MAVIREC: ML-Aided Vectored IR-Drop
Estimation and Classification

Vidya A. Chhabria', Yanging Zhang?, Haoxing Ren?, Ben Keller?, Brucek Khailany?, and Sachin S. Sapatnekar’
1University of Minnesota; 2NVIDIA Corporation

Abstract—Vectored IR drop analysis is a critical step in chip signoff
that checks the power integrity of an on-chip power delivery network.
Due to the prohibitive runtimes of dynamic IR drop analysis, the large
number of test patterns must be whittled down to a small subset of worst-
case IR vectors. Unlike the traditional slow heuristic method that select a
few vectors with incomplete coverage, MAVIREC uses machine learning
techniques—3D convolutions and regression-like layers—for accurately
recommending a larger subset of test patterns that exercise worst-case
scenarios. In under 30 minutes, MAVIREC profiles 100K-cycle vectors
and provides better coverage than a state-of-the-art industrial flow.
Further, MAVIREC’s IR drop predictor shows 10X speedup with under
4mV RMSE relative to an industrial flow.

I. INTRODUCTION

IR drop analysis estimates the deviation from the ideal supply voltage
to meet IR drop constraints across all corners and scenarios. Today,
estimating voltage at each node amounts to solving systems of linear
equations with billions of variables, with runtimes of several hours on
industrial-scale designs even for static analysis. To model switching
patterns under real workloads, designers perform dynamic IR drop
simulation for several vectors, each spanning a few hundred thousand
cycles. Therefore, IR drop analysis in industry is performed for a
subset of switching patterns. This subset contains a small number of
worst-case slices of all vectors, chosen by a vector profiling flow,
where a slice corresponds to continuous multicycle time windows of
a vector. Fig. 1 (left) shows the industrial flow for vectored IR drop
estimation. The blue box performs vector profiling by scanning the
entire 100k-cycle vector and recommends a small number of short
(up to 20 cycles) worst-case-average-power slices (yellow box). The
slices are then sent to the rail analysis engine (orange) to estimate
IR drop for each slice. However, such vector profilers are (1) Slow:
extracting the top three slices of a 3.2 million instance design for a
vector of 5000 slices takes two hours; (2) Approximate: the heuristics
inaccurately sort slices in order of their average power [1] where
a low average power does not necessarily imply a low IR drop;
(3) Computationally limited: the number of recommended slices is
limited by the computational bottleneck of rail analysis, and often
do not cover all IR-critical regions. Thus, there is a need for a fast
and accurate IR drop estimator to profile large sets of vectors and
accurately recommend worst-case slices of the full vector.

Prior machine learning (ML)-based approaches [2]-[4] address IR
drop analysis runtime, but none are suited for vectored dynamic IR
drop analysis. While dynamic vectorless full-chip IR drop analysis is
addressed in [3], its inference is slow — our analysis estimates weeks
of runtime for full 100k-cycle vector profiling using this. A U-Net
based solution in [4] provides faster ML inference than [3] but is
targeted at static IR drop. Moreover, [3], [4] provide coarse-grained
tile-level IR drops, rather than fine-grained instance-level IR drops,
and the single IR value per tile limits transferability (reuse) of the
model across designs (Section II-B).

We propose MAVIREC (Fig. 1 (right)): a fast, accurate, and
novel vector profiling system that recommends worst-case IR drop
switching patterns with high coverage of IR hot spots, using a
fast and accurate under-the-hood IR estimator. The estimator uses
a novel ML architecture based on U-Nets [5] with key changes:
(1) It introduces 3D convolutional layers in the model that capture the

Industrial Flow

N\ Vector-basedIR\‘
drop analysis

Proposed MAVIREC Flow
Vector-based IR drop analysis

Standard tool design files
VCD: 100K-cycle || —
switching activity

14 Verilog: Gate-level netlist

[4 DEF: Layout information M
LEF: Technology-
specific information
LIB: NLDM timing

and power libraries J,
Rail analysis SPEF: Parasitics for Rail analysis
Power analysis] ([power and IR analysis MAVIREC: | Industrial
Hp Fast IR dro
I

= — - flow: to|
IR drop analysis) || TWF (timing window on all slices | ranked sibes
file): rise/fall times

IR drop reports IR drop reports

Fig. 1: An industrial flow (left) vs. the MAVIREC flow (right).

Power analysis + MAVIREC
IR drop

Three to five
slices of the vector

E3
Ranked hundreds of slices
of the vector

T

Feature extraction

r

sparse temporal switching activities, and (2) It employs a regression-
like output layer that enables IR-drop prediction at instance-level
granularity. In addition, the use of direct instance-level features as a
part of this regression equation enhances transferability and provides
model interpretability (see Section 1I-B). MAVIREC features:

« A novel tailored U-Net-based ML model for accurate dynamic IR
drop estimation, achieving 10x speedup over industrial flows, at the
per-instance (i.e., per-logic-gate) granularity, using 3D convolutional
layers for capturing switching activity.

« A novel recommender system that uses fast ML inference to select
hundreds of slices compared to conventional flows that select 3-5.
e An accurate and thorough system for profiling long vectors (=~
100k-cycles), maximizing regional coverage, on industrial scale de-
signs in 30 minutes (4x speedup vs. industrial flow).

This paper highlights a brief overview of MAVIREC with more
details in [6].

II. MAVIREC FOR VECTORED DYNAMIC IR ESTIMATION

MAVIREC’s ML inference scheme for rail analysis in Fig. 1 (right), is
key for vector profiling. The scheme first performs feature extraction
and then uses a trained model for IR drop estimation.

A. Feature extraction

The MAVIREC ML model uses two types of features, differentiated
by the method in which they are represented:

« Instance-level power and effective distance to via stack

« Spatial and temporal full-chip tile-based power maps, and spatial

time-invariant resistance maps

Table I lists the features used in our ML model, encapsulating power
information, the local PDN topology, and switching activity. The
feature generation is a two-part process of extracting instance-level
features and generating 2D spatial and temporal feature maps.
Instance-level feature generation We run three standard tools to
extract instance-level information from the design:

1) a power analysis tool to generate a per-instance switching (ps),
internal (p;), and leakage power (p;) report.

2) a DEF reader to extract (a) instance locations (b) effective
distance of an instance to power rail via stacks in the im-
mediate (5pum) neighborhood. The effective distance metric is:
r~'=d;' + ...+ d," where d; is distance from the instance
of the i*" of V via stacks.

3) a tool that extracts the times when instances toggle, from the
VCD file (industry-standard format) for each slice.

TABLE I: MAVIREC’s features for dynamic IR prediction where the
lowercase symbols are instance-level and uppercase are at the tile-level.

‘ List of all features |

Internal power: p;, P;

Leakage power: p;, P,
Switching power: ps, Ps

Toggle rate scaled power: p,, P,

Overlap power: por, Por
Total power: prot, Prot
Effective distance: r, R
Toggle power at each time step: p;, P;

‘ Ground truth training labels |

‘ Instance-level IR drop: /R;, NA (heat map only) ‘

Encoder network Decoder network

Coefficient| 3D conv + ReLU
B maps |3 max pool

2D conv + ReLU

2D upsample

+ concatenate

X Sum across time

5

IR; = B1pi + B2Ds + B3Di + Baby + BsPeoc + BePor + 7 WML

Fig. 2: MAVIREC: 3D convolution and regression model based U-Net
architecture for dynamic IR drop prediction.

Power maps

Skip connections

/'

In addition to p;, ps, pi, and r, there are three other instance-level
derived features. The toggle rate scaled and total power are given by
pr = p1 + 7i(ps + pi) and pror = p1 + ps + ps respectively, where
T; 1S the average toggle rate of the instance in the specified slice.
The overlap power p,; sums up the p, for neighboring instances that
share a common timing window.

Generation of 2D spatial and temporal maps as features The map
creation step performs a spatial and temporal decomposition of the
per-instance features similar to [3]. For the spatial-tile based features,
we associate the location of each instance with its corresponding
power/eftective distance attributes to create 2D distributions of these
attributes at a fixed granularity (tile size). We choose a tile size of
Wi = 2.5um x Ly = 2.5um; a design of size W, x L. corresponds
to an “image” of W(= W./w:) x L(= L./l;) pixels. For each
instance-level feature in Table I, its tile-based counterpart adds per
instance power-related features, and takes the maximum effective
distance over all instances, in the tile.

For dynamic IR drop analysis, we consider p; (the power of an
instance at each time step) which is generated by dividing the n-cycle
time window into n X ¢ time steps, where n is usually predetermined
by the designer as the window size of interest (we use n = 20)
and ¢ is a hyperparamter to be tuned. It was observed that ¢ = 5
provided the best results with MAVIREC. The power of an instance
at time step j is given by: p:(j) = 2]1.101 p1 + b (pi + ps) where
the Boolean variable b; is 1 only if the instance toggles at time step
j. Thus, we create time-decomposed power maps at each time step
using the toggle information and timing windows.

B. MAVIREC architecture

Fig. 2 shows the structure of MAVIREC for vectored dynamic IR
drop estimation, with layer descriptions provided in the legend. It
consists of two subnetworks for (i) encoding (downsampling) and (ii)
decoding (upsampling), with skip connections between the networks.
This architecture is based on fully convolutional (no fully connected
layers) U-Net models [5] which makes them fast and input-image-
size independent [4] enabling capture of local and global spatial
neighborhood features.

The work in [4] uses U-Nets for estimating static IR drop.
However, for reasons listed in Section I, this model is not suitable
for vectored dynamic IR drop analysis. In addition, typical of real
workloads, cells switch at only a few spatial and temporal locations.
This makes the temporal power map P; sparse and difficult to
capture in the zero-dominant data. As shown in Section IV-A, merely
accounting for these sparse temporal features is not sufficient, and

the ML architecture must aid to capture these sparse local changes
accurately. There are two key differences from the U-Net in [4] that
are crucial for overcoming its limitations:
o use of 3D convolutional layers (green layers) in the encoding path
captures temporal simultaneous switching activity.
e use of a regression-like layer at the end of the decoder that
incorporates instance-level input features and the instance-level IR
drop IR; (equation in Fig. 2) using 3;, the coefficient matrix predicted
by the U-Net like structure.
3D convolutional layer in the encoder Unlike a 2D convolutional
layer, a 3D convolutional layer restricts the number of channels to the
specified filter size in the channel dimension, thus considering only a
small local window of channels. Due to zero-dominance in the data,
a 2D convolutional layer model fails to capture key non-zero toggle
activity regions and time steps. Intuitively, a small local window
of channels which a 3D convolutional layer considers would better
capture simultaneous and sparsely-distributed switching activity(see
IV-A). Therefore, MAVIREC uses a 3 x3x 3 filtered 3D convolutional
layer (green layer in Fig. 2) in the encoding path instead of a regular
3 x 3 2D convolutional layer as in U-Net. MAVIREC has n x t 4+ 7
tile-based channels (Table I):
e n X t temporal power maps (F;) feeding the encoder network
o 7 tile-based spatial features (P;, P, Ps, Pr, Poi, Piot, R)
where n X t represents the number of time steps (Sec. II-A).
MAVIREC consists of three pairs of 3D convolutional layers and
max pool layers in the encoder network and a symmetric decoder
network. Since the decoding path uses 2D convolutions, the interface
between the 3D embedding in the encoder and the 2D embedding in
the decoder sums up the embedding along the temporal dimension
(dark blue boxes in Fig. 2) through concatenation/skip connections.
Regression-like layer in the decoder For IR drop prediction at a
per-instance level, MAVIREC leverages a regression-like layer at the
end of the decoder path. The predicted coefficients are based on the
n X t 4+ 7 spatial and temporal tile-based channels as input. The
coefficients (3;) predicted for every tile by the U-Net-like structure
is multiplied with the per-instance feature values defined in Sec. II-A.
This architecture provides three key advantages over [3], [4]:
1) Improved transferability compared to prior art, as the model uses
both instance-level and tile-level features to predict IR drop per-
instance. The instance-based features capture fine-grained variations
that is otherwise lost due to the averaging nature of U-Net convolu-
tions. Instead of learning the IR drop values directly as in [3], [4], the
U-Net-like structure learns the relationship (3;) between the features
and the IR drop, which is universal across designs.
2) Improved instance-level IR drop predictability compared to prior
art, which is useful for a variety of applications such as IR-aware
STA and instance-based IR drop mitigation.
3) Model interpretability as the predicted coefficients provide infor-
mation on the weights associated with each feature. The coefficients
correspond to feature sensitivity, and allow a designer to assess root
causes of an IR drop violation.
A trained MAVIREC model is reusable, without the need for retrain-
ing when faced with new designs/vectors for a given technology.
Although the prediction is on an instance level granularity, this can
be modelled as an element-wise matrix multiplication for scalability.

III. MAVIREC FOR VECTOR PROFILING

Real vector workloads can typically have hundred of thousands of
cycles, which corresponds to ~5000 slices, making it near-impossible
to run rail analysis on all slices due to long runtimes. Using
MAVIREC as a fast IR drop estimator is not a viable solution either
as each inference involves extracting temporal features at recurring
runtime costs for all slices. This calls for techniques to select a subset
(70-200) of slices that represent the design and worst-case IR drop

= ~ ~
Candidate| sortand prune slices [Sort and prune based Example
slice gen. | based on slice power on power density Full vector: 5K
A < slices
Scoring | + MAVIREC to predict |R-drop per region {
slices « Score each slice per-region using worst-case IR 200 slices
)
R . « Rank each slice for every region based on score Hund#eds of
anking ’ ! . g
A slices + Top N, recommended slices can be run in an unique slice
y industrial flow for validation) candidates

Fig. 3: MAVIREC vector profiling which uses ML inference to generate
hundreds of ranked candidates.

vector. In contrast, industrial flows are limited to 3-5 slices due to
IR analysis runtimes.

Fig. 3 and Algorithm 1 brief MAVIREC’s vector profiling flow.
Inspired by classical ML recommender system [7] nomenclature, our
method (Fig. 3) consists of (i) candidate generation (two stages), (ii)
scoring, and (iii) ranking. The two stages of candidate generation
prune out slices based on average power and regional-power respec-
tively. The remaining slices are scored based on worst-case IR drop
from ML inference and ranked to maximize regional coverage.
Algorithm 1 MAVIREC’s algorithm for vector profiling

Input: Per-instance toggle count T.; p;, ps, pr; Number slices to select N, Ny, No;

Region size w X I; Chip dimensions W, X L.; List of candidate slices in vector C'n;

Output: Slices with worst IR drop Cn,; IRchip, N,

LW, = % and L, = %

2: //Candidate slice generation stage 1: sort and eliminate using average slice power
: for each slice ¢ in C' do

—_

Psiicelc] = Zvinsmnccs {PL + T;C[)C]

3
4
5: end for

6: C'n, = Top N, candidate slices with highest value in Pyy;ce
7

8

9

(ps + Pi)]

. // Candidate slice generation stage 2: sort and eliminate using average region power
: for each region r; in W,. X L,. do
for each candidate slice ¢ in C'y, do

105 Prlrdld = Sumecr, |7+ 5 (0 + 9]

11: end for

12: Cn,.[ri] = Top N, candidate slices with highest value in Pg[r;]
13: end for

14: Cn, = Unique candidates from C;,.

15: // Candidate scoring and ranking starts here

16: for cach slice ¢ in Cy, do

17: F'[c] = Feature_extraction(c); IRcpip = ML _inference(F'[c])

18: for each region r; in W,. X L, do

19: IRscore|ri][c] = max(IRcpip[c]) in r;

20: end for

21: end for

22: n=0

23: while n < N, do

24 ri, Cn, [n] = Top N, unique candidates, regions with highest IR;core values
25: IRchip, Ny [n] = IRscore[x][Cn,[n]] ¥V 2 € W, X L,

26: n++

27: end while

Candidate generation: This step consists of two stages (Lines 3—14).

First stage In each vector, we observe thousands of slices with near-
zero switching activity. Therefore, we prune the slices based on
their average power (lines 3—6) eliminating obviously non IR-critical
slices. The pruned and sorted list, Cn,, has hundreds (> 3-5 in
industrial flows) of candidates for the next stage.

Second stage Since the IR drop of an instance depends on its switch-
ing activity and neighborhood, power per region is vital. Therefore,
we calculate the power per region (lines 8§-14) and rank the Cly,
candidates in each region. Next, we extract the top /N, from each
region resulting in a list, Cn,., of N, x W, x L, candidate slices
and Cy, is a list of N, unique candidates from Cl;,..

Candidate slice scoring and ranking For each candidate in C'y, we
generate all the features (Table I) and use MAVIREC ML inference to
generate a full-chip IR drop (line 17). The worst-case IR drop across
the chip is used to score each slice. This results in N. x W, X L,
score values in IR core(line 19). We then rank each candidate based
on the score and record its corresponding region (line 24). Only those
unique N, candidates that correspond to the worst-case IR drop of
a previously uncovered region are stored in Cy,.

TABLE II: Summary of designs and vectors used in MAVIREC exper-
iments with a tile size of 2.5um x 2.5um.

Design #inst. T1 T2 T3

(mill.) %IR Toggle %IR Toggle %IR Toggle

-critical -critical -critical
. rate . rate . rate

regions regions regions
D1 3.26 13.66 0.054 16.04 0.062 8.98 0.041
D2 2.19 4.60 0.043 4.24 0.040 3.59 0.038
D3 2.18 4.28 0.040 431 0.038 3.88 0.038
D4 2.43 16.88 0.085 10.68 0.087 13.00 0.089

TABLE III: Performance of MAVIREC as an IR drop predictor. RMSE
and MAE at instance-level granularity and % accuracy as a binary
classifier at region-based granularity when compared to an industrial flow.

RMSE, MAE | % Accuracy RMSE,MAE | % Accuracy
(mV) 1x1, 6x6 H (mV) 1x1, 6x6

T1 4.44,33 | 89.09,84.98 || D3 | T1 3.02,26.8 | 96.26, 93.45

D1 | T2 4.61,252 | 8549, 83.72 T2 299,224 | 96.12,92.89
T3 3.91,30.2 | 92.93, 88.93 T3 2.93,35.1 | 95.96, 92.56

T1 31,254 | 95.68,92.73 || D4 | T1 3.87,24.1 89.43, 91.07

D2 | T2 3.11, 20.6 | 95.86, 92.77 T2 3.38,24.7 | 90.27, 93.62
T3 2.99, 21.8 | 96.08, 92.19 T3 3.31,24.5 | 90.25, 94.55

For each region, the slices are ranked in decreasing order of the
score in the region. The unique slice from each region with the highest
score is selected such that regional coverage is maximized. We also
report the IR drop maps, IRchip, of Cn, candidate list (line 25).

IV. RESULTS AND DISCUSSIONS

In our experiments, we use four industrial designs, D1-D4, imple-
mented in a sub-10nm FinFET technology and three multi-cycle
vectors, T1-T3, per design summarized in Table II. The data available
to us were taped out designs with low IR drop values, requiring use of
an 8mV threshold to classify IR-critical regions. The model is trained
using golden per-instance IR drop labels obtained from an industrial
flow using commercial tools. We evaluate MAVIREC with leave one
out cross validation. MAVIREC is implemented within a PyTorch 1.6
framework on an 8-core CPU machine with 256GB RAM and one
NVIDIA Tesla VI00GPU with 32GB RAM. An ADAM optimizer
with an L regularizer is used for training. The model takes 9 hours
to train and is a one-time cost per technology as it is transferable
across both designs and vectors.

A. MAVIREC for IR drop prediction and classification

MAVIREC vs. industrial flow for IR drop We compare MAVIREC-
predicted IR drop against ground truth IR drop from an industrial
flow. Like an industrial flow, MAVIREC predicts an IR drop per-
instance. Table III shows the RMSE and max error for all the designs
and tests. The RMSE is very small (<4mV) and within reasonable
limits for instance-level applications such as cell-level IR drop
mitigation and IR-aware STA. The table also depicts MAVIREC’s
performance as an IR drop hotspot classifier on a per-tile basis, i.e.,
if the average IR drop of all instances in that tile is greater than
the threshold. We consider two granularities, a 1 x 1 tile (2.5um X
2.5pum) and 6 x 6 tiles (15um x 15um), and report the accuracy. At
6 x 6 granularity we have an F1 score of 0.78, despite the heavily
imbalanced dataset (<10%). This accuracy outperforms prior art and
is sufficient for vector profiling (Section IV).

For a visual comparison, we convert the instance-based IR; to
tile-based. Fig. 4 shows the predicted and ground truth IR maps
for a section of each design. The MAVIREC-predicted IR drop map
captures all major hotspots relative to the ground truth.

MAVIREC vs. ML-based IR drop classifiers As a comparison
to prior art, we implemented a maximum CNN structure similar to
PowerNet [3]. To ensure a fair comparison, we make the following
changes: (i) As the focus of PowerNet was vectorless IR drop
estimation and does not support the use of multi-cycle switching
activity, to adapt PowerNet, we take the average toggle rate from
the vectors. (ii) PowerNet predicts IR drop on a per-tile (1um X

Industrial flow MAVIREC predicted
IR drop map IR drop map

Industrial flow
IR drop map

MAVIREC predicted
IR drop map

Normalized IR drop

Fig. 4: MAVIREC-predicted IR maps vs industrial flow IR maps.

= =
=] =]
o o=
o o
Z Z
o | 4 3]
g = PowerNet, AUC=0.440 g =——PowerNet, AUC=0.795
A ||==Vanilla U-Net, AuC=0.584 a ——Vanilla U-Net, AUC=0.910
~—Max U-Net, AUC=0.538 ~—Max U-Net, AUC=0.885
——MAVIREC, AUC=0.672 ——MAVIREC, AUC=0.931
00 0‘2 04 0‘6 08 1 0 02 04 06 08 1
Recall Recall
(a) (b)

Fig. 5: PR curves comparing MAVIREC against other ML models in
predicting the minority class for tile sizes of (a) 1x1 and (b) 6x6 tiles.

1pm) basis, while MAVIREC is on a per-instance basis. Therefore,
MAVIREC generates a region-based IR drop, like PowerNet, by
taking the mean of the predicted-IR drop of all instances in the tile.

We compare MAVIREC against two other ML models: (i) a vanilla
U-Net, identical to MAVIREC except that it uses 2D convolutional
layers, and (ii) a max U-Net, identical to PowerNet except that the
CNN is replaced with a 2D convolutional U-Net with an output
regression layer (Section II). The vanilla U-Net processes all time
steps simultaneously while the max U-Net processes each time step
separately. The max U-Net sets the final IR drop to the maximum IR
drop for each instance across all time-steps.

A high area under curve (AUC) of the precision-recall (PR) curve
demonstrates the ability of the classifier to predict the minority
class, in a highly imbalanced dataset. Fig. 5 shows that MAVIREC
outperforms both PowerNet and other ML models in predicting the
IR-critical class for 1 x 1 (Fig. 5(a)) and 6 x 6 (Fig. 5(b)) tile
granularities. The 3D convolutional layers in MAVIREC capture the
sparse switching activity, but the vanilla and Max U-Net fail to do
so due to their 2D convolutional nature.

TABLE IV: Runtime comparison of industrial flow and models.

Industrial Max | Vanilla
Task flow PowerNet U-Net | U-Net MAVIREC
Feature extraction 3 hours 17 mins
ML inference S5mins | 72s [Is | 3s

Table IV compares runtimes of MAVIREC vs. an industrial flow,
PowerNet, MAVIREC, and other ML models on D1. With a runtime
of 18 minutes, MAVIREC has a 10x speedup over a standard rail
analysis. Feature extraction dominates the runtime with MAVIREC
ML inference < 1%. MAVIREC is 2x faster than max-U-Net and
100x faster than PowerNet in pure inference. The vanilla U-Net is
faster than MAVIREC but is sub-optimal (Fig. 5).

B. MAVIREC for vector profiling

Quality of MAVIREC-recommended vectors The input vectors
to our profiling algorithm (Section III) have about 100,000 clock
cycles ~ 5000 slices. For N, = 200, N, = 5, N, = 3, and
wx! = 15pumx15um (6 X6 tiles), the algorithm generates N. ~ 100
candidate slices per vector. Fig. 6 shows the coverage comparison
between the industrial flow-generated top-3 candidate slices and 168
MAVIREC-recommended slices on D2. Fig. 6 (leftmost) compares
the regional coverage. The middle picture shows the part of the design
with the largest cluster of industrial flow-missed IR-critical spots

Red: Potential missed slices and After validating slice 53
uncovered region by industrial flow and 156 in industrial flow

VY=< \\AVIREC: MAVIREC: Ny Vahdated
Not IR- critical LRSIl IR-critical 9
Industrial flow: QeNSEEUR{IYA G IEEEIRI A

Not IR- critical [JIREEFIIE] Not IR critical

Fig. 6: Regional coverage comparison of MAVIREC’s 168 candidate
slices against 3 slices from industrial flow on design D2.

TABLE V: MAVIREC vs. industrial flow recommended slices.

. Industrial flow || MAVIREC .
Design, . . Comparison
profiling profiling
Test #Regions % Regions | #Unique
#IR- #IR- 8 % Regions g b
" " IR- uncovered | slice IDs
N.| critical | N, | critical .. uncovered | . . .
. . critical industrial | of missed
regions regions | . MAVIREC .
in both flow regions
DI, T1|| 3 1163]133 1531 1093 1.7 10.8 30
D2, T1]| 3 422|168 550 383 1.6 6.9 36
D3, T1 3 369 | 166 553 329 1.7 9.4 26
D4, T1|[] 3 682] 73 786 672 0.4 4.5 11

(set of red regions). The numbers on the red regions indicate slice
IDs (a numeric ID number for identifying each unique slice of the
testbench) that resulted in those regions being reported as IR critical
by MAVIREC. These are a set of missed slices and we validate slice
IDs 53 and 156 using an industrial flow. The rightmost map shows
black-outlined and white-dashed red regions which were validated
to be IR-critical. We limit our validation to missed slices with the
largest uncovered region cluster given large industrial flow runtimes.
Table V lists the number of candidates, V., generated for each
design and T1. For each with a region size of 6 X 6 tiles, we have
70-170 candidate slices generated while a industrial flow generated
three slices. MAVIREC provides a large coverage by reporting an
average of ~ 5% of the regions as potentially uncovered by the
industrial flow and has less than 1.7% false negatives.
MAVIREC vector profiling runtimes MAVIREC is able to provide
high-quality recommendations for a 100K-cycle vector in 30 minutes
which corresponds to a 4x speedup vs. the industrial flow.

V. CONCLUSION

We propose MAVIREC: a vector profiling system that provides
recommendations for worst-case IR drop switching patterns using
an ML model for IR drop prediction. While this work focused on
vectored dynamic IR drop analysis, the ML inference engine can be
adopted for both vectorless dynamic and static IR drop analysis.

REFERENCES

[1] N. Ahmed, M. Tehranipoor, and V. Jayaram, “Transition delay fault test
pattern generation considering supply voltage noise in a SOC design,” in
Proc. DAC, 2007.

[2] Y.-C. Fang et al., “Machine-learning-based dynamic IR drop prediction
for ECO,” in Proc. ICCAD, 2018.

[3] Z. Xie et al., “PowerNet: Transferable dynamic IR drop estimation via
maximum convolutional neural network,” in Proc. ASP-DAC, 2020.

[4] V. A. Chhabria et al., “Thermal and IR drop analysis using convolutional
encoder-decoder networks,” in Proc. ASP-DAC, 2021.

[5] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks
for biomedical image segmentation,” in Proc. Int. Conf. Med. Image
Comput. Comput.-Assisted Intervention, 2015.

[6] V. A. Chhabria et al., “MAVIREC: ML-aided vectored IR-drop estimation
and classification,” arXiv:2012.10597 [cs.ar], 2020.

[7] P. Covington, J. Adams, and E. Sargin, “Deep neural networks for
YouTube recommendations,” in Proc. ACM Conf. Recomm. Sys., 2016.

