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Abstract—In-memory computing is a promising approach to
alleviating the processor-memory data transfer bottleneck in
computing systems. While spintronics has attracted great interest
as a non-volatile memory technology, recent work has shown that
its unique properties can also enable in-memory computing. We
summarize efforts in this direction, and describe three different
designs that enhance STT-MRAM to perform logic, arithmetic,
and vector operations and evaluate transcendental functions
within memory arrays.

1. INTRODUCTION

Modern computing workloads such as data analytics, ma-
chine learning, graphics, and bioinformatics operate on large
datasets, leading to frequent accesses to off-chip memory.
Consequently, a significant amount of time and energy is spent
in the movement of data between the processor and memory,
causing a major bottleneck in computing systems.

Among various approaches to address the processor-
memory bottleneck, the closer integration of logic and memory
has garnered significant interest. These approaches are variedly
referred as near-memory computing, processing-near-memory,
logic-in-memory, computing-in-memory, and processing-in-
memory. These efforts may be classified into two broad
categories based on the degree of integration between logic and
memory. In Near-Memory Computing [1]-[7], logic is moved
closer to memory, e.g., within the same package. On the other
hand, In-Memory Computing [8]-[21] refers to performing
computations within a memory array itself.

Although both near- and in-memory computing alleviate the
processor-memory bottleneck, the latter fundamentally blurs
the distinction between computation and memory. Addition-
ally, it has the benefit of reducing the number of memory
accesses by moving computations to the memory rather than
bringing data to the processor. Therefore, in-memory comput-
ing has drawn great interest in recent years [8]-[21].

Spintronics has emerged as a promising candidate for future
memories due to its desirable attributes such as high density,
non-volatility, near-zero leakage, high endurance, low voltage
read and write operations, and compatibility with the CMOS
manufacturing process. In particular, Spin Transfer Torque
Magnetic RAM (STT-MRAM) has attracted great interest
with prototype demonstrations and commercial offerings [22],
[23]. In this paper, we present an overview of approaches to
in-memory computing with STT-MRAM. We describe three
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different in-memory computing designs — STT-CiM [12],
ROM-Embedded MRAM [13], and CRAM [10] that propose
modifications to the peripherals or the bit-cells of STT-MRAM
to enable in-memory computing. We show that by leveraging
the unique attributes of spintronic memories, these designs
perform computations (logic operations, scalar and vector
arithmetic, and transcendental functions) within the memory
array.

STT-CiM [12] is an example of in-memory computing
with spintronic memory that proposes modifications to the
peripherals while retaining the core bit-cell and array structure
of STT-MRAM intact. It exploits the resistive nature of spin-
tronic memories to simultaneously enable multiple wordlines
in an STT-MRAM array, leading to multiple bit-cells being
connected to each bit-line. With modifications to the peripheral
circuitry, STT-CiM senses the effective resistance of each bit-
line to directly compute functions of multiple words. Based on
this principle, STT-CiM enables logic, arithmetic, and vector
computations to be performed in-memory.

In contrast, ROM-Embedded MRAM [13] and CRAM [10]
take a different approach to realize computations in STT-
MRAM. They propose modifications to both the bit-cell and
the peripherals to enable in-memory operations.

ROM-Embedded MRAM [13] introduces a second bit-line,
and during the design process selectively connects the memory
element [i.e, Magnetic Tunnel Junction (MTJ)] to one of the
two bit-lines to store 1-bit of read-only data in each bit-cell.
The STT-MRAM can be used in two (read-only and regular)
modes. The read-only mode can be used to store look-up tables
and used to evaluate complex mathematical functions such
as transcendental functions. On the other hand, CRAM [10]
introduces an additional transistor in each bit-cell (2T-1R)
to realize more complex operations in the STT-MRAM. It
allows the results of computation to be written back within
the memory array itself, without the need to take data to the
array periphery. CRAM provides a reconfigurable platform
that can be used to construct adders, multipliers, dot product
computations, efc., in the memory array.

The rest of the paper is organised as follows. Section II pro-
vides a taxonomy of approches to computing-in-memory. Sec-
tion III provides the necessary background on STT-MRAM.
Section IV describes approaches to in-memory computing with
spintronics. Section V discusses challenges and opportunities,
and concludes the paper.
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II. TaxoNomMy OF COMPUTING-IN-MEMORY

The closer integration of logic and memory is var-
iedly referred to as near-memory computing, processing-
near-memory, processing-in-memory, logic-in-memory, and
computing-in-memory. Table 1 presents a taxonomy of these
efforts based on the degree of integration (Near- or In-
memory), the scope of use (application-specific or general-
purpose).

Near-memory Computing. Near-memory computing refers
to bringing logic or processing elements closer to memory.
However, the memory and computation units are still distinct.
Several efforts have explored near-memory computation at
various levels of the memory hierarchy [1]-[7]. Intelligent-
RAM [1], which integrates a processor and DRAM in the same
chip to increase processor-to-memory bandwidth, is an early
example of near-memory computing. Other early examples
include active pages [2] and active disks [3], which enable
computations within main memory and secondary storage,
respectively. Interpolation memory [4], which combines look-
up tables stored in memory with interpolation logic to evaluate
complex mathematical functions, and Neurocube [7], which
proposes a neural network accelerator based on 3D integra-
tion of processors and memory, are examples of application-
specific near-memory computing. In recent years, with the
advent of advanced packaging technology and 3D integration,
near-memory computing has gained considerable momentum
with industrial efforts like Hybrid Memory Cube (HMC) [5]
and High Bandwidth Memory (HBM) [6].

In-memory Computing. In-memory computing [8]-[21] fun-
damentally blurs the boundary between computation and mem-
ory, since the memory array itself behaves like a computing
unit. Instructions to perform computation are sent to memory
instead of bringing data from memory to the processor. In-
memory computing efforts can be further classified based
on whether they target application-specific or general-purpose
computations. Examples of application-specific in-memory
computing include vector-matrix multiplications [18]-[21] and
sum-of-absolute difference computations [9]. ROM-embedded
MRAM [13] and Micron’s automata processor [8] can also
be viewed as examples of in-memory computing that target
specific operations such as pattern matching or the eval-
uation of transcendental mathematical functions. General-
purpose in-memory computing designs focus on a broader
class of operations. Many proposals within this category
restrict themselves to bit-wise Boolean logic operations (e.g.,

AND/NAND/OR/NOR/XOR) [11], [14]-[17]. In contrast,
STT-CiM [12] and CRAM [10] can realize a broader range
of logic, arithmetic, and vector operations.

ITI. PRELIMINARIES

MT)J
wL / S
o =
1 Q free X
5|_|_l_\_/\/</_|BL ‘T |pinned £
2 2V

Fig. 2. STT-MRAM bit-cell

An STT-MRAM bit-cell comprises of an access transistor in
series with a Magnetic Tunneling Junction (MTJ) as shown in
Figure 2. An MT]J is a spintronic device consisting of a pinned
layer with a fixed magnetic orientation, and a free layer whose
magnetic orientation can be switched, separated by a tunneling
oxide. An MT]J behaves likes a programmable resistor whose
resistance is determined by the relative magnetic orientation
of the free and the pinned layers. There are two stable
magnetic orientations — parallel and anti-parallel — that lead
to two distinct resistances Rp and Ryp, respectively. The two
resistance states can encode 1-bit of information, e.g., we may
assume Rp to represent logic 1’ and R4p to represent logic *0’.
A read operation is performed by enabling the wordline (WL)
and applying a voltage (Vi) across the bit-line (BL) and
the source-line (SL). The resultant current (/p or I4p) flowing
through the bit-cell is compared against a global reference to
determine the value stored in the bit-cell. A write operation
is performed by passing a current greater than the critical
switching current of the MTJ. The direction of the write
current determines the value written into the cell, as shown
in Figure 2. Write operations in STT-MRAM are stochastic
in nature, and the write failure rate is determined by the
magnitude and duration of the write current. STT-MRAM also
suffers from read decision failures, where the values stored in
the bit-cells are incorrectly sensed under process variations,
and read disturb failures, where a read operation corrupts the
value stored in the bit-cell. In order to mitigate these failures,
a range of techniques from device and circuit optimizations to
error correcting codes [24]-[26] have been proposed.

IV. IN-MEMORY COMPUTING WITH SPINTRONICS

In this section, we describe three different designs — STT-
CiM, ROM-embedded MRAM and CRAM - that enable in-
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Fig. 3. STT-CiM Overview

memory computing with spintronics.

A. STT-MRAM based Compute-in-Memory (STT-CiM)

The key idea behind STT-CIM [12] is to enable multiple
wordlines simultaneously, and directly compute logic func-
tions of the enabled words. STT-CiM does not modify the
core array structure or the bit-cell. By suitably enhancing the
peripheral (address decoding, sensing and reference genera-
tion) circuitry, it is possible to perform Compute-in-memory
(CiM) operations on words stored in the STT-MRAM array.
We illustrate the concept behind STT-CiM using Figure 3(a).
As shown, CiM operations are performed by activating two
wordlines (WL; and WL;) simultaneously, and applying a read
voltage (V,.,q) at the bit-line (BL). The resultant current (Is;)
flowing through the source-line (SL) is a summation of the
currents flowing through the two bit-cells, and therefore is a
function of the bit-cells’ logic states, as shown in Figure 3(a).
STT-CiM proposes sensing mechanisms to distinguish be-
tween these values and thereby compute logic functions of
the stored words.

Figure 3(a) illustrates the sensing schemes utilized to realize
various bit-wise operations. In order to realize bit-wise OR and
NOR operations, (Is;) is connected to the positive terminal of
the sense amplifier and the reference current (/,.7—,,) is fed to
the negative input. Choosing I,.r_,, to be between I4p_sp and
Isp-p yields the OR/NOR operation at the positive/negative
output of the sense amplifier. Similarly, the bit-wise AND
sensing scheme is used for realizing bit-wise AND/NAND
operations. A bit-wise XOR operation is realized by combining
both the sensing schemes shown in Figure 3(a), and O4np and
Onor are fed to a CMOS NOR gate to obtain Oxpg. In other
WOI'dS, OXOR = OAND NOR 0N0R~

An ADD operation is realized in STT-CiM by leveraging
the ability to concurrently perform multiple bit-wise operations

using the sensing mechanisms described above. Figure 4
illustrates an ADD operation performed on the n™ bit of words
A and B that are stored in the same column of the memory
array. As shown, the sum (S ,) and carry (C,) of the n' stage
are computed using bit-wise operations A, XOR B, and A,
AND B,, and the carry-in from the previous stage (C,_p).
These bit-wise operations can be realized in-memory. Note
that the sensing schemes described above allow STT-CiM
to compute bitwise XOR and bitwise AND simultaneously,
thereby enabling ADD operations with only a single array
access.

il S, = (An XOR Bn) XORC, 4 bitwise (1perat|on
function |c,=([(A, XORB,)|AND C,_, ) OR|(A, AND B,)
In-Memory | Sn=Oxor XOR Cyy
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Fig. 4. STT-CiM ADD operation [12]

Next, we present the STT-CiM array design that leverages
the circuit-level techniques described above. Figure 3(b) shows
the STT-CiM array that is comprised of the standard STT-
MRAM array with modified peripherals. It has an additional
input (CiMType) to indicate the type of CiM operation (if
any) that needs to be performed during a memory access. The
CiM decoder uses CimType to generate the required control
signals to the memory array and peripheral circuits. Since
a CiM operation requires the activation of two wordlines,
STT-CiM has a modified row address decoder that takes two
addresses and can activate any two wordlines in the memory
array. The write peripheral circuits remain same as in STT-
MRAM, since write operations are unchanged. Figure 3(b)
shows the modified sensing and reference generation circuitry.



The sensing circuitry consists of 2 sense amplifiers, a NOR
gate, 3 multiplexers, and 3 additional logic gates to enable in-
memory ADD operations. The reference generation circuitry
includes two reference stacks, one for each of the two sense
amplifiers. Each stack comprises of three hard-wired bit-cells
programmed to offer resistances Rp, Rap, and Rgpp(Where Rp
> Rrer > Rap). As illustrated in Figure 3(b), the CiM decoder
generates the control signals to the sensing and reference
generation circuitry based on the CiMType to realize various
compute-in-memory operations.
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Fig. 5. STT-CiM: System-Level Integration

In order to further improve the efficiency of in-memory
computing for data parallel workloads, STT-CiM exploits the
high internal bandwidth of memory to perform CiM operations
on all elements of a vector concurrently. However, the output
of CiM operations performed on vectors is also a vector,
which cannot be sent back to the processor in a single
access. To resolve this, STT-CiM leverages the observation that
vector operations are often followed by reduction operations.
Therefore, STT-CiM contains a Reduce Unit, which is used to
perform reductions on the computed vector to produce a scalar
result, and the resultant scalar is sent back to the processor,
as shown in Figure 5.

STT-CiM can be easily integrated in a programmable pro-
cessor based system with enhancements to the processor’s
instruction-set architecture (ISA) and on-chip bus. Moreover,
it is a general design that can be deployed within both on-
chip (scratchpad or cache) memories and off-chip memory, as
shown in Figure 5.

B. ROM-Embedded MRAM

ROM-Embedded MRAM (R-MRAM) [13] takes a different
approach to realize in-memory computing with STT-MRAM.

It proposes a simple modification to STT-MRAM bit-cells
to equip them with the ability to concurrently store both 1-
bit of read-only and 1-bit of programmable (read/write) data.
Specifically, it introduces an additional bit-line in each bit-cell
and selectively connects the MTJ to one of the two bit-lines
at design time. This choice can be used to store 1-bit of read-
only data. The programmable bit is still stored in the MTJ.
Figure 6 illustrates the R-MRAM bit-cell that has two bit-
lines (BLO and BL1) in contrast to a standard STT-MRAM
bit-cell (described in section III). As shown, during design
time, the read-only data is stored in the bit-cells by selectively
masking the VIA below the bit-lines, thereby connecting the
MT]J to the first or second bit-line. A bit-cell with its MTJ
connected to BLO stores the read-only logic state ’0’, whereas
a bit-cell whose MT]J is connected to BLI represents read-
only logic *1’. The R-MRAM’s ability to store additional read-
only data in every bit-cell presents possibilities of computing
transcendental functions (sine, logarithm, sigmoidal, gamma
correction, efc.) in-memory by implementing them as look-
up tables stored in the read-only memory (ROM) bits. We
next describe the peripheral circuit enhancements and sensing
schemes for R-MRAM that allow seamless access to both
read-only and programmable data.
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Fig. 6. R-MRAM bit-cell design [13]
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Fig. 7. R-MRAM peripheral design [13]

Figure 7 illustrates the read peripheral circuitry of R-
MRAM, which is comprised of two sense amplifiers (SAQ and
SAl), a pre-charge circuit, and two current sources (Irgapo
and Iggap1). The positive terminals of the sense amplifiers
SAO and SAI1 are connected to the bit-lines BLO and BLI,
respectively, and their negative inputs are connected to the
reference voltages (Vrgro and Vggpr). We first describe the
regular mode operation in which the peripherals are configured
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Fig. 8. (a) CRAM cell in (default) memory mode. (b) 2-input CRAM gate in logic mode. An implementation of (c) 2-input NAND, using MTJs.

to read the programmable bit stored in the MTJ. In this mode,
the bit-lines (BLO and BL1) are pre-charged to a reference
voltage (Vger = Vrero = Vger1), followed by the activation
of a wordline and the current sources (Iggapo and Irgapi). The
resultant current flowing through the bit-cell originates from
either Irpapo or Irpap1 (as only one bit-line is connected) and
goes through the corresponding bit-line (BLO or BL1) to the
source-line (SL). The final voltage of the connected bit-line
(BLO or BL1) is dependent on the logic state of the MTJ, and
can take a value less than Vggp for Rp or greater than Vgpp
for R4p. Consequently, causing the associated sense amplifier
output (Voyro or Voyri) to read a value complementary to
the MTJ’s logic state. The bit-line (BLO or BL1) that is not
connected to the activated bit-cell remains coupled only to the
current source, and thereby witnesses a surge in its voltage due
to the charging of its capacitance, causing the coupled sense
amplifier’s output (Voyro or Voyr:) to be logic ’1’. Performing
a NAND operation on the sense amplifiers’ outputs yields the
stored logic value. In other words, the programmable bit is
evaluated as Voyro NAND Vouri.

Next, we describe the ROM-mode read operation in which
the peripherals are configured to read the stored read-only
memory (ROM) bits. In this mode, bit-lines are pre-charged
to OV followed by activation of the wordline and the current
sources. The bit-line (BLO or BL1) that is not connected to the
source-line (SL) causes the coupled sense amplifier output to
be logic ’1°, as described above. In contrast, the connected
bit-line causes the associated sense amplifier output to be
logic ’0’ due to the pre-charging of the bit-lines to OV. Thus,
SAOQ senses the stored read-only data, whereas SA1 yields its
complementary value.

C. Computational RAM (CRAM)

The Computational RAM (CRAM) platform [10] uses a
2T-1MT]J bit cell, adding another transistor to the traditional
IT-IMTJ STT-MRAM cell (Fig. 8(a)). The array can either
function as a standard STT-MRAM memory, or can allow in
situ computation of logic functions within the memory, without
requiring data to be taken to the periphery. In memory mode,
WLM is logic high, and the cell behaves like a 1T-1R MRAM
cell, using BL and BLB for read/write operations.

We illustrate logic mode by showing the operation of a two-
input CRAM gate in Fig. 8(b), where the first two cells contain
the input data and the third receives the output. For these cells,
BLL is enabled, which connects them to the shared logic line

(LL), and a voltage pulse is applied to BL2 while BL[0:1]
are grounded. The three MTJs effectively create the circuit in
Fig. 8(c) [27], communicating through LL. The states of the
input MTJs and the preset state of the output MTJ determine
the current through the output MTJ. If this current is large
enough, the output MTJ switches; otherwise it retains its preset
state.

By altering the configuration of inputs, the supply voltage,
and the preset state, a variety of logic functions (NOT,
BUFFER, (N)AND, (N)OR, MAJ, MAJ) can be realized.
Since several types of universal gates can be realized, any
logic function can be built in the CRAM. It is easy to use
these functions to construct adders, multipliers, dot product
computations, etc., in the CRAM.

The resilience of CRAM computations depends on the
difference in resistance between the two states, i.e., on TMR
= (R4p — Rp)/Rp; generally speaking, higher TMR values are
better. Current mainstream technologies show TMR values of
about 100-150%, although values of over 600% have been
shown in experiments, and roadmaps predict a technology path
towards TMR values of over 1000% [28].

Thus, CRAM supports true in-memory computing by recon-
figuring cells as logic gates within the memory array. Each
MT]J can serve as an input or as an output of a logic gate, as
the computational demands of the workload evolve over time.
Further, because all cells in the array are identical, the order
of applied voltage pulses (as opposed to the physical layout)
determines inputs and outputs. This allows great flexibility in
reconfiguring the CRAM array as memory or as various types
of logic gates. The combination of logic reconfigurability and
the movement of data during computation raises interesting
problems in the domain of data placement and computation
scheduling on the CRAM.

Preliminary analysis [29] indicates that CRAM can outper-
form CMOS solutions in energy efficiency with competitive
throughput: CRAM can deliver higher throughput at iso-
energy, or lower energy consumption at iso-throughput. The
speedup of CRAM arises from several factors. First, each row
can perform computations independently, allowing large levels
of parallelism and making CRAM an ideal candidate for data-
intensive emerging applications. Second, logic computations
are performed with subarrays of the memory and incur low
communication latencies. In contrast, approaches that take data
to the edge of memory incur larger communication latencies



as well as serial bottlenecks.

V. CoNcLUSION

In-memory computing is a promising approach to addressing
the processor-memory bottleneck. In this paper, we presented
an overview of various approaches to in-memory computing
with spintronics. We discussed three designs that leverage
the unique attributes of spintronics to realize a range of
logic, arithmetic, vector and transcendental functions in STT-
MRAM. While the results from these studies are promising,
several challenges remain to be overcome. Most previous work
has focused on the design of the circuit building blocks,
leaving open architectural questions such as how memories
with computational capabilities are best integrated into a com-
puting system. For example, at what level(s) of the memory
hierarchy should in-memory computation be used? Ensuring
sufficient sensing margins for conventional read and write
operations in STT-MRAM under variations is challenging,
and this challenge is further exacerbated when sensing a
combination of values from multiple bit-cells. How can we
compute in-memory reliably under process variations? Finally,
what programming abstractions and software tools need to
be developed so that in-memory computing can be used
with minimal programmer effort? These challenges need to
be addressed in order to realize the potential of in-memory
computing.
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