terized by the capture and emission time constants. The sta-
tistical variation in ∆Vth depends not only on the statistics
of these random events, but also the distribution of defects
within a device, which can vary randomly [5, 24, 25]. Un-
der these statistical perturbations, the variation of device
lifetime can be extremely large for devices with a smaller
number of defects N , as illustrated in Fig. 4.
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Figure 4: [26]: (a) Narrow distribution of lifetime in
large devices where randomness averages out. (b)
Large variation of lifetime in small devices where
stochasticity predominates.

The impact of CT-induced variations has been examined
in [27], where it is found that that although device-level vari-
ations can be large, their impact at the circuit level is signif-
icantly attenuated and is reasonable. There are two reasons
for this. First, a typical critical path contains a large number
of stages, which attenuates the impact of variations (recall
that the ratio of variance to mean for a sum of i.i.d. random
variables decreases with the number of terms in the sum).
Second, transistors on critical paths are typically upsized,
and as seen in Fig. 4, the ∆Vth variations for larger devices
are significantly smaller than for small devices.

Some approaches have suggested the use of setting up spe-
cific sleep states that are designed to minimize BTI degra-
dation through input vector control. However, the gains of
such methods are relatively small.

3.4 Post-silicon design for device aging
Adaptive post-silicon techniques are an effective means for

protecting circuit functionality from BTI degradation. Pub-
lished methods based on adaptive margins have used time
sensors [28], history sensors that track usage patterns [29],
or surrogate sensor circuits [30–36]. Optimization knobs in-
clude adjustments in the clock frequency, supply voltages,
and body biases [29, 37, 38]. Unlike a static margin, with
its large power overhead in the early life due to the large
margin, dynamic margins, illustrated in Fig. 5(a), use just
enough margin and limit the power overhead at each instant.

A schematic of such a system in shown in Fig. 5(b). Based
on sensor inputs, circuit performance may be dynamically
recovered by, for example, changing the supply voltages and
body biases through a look-up table. The simplest sensor is a
simple time-based sensor, where worst-case aging is assumed
and the circuit is compensated at regular time intervals.

An alternative is to use data from surrogate sensors, built
in at the presilicon phase and tested at the post-silicon stage,
to adaptively provide on-the-fly compensation to mitigate
the effects of aging. These sensors range from simple inverter
chain or ring oscillator (ROSC) circuits [30–34] to more com-
plex circuits [35,36]. A particularly promising concept is the
notion of silicon odometers [31].





degrading the signal-to-noise margin (SNM) of the cell.
If the contents of the SRAM cell are deliberately flipped

periodically, then we ensure that each inverter is degraded
more evenly. For values that do not normally change over
long periods, such an inversion forces wear-leveling, while
values that do change frequently automatically induce wear-
leveling and are unaffected by this transform. In principle, a
specific cell may coincidentally switch almost exactly at the
same times when the contents are flipped, so that it holds a
constant value throughout – but failure due to this improb-
able instance can be handled by standard error-correction
mechanisms. It is shown in [49] that 80% of performance
(read stability) can be restored through this procedure.

A modified version of this scheme that alters the SRAM
cell to enhance recovery is presented in [50]. For arithmetic
circuits in the datapath of a microprocessor, a similar idea
to balance the SP values has been proposed in [51]. The
Penelope approach [52] uses a set of available resources, such
as idle pipelines, cache blocks, registers, and ports to storage
structures, and writes targeted values into these to induce
wear-leveling. An alternative method deactivates memory
units on a rotating basis to enable recovery cycles [53].
Circadian rhythms: Under the human circadian rhythm,
a period of sleep between periods of work represents a stage
of relaxation that decelerates aging and allows more vig-
orous exertions during the cycle of wakefulness. A similar
argument is made for an inanimate circuit in [54,55].

Under traditional models, increasing the supply voltage,
Vdd, of a circuit accelerates aging. However, this elevated
voltage, referred to as Greater than NOMinal Operation
(GNOMO), also allows tasks to be completed more quickly,
and therefore, a period of sleep can be deliberately inserted
into the task schedule, when Vdd is gated and the circuit re-
covers from BTI degradation [56,57]. We explore this trade-
off in Fig. 8, for the case where a different baseline voltage,
Vdd,n = 0.8V, is used, and several Vdd,g values are consid-
ered. A higher value of Vdd,g implies greater degradation
during the compute period, and a larger idle time.
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Figure 8: The delay degradation patterns of MCNC
benchmark alu4 for Vdd ∈ [0.8V, 1.3V].

If we extend this idea to running a workload on a proces-
sor, let us say that the completion time at the nominal and
GNOMO supply voltage is tn and tg, respectively; typically
these will correspond to a few milliseconds, i.e., millions of
clock cycles. At iso-performance, the period of sleep under
GNOMO is chosen to be tn− tg. Power savings are achieved
through inactivity during the sleep period and from reduced
delay margining overheads under this reduced aging.

At the microarchitecture level, several issues must be ac-
counted for. First, the granularity of sleep and wakeup cy-
cles is bounded both above and below. If the transitions to

sleep cycles are too frequent, the overhead of wakeup time
(typically tens of cycles) must be considered; if they are too
infrequent (typically over 10 million cycles), then the rate
of change is above the thermal time constant and the peak
temperature for the chip may rise – further worsening relia-
bility. Second, if the processor goes to sleep midway through
a computation, state information may be lost and the pro-
gram may have to go back to an earlier checkpoint. This can
be avoided by storing state elements (registers and caches) in
drowsy mode. Third, at the GNOMO Vdd value, the pro-
cessor runs at a faster frequency, but external peripherals
are unchanged, implying that an off-chip operation costs a
larger number of clock cycles. This is either a cost that must
be absorbed, or can be overcome through adapted latency-
hiding methods. Another alternative is to reschedule sleep
cycles by using, for example, predictors to overlap sleep pe-
riods with stall cycles, or even changing code to leverage
sleep cycles by bunching together memory accesses into pe-
riods where the processor can sleep.

At the circuit level, GNOMO enables a reduction of about
25%-40% in delay degradation, translating to lower guard-
bands that can result in 1.7× to 2.7× lower power. At the
microarchitecture level, counting all overheads, up to 13.5%
system-level power savings are demonstrated.

The basic GNOMO approach does not require the detec-
tion of idle times since the idle times are generated, and not
detected, and are hence predictable by construction. The
method can be supplemented by detecting idle times that
dynamically occur during workload execution (due to cache
misses, branch mispredictions, etc.). GNOMO bears superfi-
cial similarity to race-to-halt (RTH) methods [58,59], which
perform a computation as fast as possible and then enter
sleep mode to save leakage power. However, RTH methods
do not explicitly consider aging, and nor do they specifically
leverage recovery in circuit speed, as is the case for GNOMO.

An enhancement of the GNOMO idea is presented in [60].
Instead of merely putting the circuit to sleep and allowing
passive recovery, the circuit is rejuvenated using active self-
healing, by applying negative Vdd and high temperature.
Disposable cores: The BubbleWrap approach [61], applied
to a homogeneous manycore processor, leverages the spread
in core performance and lifetime due to process variations. It
classifies cores into two categories. Throughput cores, which
consume the least power at the target frequency, are used to
run the parallel sections of the application at normal Vdd
values, achieving high throughput. Expendable cores are
dedicated to run sequential segments at an elevated Vdd,
achieving high single-thread performance. However, such
a core also ages rapidly: once it fails specifications, it is
discarded and replaced by another expendable core.

5. CONCLUSION
Device-related aging effects have become increasingly im-

portant in recent years, and this paper provides a flavor for
solutions that bring together device modeling, circuit anal-
ysis and optimization, and system optimization techniques.
Future progress will rest on continuing to break down these
barriers to provide true cross-layer solutions.
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