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Abstract—Many ultra-low power Internet of things (IoT)
systems may be powered by energy harvested from ambient
sources (e.g., solar radiation, thermal gradients, and WiFi).
However, these energy sources can vary significantly in terms
of their strengths and on/off patterns. For volatile systems,
the intermittent nature of the energy sources necessitates the
use of backup/recovery schemes to guarantee computational
correctness and forward progress, which incur performance, area
and energy overhead. Non-volatile (NV) processors based on
spintronic devices, such as Spin-Transfer Torque (STT) memory
and All-Spin-Logic (ASL), are more attractive alternatives. These
NV devices are capable of achieving forward progress without
relying on backup/recovery schemes. This work establishes a
general framework for evaluating NV device-based processors
for energy harvesting applications. Results demonstrate that NV
spintronic processors can achieve significant energy savings (up
to 83×) versus a hybrid CMOS (computation) and STT-RAM
(backup) implementation.

I. INTRODUCTION
With the rapid growth of the internet of things (IoT),

demands for battery-less systems are ever increasing. There
are numerous examples of systems that might benefit from
information processing hardware that is powered by ambient
energy sources. While many such systems may offer new
opportunities and capabilities for personal entertainment, self-
powered computational systems have obvious societal benefits
when deployed for medical monitoring, environmental sensing,
etc. As such, there are a growing number of research efforts
targeting battery-less systems that harvest energy from solar,
vibration, WiFi, and radio frequency (RF) sources [1], [2].

That said, researchers face numerous challenges when
architecting systems that must rely solely on ambient sources
of energy. Most energy sources exhibit low conversion ef-
ficiency, i.e., a small fraction of the total harvested power
can actually be used. Moreover, many ambient sources are
simply not reliable, e.g., ambient RF or WiFi power varies
significantly based on the power source, frequency, distance
from the transmitter, environmental obstacles, etc. [3].

To combat these challenges, non-volatile (NV) memory
and logic technologies are of growing interest. In the simplest
form, NV storage elements offer a way to periodically back
up (or “checkpoint”) processor states. Thus, if an ambient
energy source becomes insufficient to power the system that
processes information, the most recently saved processor states
can be restored from NV storage. Assuming the energy and
delay associated with backup/recovery is sufficiently low, it is
possible to make incremental progress toward completing the
computational task that the processor is responsible for [4].

Processors implemented with NV (e.g., spintronic) logic
elements offer another alternative for systems powered by har-
vested energy since processor states are automatically retained

upon power loss. However, studies of existing spintronic logic
based processors (e.g., [5], [6], [7]) have mainly focused on
performance and energy in the context of high-performance
computing applications, where it seems challenging for spin-
tronic logic to compete with CMOS. Using all-spin logic
(ASL) as a representative example, at high frequencies, power
consumption can be extremely high. Even at lower frequencies
(i.e., 25 MHz) the power associated with ASL can be more than
an order of magnitude higher than what is projected for CMOS
(assuming different processor power states) [5]. Nonetheless,
material advances (e.g., Heusler based ASL) and relaxing
device retention times open the door for spintronic logic
devices to exhibit lower power than CMOS counterparts [5].

In systems powered by harvested energy, spintronic logic
devices offer several distinctive advantages. First, spintronic
logic devices are inherently NV. This can eliminate the need
for backup/recovery to/from NV memory, as well as the
energy and delays associated with the backup and recovery
operations. Second, processors in such resource constrained
environments typically have very low clock rates (e.g., [4]
considers a clock rate of just 8 KHz for NV processors
powered by WiFi sources). Lower clock rates should help
to reduce logic power dissipation when employing spintronic
logic. Indeed, our preliminary projections for an in-order ASL
processor (design from [4]) based on Heusler alloys indicates
that, depending on the reliability of the power supply, the
energy/instruction for the ASL processor could be between
3× and 30× better than a CMOS-based NV processor (NVP).

In the rest of this paper, we first review several emerging
spintronic technologies that could enable battery-less systems
(Sec. II). We then discuss our benchmarking framework for
evaluating these spintronic technologies at the architectural
level (Sec. III). Finally, we present several case-study results
obtained by our framework through analyzing a battery-less
non-pipelined processor (originally introduced in [4]) based
on the state-of-the-art spintronic devices (Sec. IV).

II. BACKGROUND
In this section, we provide a brief overview of the spin-

tronic devices and the NV processor utilized in the case study
to be discussed in Sec. IV.

A. Overview of Select Spintronic Devices
We have selected four spintronic devices – STT-RAM,

SHE-RAM, ASL, and CoMET – for our evaluation work as
they represent near, mid and long term developments in the
research spectum of spintronic devices. Below, we discuss the
basic operating principles of these spintronic devices.

STT-RAM: A Spin Transfer Torque RAM (STT-RAM) bit-
cell consists of an access transistor and a Magnetic Tunnel



Fig. 1: STT-RAM bit cell and write operation [5].

Fig. 2: SHE-RAM bit cell and write operation [5].

Junction (MTJ) as shown in Fig. 1. The write operation is
accomplished by applying a write current in one of two
directions. The direction of the write current through the access
transistor changes the state (which indicates a ’1’ or ’0’) of the
MTJ device. The state of the MTJ is changed as this charge
current becomes spin polarized based on the pinned layer
magnetization and exerts a torque on the free layer as shown
in Fig. 1. The read operation is performed using a small read
current through the access transistor to sense the resistance of
the MTJ. STT-RAM chips with sufficient capacities have been
experimentally demonstrated (e.g., [8], [9]).

SHE-RAM: Spin Hall Effect RAM (SHE-RAM) consists
of two access transistors, an MTJ, and a spin Hall metal (SHM)
structure as shown in Fig. 2. The write operation is performed
with a bidirectional current through the SHM. Here, the charge
current becomes spin polarized, traversing along the direction
of charge current, as shown in Fig. 2. The charge current
is along the x-axis and the spin current is polarized along
the y-axis. The spin current along the z-axis exerts a torque
on the MTJ free layer sitting on top of the SHM. SHE can
switch an in-plane MTJ naturally, but requires an external in-
plane field to switch a perpendicular anisotropy MTJ. The
read operation is performed using the MTJ access transistor
which is identical to the STT-RAM read operation. Spin Hall
effect has been predicted to be more efficient at switching
the MTJ than the spin transfer torque mechanism [10], [11],
[12]. Spin-torque switching by SHE has been experimentally
demonstrated (e.g., [13], [14]).

ASL: An elementary All-Spin Logic (ASL) [15] gate
consists of input and output magnets that have two stable mag-
netization states and are connected through a channel as shown
in Fig. 3. A non-zero voltage pulse applied to Vsupply induces
a spin current (Isupply) that passes through the input magnet,
which results in spin-polarized electrons in the channel. The
accumulated spins produce the channel spin current (Ispin),
which transfers angular momentum to the output magnet. If
Ispin exceeds a certain threshold on the output magnet, the
magnetization state of the output magnet is toggled. Depending
on the polarity of Vsupply , a COPY or INV ERT operation
is accomplished. Majority gates can be readily realized with
ASL. A key factor here is that the spin current propagation
distance is limited by the length and material of the channel.

Fig. 3: Conceptual diagram of an ASL-based inverter [5].
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Fig. 4: Illustrations of two elementary CoMET circuits: (a)
inverter and (b) three-input majority gate.

This material property is known as the “spin diffusion length”
and it is an important consideration for processor design as it
necessitates the placement of interconnect buffers.

CoMET: Composite input MagnetoElectric-based logic
Technology (CoMET) [16] is a fast, low-energy spintronics-
based logic device concept. Fig. 4a shows two cascaded
CoMET inverter stages, and we briefly illustrate the principle
of operation of the first stage. A voltage applied on an input
ferroelectric (FE) capacitor nucleates a domain wall (DW)
through the magnetoelectric (ME) effect [17]. A compos-
ite ferromagnet (FM) structure with an in-plane magnetic
anisotropy (IMA) layer is placed above the perpendicular mag-
netic anisotropy (PMA)–FM channel to enable fast, energy-
efficient nucleation in the PMA–FM at the input end. The
DW is propagated to the output end of the FM channel,
using a charge current applied to a layer of spin-Hall material
placed under the PMA channel. The inverse–ME (IME) effect
induces a voltage at the output, and a dual-rail inverter structure
efficiently transmits this voltage to the input of the next gate.
The device maps easily to a majority logic structure, as shown
in Fig. 4b, where DWs from the three inputs compete to
create the majority magnetization under the output. As before,



a voltage is induced at the output node using the IME, and is
transmitted to the next stage through the dual-rail inverter. The
device concept of CoMET has been proposed very recently and
been shown through simulations to be viable when mapped to
realistic material parameters. An experimental demonstration
of the device will be explored in future work.

B. Related Work on NVPs
The use of spintronic memory devices (such as STT-RAM)

in microprocessors has been previously studied for various
purposes such as leveraging their zero leakage energy [7]
and implementing hybrid CMOS+NV memory checkpointing
architectures [4], [18]. NVPs based on ferroelectric flip-flops
have also be proposed and evaluated [5], [6]. A recent work by
Ma et al. [4] systematically studied a NVP based on STT-RAM
cache as well as main memory. Existing works all consider a
specific NV device in their respective NVPs. In this work, our
goal is to evaluate the different emerging NV devices discussed
in Sec. II in NVPs. In this section, we review our target NVP
architecture from Ma et al. [4], which implements a 32-bit
MIPS non-pipelined processor (NPP) comprised of CMOS and
STT-RAM technology. We choose this specific processor as the
authors have done a thorough job in analyzing energy savings
by the NVP operating in an harvested energy environment.

The NPP presented in [4] runs at 8 kHz since it assumes
a weak WiFi power source. The instruction memory and
instruction cache are assumed to be ROM and a NV mem-
ory, respectively. The data memory and data cache are also
implemented by NV memories with the data cache assuming
a write-back policy that preserves dirty data on power outages.
As the processor is non-pipelined, a single instruction charac-
terizes the entire state of the processor. On power outages,
architectural state is preserved by writing the program counter
(PC) and register file (RegFile) to a NV memory.

The baseline design evaluated by Ma et al. involves a
hybrid CMOS+STT-RAM design. CMOS is used to implement
all logic and register memory components of the NPP. The
processor is powered through a weak WiFi signal that charges
a capacitor. When the energy of the capacitor drops below a
certain threshold, the NPP backups the PC and RegFile to a
separate STT-RAM memory. Once the energy of the capacitor
exceeds a certain threshold, the NPP begins its recovery
operation by restoring the CMOS-based PC and RegFile.

As note in [4], writing NV memory is an energetically
expensive operation. Thus, to minimize the amount of data
that needs to be written, three backup/recovery policies were
studied in [4]. For brevity, we select the most energy efficient
policy, i.e., the “On Demand Selective Backup” (ODSB)
policy. The ODSB policy adds additional data bits to the
RegFile to determine which lines of the RegFile have changed
since the last power outage. Only the changed lines are written
to the backup STT-RAM on a power outage.

To further explore the design space of the NPP, Ma et al.
consider the intermittent nature of the power supply. Three in-
struction backup intervals (BIs) are examined, which represent
the expected number of instructions to be completed before a
backup event occurs. BIs of 1, 10, and 1000 instructions are
examined, and their average energy per instruction (summation
of computational and backup/recovery energy) is reported.

III. DESIGN AND EVALUATION METHODOLOGY
In this section, we present our framework for benchmarking

NVPs. We categorize NVPs into three types as shown in Fig. 5:

Fig. 5: Three types of NVPs: (a) NVP with explicit backup, (b)
NVP with implicit backup, and (c) NVP with hybrid backup.

NVP with explicit backup (EB-NVP), NVP with implicit
backup (IB-NVP), and NVP with hybrid backup (HB-NVP).

In EB-NVPs, processor states must be explicitly backed up
to and restored from NV memory. Most existing NVPs belong
to this category. IB-NVPs use NV devices to realize all the
storage elements (i.e., all the flip-flops and latches) while the
combinational circuits in the processor may or may not be
implemented in NV devices. Thus, for an IB-NVP, processor
states are automatically retained in the NV storage elements
and no explicit backup/recovery is needed. For HB-NVPs,
the retention time of the storage elements in the “interim”
NVP cannot be treated as “infinitely” long as for IB-NVPs.
Thus, NV memory is still needed. However, if the power
outage time is shorter than the retention time of the “interim”
NVP, no backup/recovery is needed. For many NV devices,
reducing retention time could significantly reduce operating
energy. Therefore, HB-NVP can provide an effective way to
trade off operating energy with backup/recovery overhead.

In this work, we focus on NVP processors that rely on a
simple drop-in replacement of MOSFET devices. Below, we
first summarize a drop-in approach (Sec. III-A) from Kim et
al. [5] that forms the foundation of our framework ((Sec. III-B).
We then discuss the design and evaluation methodology of our
benchmarking framework.

A. Drop-in Replacement Design Approach
To implement an NVP based on a von Neumann archi-

tecture and to exploit the spintronic devices discussed in
Sec. II-A, a straightforward approach is to do a drop-in
replacement, i.e., replacing basic CMOS circuit/logic elements
with spintronic elements. The STT-RAM and SHE-RAM can
be readily used as the memory elements for cache or main
memory, while ASL and CoMET devices can readily im-
plement combinational logic and flip-flops. With the drop-in
replacement approach, many of the existing high-level design
tools as well as architectural level techniques can be leveraged,
which should significantly reduce development effort. Below
we discuss the design and evaluation of an ASL-based IB-NVP,
which can also be tuned to be a HB-NVP.

In our recent work, we have studied an ASL-based Intel
Core i7 processor [5]. We leverage a drop-in approach to
replace all CMOS-based pipeline logic and flip-flops by their
equivalent ASL-based logic gates and storage elements (note
that the cache is not considered). We have shown how ASL
gates can be cascaded to form pipeline logic, how edge-
triggered ASL flip-flops can be formed, and how the clock
signal can be manipulated to achieve equivalent functionality
to their CMOS counterparts. A key benefit to these designs is
that an ASL flip-flop only requires 4 ASL devices whereas the
equivalent CMOS flip-flop would require at least 20 transistors.

The ASL devices selected are 5 nm× 5 nm× 4 nm PMA
magnets connected via a copper channel with 10 year retention
time [5]. A clock frequency of 25 MHz is used as higher
frequencies lead to much higher power consumption. A single



pipeline stage consists of 20 logic gates along the critical path1.
Thus, the target ASL device switching time can be computed as
1/(25 MHz× 20 gates) = 2 ns. The retention time and clock
frequency make the design an IB-NVP. However, a HB-NVP
could be achieved by reducing the retention time closer to the
clock frequency, which would lower the switching energy of
each ASL device. For example, the 25 MHz clock represents
a cycle time of 40 ns. One could set the retention time to
be closer to 40 ns to ensure non-volatility of the processor
is preserved. The retention time of spintronic devices can be
tuned through varying the material composition and/or size of
the magnets. Once the design parameters are determined, the
energy per cycle of the processor can be estimated.

With the drop-in replacement approach, we can uses the
number of transistors per core to estimate the number of
spintronic devices that would be needed to implement the
equivalent core logic. Furthermore, the number of transistors
is also used to estimate the number of buffer interconnects
(ICs) that would be necessary for a given material (i.e., its
spin diffusion length). Once the number of spintronic logic
devices and buffer ICs are known, the energy per cycle of the
processor can be computed as shown in Eq. 1.

Total Energy = Nspin
logic × E

spin
logic +Nspin

IC × Espin
IC (1)

In Eq. 1, Nspin
logic and Nspin

IC represent the number of spintronic
logic devices and ICs, respectively. Similarly, Espin

logic and Espin
IC

represent the switching energy of the logic and interconnect
buffers, respectively.

To estimate the number of spintronic logic devices, we
examine the number of devices needed to implement CMOS-
based logic gates versus ASL-based logic gates. Like most
spintronic devices, ASL-based logic gates are formed using
majority logic. Compared to CMOS, ASL can implement
equivalent logic gates using approximately 50% less devices.
Therefore, the number of spintronic logic devices (Nspin

logic)
can be estimated from the number of CMOS logic transistors
(NCMOS

logic ) as shown in Eq. 2.

Nspin
logic = NCMOS

logic /2 (2)

As discussed in Sec. II-A, spintronic devices that use
spin current to transfer data require buffer ICs to overcome
attenuation of the spin signal. To determine the number of
buffer ICs, two parameters are needed: (i) the spin diffusion
length of the material and (ii) the number of logic gates in
a the processor. The spin diffusion length (λch) of a material
determines how far a spin signal can propagate. Furthermore,
as the number of buffer ICs increases, the switching energy of
the processor also increases. Thus, it is preferable to limit the
number of buffer ICs. This can be achieved by using materials
with a larger λch. Typical values of λch range from 400 nm
for copper to beyond 2 µm for graphene [5].

To estimate the number of logic gates per processor core,
we assume that the average number of transistors per logic
gate is 4. A typical spintronic device is assumed to have a gate
pitch of 10 nm and an average fanout of 4. Collectively, these
parameters can be utilized in a probability density function
based on Rent’s rule [19] to model the statistical distribution
of wire lengths in a random logic block (see [20]).

1Each gate in a pipeline stage is assumed to be sequentially pulsed to reduce
power consumption.

Once the number of spintronic logic devices and buffer
ICs have been determined, their respective switching energies
need to be computed. This process involves simulating the
target spintronic technology through a Landau-Lifshitz-Gilbert
(LLG) solver. The LLG solver uses device material, geometric
and operating parameters to determine the energy needed to
cause the output device to switch. For brevity, we point the
reader to the process discussed in [5] for more information.

B. NVP Evaluation Framework
In this subsection, we present our NVP benchmark-

ing framework, referred to as EvaNVP. EvaNVP, illus-
trated in Fig. 6, builds on the drop-in replacement ap-
proach from Sec. III-A to estimate the total computation and
backup/recovery energy of the NVP. The main idea behind
EvaNVP is to integrate (i) the power supply patterns, (ii)
the backup/recovery policies, and (iii) the processor perfor-
mance/energy models to account for their collective impacts on
the overall system energy. EvaNVP consists of four separate
modules, and the details of the modules are summarized below.

Power Supply Profile Modeling: This module captures
and quantifies the power supply behavior. For a given power
supply profile, we determine the total number of backups and
recoveries required (i.e., the backup interval from Sec. II-B) for
the target architecture. If the target architecture is comprised
completely of NV devices with retention times that exceed
the expected outage time (i.e., for IB-NVPs), this set of data
is unnecessary. For HB-NVPs, this information is used to
derive the actual number of backups/recoveries needed. As will
be seen later, if one is only concerned with backup/recovery
patterns within a backup interval (BI) having a certain number
of instructions, the data here will be averaged to obtain the
corresponding values.

Backup Strategy Modeling: This module captures the
data relevant to energy per backup/recovery. As pointed out
in [4], how much data to save at each backup depends on the
specific backup policy. It also depends on the type of NVPs.
For EB-NVPs and HB-NVPs, we first determine the total
number of data bits required per backup/recovery operation on
average. Next, the energy associated with writing and reading
the NV backup memory is input2.

Processor Architecture Modeling: This module models
the target processor architecture. Here, we use 3 high-level
parameters: (i) processing element (PE) types, (ii) number of
PEs per PE type, and (iii) the number of interconnect buffers
required for the spintronic backup technology. We divide PEs
into different types in order to handle the cases where different
PE types have different switching energy per PE. Such cases
arise since different technologies may be used in a NVP or PEs
may have different granularity. The number of PEs per PE type
represents the number of devices, pipeline components, cores,
etc. Lastly, the number of interconnect buffers is determined
as summarized in Sec. III-A.

NV Processor Modeling: This module calculates the total
processor energy per instruction, Etotal, based on the inputs
from the three modules above3. Etotal is computed as

Etotal = Ebr(BI)/BI + Einst, (3)

2This value can be obtained from simulation or experimental results, and
our framework assumes that this value is known.

3We use total processor energy per instruction instead of absolute total
energy to avoid the dependence on specific programs.



Fig. 6: Our proposed NVP benchmarking framework.

where Ebr(BI) is the total backup/recovery energy per BI and
Einst is the total computational energy per instruction. Ebr is
computed by

Ebr = Nbackup×Ebackup+Nrecover×Erecover, where (4)

Ebackup = Nwr/bac × Ewr,NVM +Nrd/bac × Erd,VM , (5)
Erecover = Nrd/rec × Erd,NVM +Nwr/rec × Ewr,VM , (6)

where Nwr/bac and Ewr,NVM represent the number of writes
per backup and the energy per write into the NV memory.
The other parameters are defined in the same manner. Einst

represents the energy consumed by logic components of the
processor and is calculated as

Einst =
∑

PE types

NPEi
×EPEi

+NIC(PEi)×EIC(PEi) (7)

where NPEi
and EPEi

are the number of type i PEs (i.e., PEi)
and PEi’s computation energy, respectively, and NIC(PEi) and
EIC(PEi) are the number of interconnect buffers and energy
associated with PEi. If the logic is comprised of spintronic
technology, the drop-in replacement approach from Sec. III-A
can be used to determine the values of these parameters.

IV. NVP EVALUATION RESULTS
In this section, we present a case study that illustrates the

use of EvaNVP. Our target architecture is the 32 bit MIPS
NPP described in Sec. II-B. This processor runs at 8 kHz and
is comprised of CMOS (computation) and STT-RAM (backup)
technology. In our study, we compare three different NV
technologies to the baseline CMOS+STT-RAM architecture:
(i) ASL, (ii) CoMET, and (iii) SHE-RAM. For brevity, we
discuss the important device parameters as necessary in the text
below and point the reader to the individual device references
for additional parameters.

To make a fair comparison with the current state-of-
the-art technologies, we scale the 45 nm CMOS+STT-RAM
results from [4] to the 15 nm technology node. To achieve
this scaling, we leverage two sources: the Beyond-CMOS
Benchmarking (BCB) methodology [21] and the data from
the 2011 ITRS report [22]. The BCB methodology provides a
uniform approach to benchmarking CMOS and beyond-CMOS
devices at the circuit level. Previous work has shown this
methodology to be a better predictor of CMOS scaling than
the MASTAR simulator used by the ITRS [23]. Here, we use
the BCB methodology to determine how CMOS energy scales
from 45 nm to 15 nm for an inverter fanout-of-4 circuit. Next,
we use the ITRS 2011 report to determine how STT-RAM
energy scales from 45 nm to 15 nm. We use the ITRS report as
this forms the foundation for STT-RAM used by NVSim [24],
which is the tool used to compute STT-RAM read/write energy

for the baseline NPP in [4]. With the aforementioned approach,
we find that CMOS and STT-RAM energies scale by a factor
of 0.15× and 0.14×, respectively, from 45 nm to 15 nm. These
scaling factors are applied to the 45 nm NPP energy from [4]
with the scaled results illustrated in Fig. 7 for the columns
marked “CMOS+STT-RAM”.

We now apply EvaNVP to examine the impact of ASL
and CoMET based NV NPP. The first step in EvaNVP is
Power Supply Profile Modeling. For both the ASL and CoMET
technologies, their retention times are selected to be 10 years;
therefore, they perform implicit backups (i.e., IB-NVP) for
three selected BIs (i.e., 1, 10, and 1000 instructions) associated
with the weak WiFi power source. Similarly, for Backup
Strategy Modeling, we do not specify any inputs as both ASL
and CoMET lead to IB-NVPs.

The next step in our framework is Processor Architecture
Modeling. As both the ASL and CoMET processor imple-
mentations are comprised completely of one technology, we
have only 1 PE type. Next, we select the logic gate level
for our PEs, which is consistent with the drop-in replacement
approach used in this study. Based on the logic area of the
NPP reported by Ma et al. [4], we estimate a total of 7000
CMOS transistors. According to Eq. 2, we can determine that
approximately 3500 ASL/CoMET devices would be necessary
to completely implement the logic of the NPP. The final step in
Processor Architecture Modeling is to determine the number of
buffer interconnects. Using the probability distribution function
summarized in Sec. III-A, we found that a processor of this
size would not require any interconnect buffers. CoMET also
does not require interconnect buffers as data are propagated
through wires connecting CMOS devices.

For the ASL-based NVP, we examined 3 different retention
times as indicated by the 3 leftmost bars in Fig. 74. Our results
illustrate that the base ASL (IB-NVP) is more energy efficient
than CMOS+STT-RAM for a BI of 1. To further lower the
energy, we consider a HB-NVP by reducing the retention time
to be closer to the clock cycle time of 125µs. By reducing
the retention time to 1 s, the ASL energy was reduced by
2.4×, which is 6.25× and 1.5× more energy efficient than
CMOS+STT-RAM for BIs of 1 and 10, respectively.

We further explored the design space of ASL under dif-
ferent retention time requirements by targeting a 250 ms
retention time. This time is selected based on the clock cycle
time of 125µs and instruction BI of 1000. By reducing the
retention time to 250 ms, the computational energy is reduced
by 13.6× and 5.7× versus the 10 year and 1 s retention times,
respectively (third bar from the left in Fig. 7). This HB-NVP
achieves 3.6× more energy efficiency vs. CMOS+STT-RAM.

To benchmark CoMET, we use the parameters given in
[25] where the switching energy of a 3-input majority gate
comprised of CoMET technology is computed for the 10 nm
technology node with 10 year retention time. We use 0.93 V
supply in our benchmarking as it provides the best overall
energy savings at 10 nm. Our result, the 4th bar in Fig. 7,
shows that CoMET based NVP is about 2.3× more energy
efficient than the best ASL data point (250 ms retention time)
and between 83× and 8.3× more energy efficient than the
CMOS+STT-RAM for BIs between 1 and 1000, respectively.

Our final analysis involves STT-RAM vs. SHE-RAM. Here,

4The ASL parameters are taken from [5] and represent 5 nm technology
node with λch = 1µm from [5].



Fig. 7: Benchmarking results comparing implicit (leftmost 4 bars) versus explicit (rightmost 6 bars) backup/recovery strategies.

we have replaced the STT-RAM for backup storage in the NPP
by SHE-RAM. The parameters for SHE-RAM are obtained
from LLG simulation and are as follows: write current is
320µA, write time is 0.84 ns and the technology node is 14 nm.
For a similar technology node, STT-RAM has a write current
of 150µA and a write time of 2.7 ns. Given that the switching
energy is the product of the supply voltage, write current, and
write time, we can estimate that the SHE-RAM is 1.5× more
energy efficient than the STT-RAM (assuming equal supply
voltage). The total energy per instruction for the SHE-RAM
based NVP is represented by the 1st, 3rd and 5th bar from the
right in Fig. 7 for BI of 1000, 10, and 1, respectively.

V. CONCLUSION
As research on fundamental theories of spintronic devices

is advancing steadily, it is imperative to understand the po-
tential of spintronic devices used as memory and/or logic
elements in the context of different application domains. In
this paper, we introduce a high-level framework that aims to
estimate overall energy savings for NVPs based on NV devices
including spintronic devices. Employing this framework, we
conducted preliminary studies of representative advanced spin-
tronic memory (SHE-RAM) and logic (ASL and CoMET) ele-
ments as building blocks of both EB-NVPs and HB-NVPs. Our
results show that. As future work, experimental demonstration
of these advanced spintronic devices is being planned. Further
studies are also being performed on investigating energy saving
potentials of the NVPs for low-power applications that are not
powered by harvested energy.
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