
A Timing-constrained Algorithm for Simultaneous
Global Routing of Multiple Nets

�

Jiang Hu Sachin S. Sapatnekar

Department of ECE, University of Minnesota, Minneapolis, MN 55455, USA

ABSTRACT

In this paper, we propose a new approach for VLSI intercon-
nect global routing that can optimize both congestion and delay,
which are often competing objectives. Our approach provides a
general framework that may use any single-net routing algorithm
and any delay model in global routing. It is based on the obser-
vation that there are several routing topology flexibilities under
timing constraints. These flexibilities are exploited for congestion
reduction through a network flow based hierarchical bisection and
assignment process. Experimental results on benchmark circuits
are quite promising.

1. INTRODUCTION

As interconnect is becoming one of the dominant factors affect-
ing VLSI performance in deep submicron era, the requirements on
the quality of interconnect routing are becoming stricter, and the
routing problem is consequently growing more difficult to solve.
In global routing, a given set of global nets are routed coarsely, in
an area that is conceptually divided into small regions called rout-
ing cells. For each net, a routing tree is specified only in terms of
the cells through which it passes. The number of allowable routes
across a boundary between two neighboring cells is limited. One
fundamental goal of global routing is to route all the nets with-
out overflow, i.e., the number of wires across each boundary does
not exceed its supply. Various works have been proposed, for ex-
ample, sequential approach [1], rip-up-and-reroute technique [2],
multicommodity flow based algorithm [3] and hierarchical meth-
ods [4, 5].

When interconnect becomes a performance bottleneck in deep
submicron technology, merely minimizing congestion is not ad-
equate. In later works [6, 7, 8], interconnect delays are explicitly
considered during global routing. In [6], each net is initially routed
in SERT-C [9], after which the congested area is ripped up and
rerouted by locally applying a multicommodity flow algorithm. In
[7], beginning with a set of routing trees satisfying timing con-
straints for each net, a multicommodity flow method is applied to
choose a single routing tree for each net, such that the conges-
tion is minimized. At places where overflow occurs, the wires are
ripped up and rerouted through maze routing in which the timing
objective is combined with wirelength and congestion. For global
routing on standard cell designs, the work of [8] incorporates the
timing issue with an iterative deletion technique. In [10], timing
constraints are combined with a top-down hierarchical bisection
and assignment method for FPGA routing where the switch delay
dominates and wire delays are neglected.

In global routing, congestion and delay are often competing ob-
jectives. In order to avoid congestion, some wires must make de-
tours, and the signal delay may consequently suffer. In this paper,
we propose a new approach to global routing such that both con-
gestion and timing objectives can be optimized at the same time.

�
This work is supported in part by the NSF under contract CCR-

9800992 and the SRC under contract 98-DJ-609.

One key observation is that there are several routing topology flexi-
bilities that can be traded into congestion reduction while ensuring
that timing constraints are satisfied. We express these flexibilities
through the concepts of a soft edge and a slideable Steiner node
and exploit them in global routing through hierarchical bisection
and assignment as in [5, 10]. However, due to interdependence
on timing slack consumption and the presence of slideable Steiner
nodes, the assignment is not straightforward as in [5, 10]. We pro-
pose a network flow formulation so that the timing slack consump-
tions are adaptive to the congestion distributions. Finally, a timing-
constrained rip-up-and-reroute process is performed to overcome
any inabilities of the hierarchical approach in satisfying congestion
constraints. Since the timing performance of initial routing solu-
tion can be preserved, our method provides a general framework
that can accommodate any single-net routing scheme and can be
applied on any delay model.

2. PRELIMINARIES

2.1. Problem background and congestion metrics
We are given a set of nets

�������
	��
����������� �
, with each net

���
being defined by a set of pins � � ����� �� ��� �	 ������� � , where the source
or driver is denoted as

� �� . We consider routing in two layers, one
for horizontal wires and the other for vertical wires. As in conven-
tional global routing, we tessellate the entire routing region into an
array of uniform rectangular cells. We represent this tessellation
as a grid graph ��� �"! �
# !%$, where �&! ����' 	 ��' � �������(� corresponds
to the set of grid cells, and a grid edge)�*,+ # ! corresponds to the
boundary between two adjacent grid cells. We will refer to a grid
edge simply as a boundary. The number of wires that are allowed
to cross a boundary is limited by an upper bound, which is called
the supply of the boundary and expressed as -.�/)�$. During the rout-
ing, the number of wires that are routed across a boundary) is
designated as the demand 0&�/)�$. The overflow 1�2435�/)�$ at boundary) is 687�9"�/0&�/)�$;:<-=�/)�$ �?> $. The demand density for a boundary) is
defined as @A�/)�$ � 0&�/)�$�BC-=�/)�$. We use the metrics of the maximum
demand density @�DFE�G � 687�95H�I.J&K � @A�/)�$ � and the total overflowL 243 ��MON H�I=J K 1 243 �/)�$ to evaluate the congestion reduction.

2.2. Soft edges
A routing tree P is described by a set of nodes � �Q��� � ��� 	 ��� � ����� �
and a set of edges

#R����S 	 �
S � �����(� . The location for a node
� � is

specified by its coordinates T � and U � . An edge in
#

is uniquely
identified by the node pair � � � ����V $ or the notation

S � V interchange-
ably, where

� � is the upstream end of this edge.
Routing in the rectilinear space requires that each edge has a

fixed orientation, either horizontal or vertical. For example, when
we consider the connection between

� � and
�CW

in Fig. 1(b), we
usually choose an upper L-shaped or a lower L-shaped connec-
tion, both of which are indicated in the dotted lines. In each case,
a bend (degree-two Steiner) node

�=X
or

�.YX
is induced. Since there

are many uncertainties at the global routing stage, i.e., the detailed
routes are not determined, the specifications on delays need to cap-
ture the nature of the delay functions without being completely ex-
act. In this spirit, these two routes and many multi-bend monotone

v

2v

(b)

1

v

v

0

1
upper-L

lower-L v

v

v

v

0

3

(c)

0

v’

4

4

upper-L

lower-L

v

1

3

(a)

v

CC v2 v2

Figure 1. Routing with soft edges.

routes connecting
� � and

�CW
can be regarded to have same delay

performance, if the extra delay from a small number of vias can
be neglected for the same reason.

	
However, these routes may

have different influences on the congestion distribution when we
consider multiple nets in global routing. Before these different in-
fluences become clear, it is better to keep the flexibilities on routes
rather than to embed them into the rectilinear space prematurely.
Based on this observation, we may connect

� � and
� W

with a soft
edge, which is defined as follows.
Definition 1: A soft edge is an edge connecting two nodes

� � �?��V +� , such that: 1. T � �� T V
and U � �� U V , 2. its edge length � � V is

fixed, 3. the precise edge route between
� � and

��V
is not deter-

mined.
We will refer to the traditional edges in a rectilinear tree with

fixed orientations as solid edges. The soft edge connection be-
tween

� � and
� W

is shown as a solid curve in Figure 1(b). By
keeping edge

S � W soft, we can maintain the flexibility on routes
connecting

� � and
��W

until we consider congestion in global rout-
ing with other nets. In Figure 1(c), in the presence of another net,
a Z-shaped route for

S � W is chosen to reduce congestion without
hurting the delay.

In fact, the concept of soft edge is also useful in single-net rout-
ing. Consider the process of constructing the Steiner minimum tree
in Fig. 1(b) in a manner similar to Prim’s minimum spanning tree
algorithm. If we begin by connecting sink

� 	 to source
� � , and ar-

bitrarily choose the upper-L connection, the Steiner minimum tree
will not be reached. Instead of fixing the edge orientation immedi-
ately, we connect them with soft edge

S � 	 , as shown in Fig. 1(a).
Then, node

� � is joined to edge
S � 	 at the closest connection ����� $

point. The closest connection ����� $ point between a node
� * and

an edge
S � V is defined by its coordinates T���� and U���� such thatT���� �
	AS 0��
���%�/T � � T V � T"*�$ and U���� �
	AS 0��
���%�/U � � U V � U.*�$. In

Figure 1(b), Steiner node
�CW

is introduced at the ��� point and the
Steiner minimum tree is obtained.

2.3. Delay properties and slideable Steiner nodes
To measure the signal delay of an interconnect, we employ the El-
more delay model. Although occasional large errors make Elmore
delay unsuitable for critical nets [11], it has a role in global rout-
ing because of its fidelity [9] and simplicity, and is a reasonable
model considering that the routing in global stage is coarse and the
number of nets may be very large.

vv

v

v

(a)

CC

(b)

v

v

CC

v v

0 0

i

j

k

i

j

k

v’

Figure 2. Connection between node
� * and soft edge

S � V .
	
Later in our algorithm, we will penalize the excessive use of vias.

For a general form of a partially constructed routing tree, shown
in Figure 2(a), let us consider the process of obtaining an optimal
connection between node

� * and edge
S � V . The dashed lines are

other nodes and edges of this routing tree, and ��� represents the
closest connection point between

� * and
S � V . We wish to search

for an optimal connection point within the bounding box defined
by

� � and ��� . Suppose we connect
� * to

S � V at point
� Y �/T Y � U Y $, as

indicated in Figure 2(b). Let � ��� T Y : T � ����� U Y : U � � . If the delay
at an arbitrary sink

� E is � � � E.$ and the its required arrival time is��� P � � E $, then the delay slack -=� � E $ � ��� P,� � E $:�� � � E $. The
timing slack � � P � $ for a routing tree P �

on the net
� �

is the min-
imum delay slack among all the sinks in this net. If the objective
is to minimize wire cost subject to timing constraints, the optimal
connection (Steiner) point here is a point with a non-negative net
timing slack, lying as close to ��� as possible. The optimal con-
nection point is likely to be a non-Hanan point such as

� Y
in Fig.

2(b). A similiar conclusion is derived in [12].
A careful observation tells us that there are often many Steiner

node locations for a specific value of � . The set of locations for a
given value of � form a locus as illustrated by the thickened seg-
ment in Figure 2(b). When we slide the Steiner node

� Y
along this

locus, the lengths of its incident edges are preserved and so is the
delay at each sink. Similar to the rationale for soft edges, we only
specify this locus instead of a point for this Steiner node and call
it as slideable Steiner node (SSN).

3. ALGORITHM

3.1. Algorithm overview
This algorithm includes three phases: (1) performance driven rout-
ing for each net, (2) HBA: hierarchical bisecting of routing regions
and assigning soft edges to boundaries along the bisector, and (3)
TRR: timing-constrained rip-up-and-reroute.

In phase 1, each net is routed to meet its timing constraints with-
out considering congestion. Any single-net performance driven
routing method, e.g., P-tree [13], RATS tree [14] or MVERT [12],
can be applied here. Besides satisfying timing constraints, each
routing tree should be soft. This can be achieved through utilizing
soft edges during routing as in the example of Fig. 1 or replac-
ing L-shaped connections in the results with soft edges. Thus, at
the end of phase 1, timing-constrained routing trees are generated
along with topology flexibilities to be exploited in the subsequent
phases.

3’

1

T2

T3
T4

1

2
3

1

2

1

0

3

1

0

0

0

0

sink

T5

3"

4
T1

Steiner node

source

b2

b3

b1

Figure 3. An example of bisection.

In phase 2, a routing region is recursively bisected into subre-
gions in a top-down manner. At the topmost level, the whole rout-
ing region is bisected into left(upper) and right(lower) halves with
the same or similar size by a bisector line which is formed by a col-
umn(row) of consecutive vertical(horizontal) grid cell boundaries.
For example, in Fig. 3, the thickened bisector line is composed

of three boundaries,) 	 ,) � and) W . Each soft edge that intersects
this bisector is assigned to a boundary. After the assignment, a
pseudo-pin is inserted into the soft edge at the assigned bound-
ary, and therefore this soft edge is split into two new soft edges
that belong to two separate subregions. One assignment for the
example in Fig. 3 is shown in Fig. 4. In the next hierarchical
level, bisections and assignments are applied on the left(upper) and
right(lower) half region along an orthogonal orientation. This pro-
cess is repeated until the subregion is a single grid cell or a pair of
neighboring grid cells. Thus, at the end of this process, the route
for each soft edge is specified to the detailed level of grid cells it
goes through.

sink

3

T3
T4

1

2

4

0

1

2

1

1

0
0

0

0

3

T5
T1

Steiner node

source
1

T2

Figure 4. An assignment result from network flow solution.

The crucial part is to determine how to assign the soft edges to
the boundaries on the bisector line. The basic goal is to assign
all of the soft edges without exceeding any boundary supply and
without causing any delay violations. In order to make the assign-
ment feasible, sometimes it is necessary to allow some wires to
detour, which inevitably increases delay, i.e., some timing slack
is consumed. In addition to ensuring absence of delay violations,
it is naturally desirable that the consumption of the timing slack is
minimized, since the timing slack may be needed in the subsequent
levels of bisection and assignment. These objectives are achieved
through a min-cost network flow formulation.

The hierarchical bisection and assignment in phase 2 is a
method of divide-and-conquer that has the advantage of simplify-
ing the problem nature. It reduces a two-dimensional problem into
one dimension. However, a decision at a higher hierarchical level
may overlook the needs at a lower level. In phase 2, any soft edge
that could not be assigned in the network solution is temporarily
assigned to a boundary such that the maximum demand density
is minimized and no delay violation is incurred. These residual
overflows will be cleaned in phase 3.

The third phase is a timing-constrained rip-up-and-reroute pro-
cess. It is similar to traditional rip-up-and-reroute except that a
constraint on edge length is imposed to ensure no timing violation.
It rips up the edges on a set of most congested boundaries and
reroutes them through maze routing. The cost in maze routing is
defined as the summation of demand densities over all boundaries
that a soft edge passes through.

3.2. Basic network formulation

After one bisection, the assignment problem is formulated as:
Assignment problem: Given a bisector line

�
composed of a

set of consecutive boundaries
�) 	 �) � � ����� � , and a set of soft edges#�� ����S �V�� � S �V��

intersects
� �

, assign each soft edge to a boundary)�* + �
such that there is no overflow on any boundary)�* + �

or no delay violation on any routing tree P �
which has at least one

soft edge
S��V�� + # �

, and the timing slack consumption is mini-
mized.

1

1

1

1

1

1

11

2

1

1

1

2

2

1

1

41e

2
01

4

e

1

23

b3

s

01

e

03
3e

e

b2

b1

1

t

Figure 5. Network formulation of the example in Fig. 3 with-
out considering SSN. The number on each arc is its capacity.

We solve this problem through a formulation of the network
flow problem and applying a min-cost max-flow algorithm [15]
on it. The network ��� � ��� � �

�;$ is a directed graph consisting of
a set of vertices � � and arcs

�
� . The vertex set � � includes all

boundaries in
�

and soft edges in
#��

, plus a source - and target � .
For the bisection in Fig. 3, its corresponding network is illustrated
in Fig. 5. We do not use SSN at this moment for simplicity and
only

S W� W in P
W

is included in the network. The usage of SSN will
be introduced in section 3.4.. There are three types of arcs: (1)
from source - to every boundary vertex, (2) from some boundary
vertices to some soft edge vertices, (3) from every soft edge vertex
to the target � . Each arc has a cost and a capacity associated with
it. For each type 1 arc, its cost is 0 and its capacity is the corre-
sponding boundary supply. In this example, we assume that each
boundary has a supply of 2. For each type 2 arc, its capacity is 1
and its cost will be defined later. For each type 3 arc, its capacity
is 1 and its cost is 0.

(a) (b) (c)

Figure 6. Relative positions of a boundary and a soft edge.

An arc from a boundary vertex to a soft edge vertex implies a
candidate assignment between them. Not every pair of boundary
and soft edge vertices is automatically qualified for constructing
a type 2 arc between them. For any boundary and any soft edge,
there are three relative positions between them as shown in Fig.
6. In Fig. 6(a), the boundary lies entirely within (the bounding
box of) the soft edge. If we choose an assignment of the soft edge
to this boundary, there will be no change in the length of the soft
edge, and two vias are induced. If a boundary lies partially within
the bounding box of a soft edge, as in Fig. 6(b), we have an L-
intersection between the boundary and the soft edge, where no
change in the soft edge length is required and one via is induced.
In either of these two cases, we can always set up an arc between
them without affecting the delay. These arcs are called basic arcs,
and they are the solid type 2 arcs in Fig. 5. The third situation is
shown in Fig. 6 (c), where the soft edge does not intersect with
the boundary. In this case, an assignment on this pair will require
a wire detour, and we need to check whether or not this may cause

any delay violation. An arc can be constructed for such a pair only
if the assignment on this pair will not cause any delay violation.
For the example in Fig. 3, if the timing slack of P �

remains non-
negative when the soft edge

S �� 	 goes through boundary) W , then an
arc (a dashed line) between them is constructed in Fig. 5. We call
such a construction as a soft edge expansion and each expansion
implies a timing slack consumption.

We categorize the trees across the bisector line
�

into single-
crossing trees and multi-crossing trees, which are the trees that
cross

�
only once (such as P �

in Fig. 3) and more than once (such
as P 	

in Fig. 3), respectively. Initially, we construct all the ba-
sic arcs for all the soft edges in

#��
and perform an expansion for

all the soft edges that belong to single-crossing trees. The expan-
sions of edges in multi-crossing trees will be discussed in the next
section.

The cost of a type 2 arc is defined according to the timing slack
of its corresponding tree, since one major objective is to mini-
mize timing slack consumption. If the timing slack of tree P �

is
� 2 � � � P � $ before the assignment, and is ������� � P � $ if its soft edgeS �V��

is assigned to boundary)�* , then we define the arc cost as:

�	� - ���/)�* �4S �V � $ � � 2 � � � P � $
�
����� � P � $

�
(1)

It can be seen that if a soft edge intersects with a boundary en-
tirely or partially, its corresponding type 2 arc has a cost of unity.
As a secondary objective, we hope to reduce the number of vias in
the wiring. Therefore, for the situation in Fig. 6(b), we reduce its
cost by a small user-specified offset
 �
>��
 ��� .
3.3. Construction of arcs for multi-crossing trees
Generally speaking, adding a type 2 arc between a boundary ver-
tex and a soft edge vertex may increase the likelihood of obtaining
a feasible network flow solution. Hence, a soft edge expansion is
usually desired as long as no delay violation is incurred. One is-
sue that was not discussed in the last section is the procedure for
those soft edges that belong to multi-crossing trees, such as P 	

in
Fig. 3. The difficulty here is that the timing slack consumptions
for the soft edges are correlated. For some specified timing con-
straints, whether a soft edge can be expanded, or how far it can be
expanded, depends on whether other crossing edges in the same
tree are expanded, and how far they have been expanded. For ex-
ample, in Figure 3, the expansion of

S 	X 	 depends on whether
S.	� W

has been expanded and how far, i.e., to) � or to) 	 . In fact, these
soft edges compete with each other on a common timing slack re-
source, which must be allocated properly.

We solve this difficulty by identifying the necessary expansions
through the min-cut method. It is well known that the max-flow
equals the forward capacity of the - : � min-cut in a network
flow problem[15]. In the beginning, we run a max-flow algorithm
on the partially constructed network to obtain an -,: � min-cut��� ���� $ � - +�� , � + �� . The forward capacity of this cut is de-
noted by �%D � � ��� ���� $. If �%D � � ��� �����$�� � #�� �

, then it is guar-
anteed that every soft edge can be assigned to a boundary without
any overflow, and thus, no more expansion is necessary. Other-
wise, the maximum feasible flow is less than the number of soft
edges to be assigned, thus we need to increase the capacity of the
min-cut through additional soft edge expansions. In the example
for Fig. 3, before the expansion for multi-crossing trees, the min-
cut is indicated in the dashed curve in Fig. 5, where the vertices
in � are in the shaded region and vertices in

�� are unshaded. We
can see that the forward capacity � D � � ��� ���� $ ���

while there
are 5 soft edges that need to be assigned, thus, we need to expand
some soft edge(s) from the multi-crossing tree P 	

if possible.
The min-cut result shows us not only whether more expansions

are necessary but also the congestion distribution information or
where to make the expansion. Every forward arc in the min-cut

must be saturated [15], e.g., � - �) W $ � � S=	X 	 � ��$ and � S��� 	 � �
$ are satu-
rated. If a soft edge vertex

S �V��
is in � , its downstream arc must

be saturated and therefore, it can always be assigned to a boundary
without inducing overflow, i.e., it is not in a congested area. On
the other hand, if a boundary vertex)�* is in

�� (and not all of its
downstream arcs are saturated), its upstream arc must be saturated
and the soft edges corresponding to its downstream vertices are lo-
cated in a congested area. Adding an arc from a boundary vertex)�*
+�� to a soft edge vertex

S �V � + �� matches a soft edge in a
congested area to an uncongested boundary.
Lemma 1: The necessary and sufficient condition to increase the
max-flow 1 DFE�G of a network is to add a forward arc between �
and

�� for every min-cut ��� ���� $ with � D � � ��� ���� $ � 1 DFE�G .
We make a sweep among all the soft edges in multi-crossing

trees and pick at most one soft edge from each tree to expand in
order to increase the capacity of min-cut. More precisely speaking,
for each multi-crossing tree P �

, from all the)�*,+�� and
S �V�� + ��

pairs, we choose one with minimum cost to add an arc between
them if no delay violation is induced. After one iteration of expan-
sions, we run the max-flow min-cut algorithm again to repeat this
process until �%D � � ��� � �� $�� � #�� � or no more feasible arc can be
found. Note that the timing slack computation in a later iteration of
expansions should account for any wire detour in other soft edges
of the same tree in previous expansions. In the example in Fig. 5,
We can make an expansion between) � + � and

S 	� W + �� if no
delay violation is induced, and then the network problem becomes
feasible. The iterative min-cut and expansion technique makes the
allocation of timing slack in multi-crossing trees adaptive to the
congestion distribution, and expansions are made only when nec-
essary, without waste.

3.4. Utilization of slideable Steiner nodes (SSN)
In phase 1, if we use the MVERT algorithm together with soft
edges, we can have a slideable Steiner node that provides extra
flexibility in routing. The appealing feature of SSN is that when
we slide it along its locus, the timing performance is preserved.

capacity/gain

s tp

e

e

e

e

e

b

b

1

3

1

2

3

4

1

41

01

01

23

03

e3’2
3

e3’1
3

2b 1/0.5 1/1

1/0.5

1/1

Figure 7. Network formulation considering SSN.

The positions of a SSN within a grid cell do not affect wire con-
gestion distributions, hence we can consider one arbitrary position
for a SSN within a grid cell. For each SSN whose locus intersects
with

�
, we consider only two candidate positions, each on a dif-

ferent side of the bisector line
�

, such as
� WW

and
� WW"!

in Fig. 3. We
need to consider candidate positions on both sides of

�
, since they

result in remarkably different intersections between their incident
soft edges and the bisector line

�
. On each side of

�
, we only con-

sider the grid cell that has a boundary in
�

such that this boundary
intersects the locus of the SSN, since the SSN position in this grid
cell can provide the maximum overlap between its incident soft
edge(s) and

�
. For example, in Fig. 3,

S WW"! � intersects with two
boundaries) � and) W , while

S WW"! ! � would intersect only with) � . It

is evident that a larger overlap implies a larger number of basic
arcs which are preferred as they will not consume timing slacks.
For

� WW
and

� WW"!
, all three associated soft edges

S WW"! 	 , S WW"! � and
S W� W

are included in the vertices in the network as shown in Fig. 7. Ob-
viously,

S W� W cannot be assigned simultaneously with
S WW"! 	 or

S WW"! � .
This exclusiveness constraint can be instantiated through adding
a pseudo-vertices � and formulating a generalized network flow
model [15], where each arc has a gain factor associated with it.
For example, the amount of flow will reduce �

>��
after passing

through an arc with gain factor of
> �
� . We solve this generalized

network flow problem through Wayne’s algorithm [16].
After the assignment, only one of the candidate SSN positions

is selected. The locus of the SSN is truncated at the intersection
with

�
, and the part where the selected position located would be

retained, as shown in Fig. 4.

4. EXPERIMENTAL RESULTS
The experiments aim to test the effect of the proposed al-
gorithm on both timing and congestion. Traditional rip-up-
and-reroute(RR) and timing-constrained rip-up-and-reroute(TRR)
methods are tested together with our algorithm(HBA+TRR) on the
same set of circuits. The circuits that we tested belong to the
CBL/NCSU benchmark suite whose statistics are shown in Table
1. The initial routing trees are obtained through MVERT[12] algo-
rithm so that they must satisfy timing constraints. The results are
listed in Table 2.

Table 1. Benchmark circuits.
Circuit # modules # nets # pins

apte 9 45 162
ami33 33 85 480
ami49 49 390 913
xerox 10 203 696

The congestion results are expressed in terms of total overflowL 243 and the maximum demand density @ DFE�G . The congestion
results from rip-up-and-reroute(RR) are generally good. The con-
gestion results from TRR are much worse than RR, because the
algorithm may get stuck in a deadlock and fail to find a solution un-
der timing constraints. A naive combination of timing constraints
with rip-up-and-reroute does not work, and a crafted approach is
necessary to optimize these two competing objectives simultane-
ously. Table 2 also shows the congestion results from HBA for
reference. Even though they are usually better than TRR, they are
not ideal yet and not comparable with those of RR, and should
be considered as intermediate results. When we combine TRR
with HBA, the congestion results are found to be good and are
mostly better than even RR, which does not satisfy the timing con-
straints. Since hierarchical approach is better at a global planning
level while rip-up-and-reroute is specialized to find local and more
detailed routes, it is natural that a combination of these two com-
plementary approaches can yield a good result on congestion re-
ductions. When we compare the timing results, it is not surprising
that only RR causes delay violations while there is no delay vio-
lation in the results from TRR or our algorithm. The percentage
of nets with delay violations from RR are listed in column 6, and
ranges from � :����

�
.

Table 2. Experimental results.
Rip-up-and-reroute TRR HBA HBA+TRR

Circuit Grid � 	
� �
��� ������� DV % �
��� ������� ����� ������� ����� ������� CPU
apte 45 � 55 145 0 1.00 9 56 1.50 19 1.83 0 1.00 7.1

ami33.1 19 � 31 489 0 1.00 21 15 1.29 10 1.57 0 1.00 30.3
ami33.2 19 � 27 497 0 1.00 12 19 1.25 0 1.00 0 1.00 26.6
ami49.1 43 � 45 594 2 1.09 17 11 1.18 16 1.36 1 1.09 19.6
ami49.2 44 � 44 594 0 1.00 12 61 1.56 0 0.94 0 0.94 12.2
xerox.1 24 � 24 583 2 1.06 6 41 1.38 1 1.06 0 1.00 12.8
xerox.2 28 � 32 569 0 1.00 11 17 1.22 1 1.05 0 1.00 16.3
xerox.3 41 � 34 569 3 1.11 32 43 1.33 0 1.00 0 1.00 23.8

The total CPU time for three phases of our algorithm on each
circuit are listed in the rightmost column in seconds. Since each
circuit has different number of nets and the number of pins on one
net may be between two and several dozens, it would be more
interesting to evaluate the average CPU time on each 2-pin net as
a normalized comparison. The third column,

� # �
gives the total

number of soft edges from the initial routing trees in each circuit.
It is conceivable that the formulation of soft edges is equivalent
to a decomposition to 2-pin nets. Based on this data, the average
CPU time is found to be 0.06 second/2-pin-net in the worst case.

5. CONCLUSION
We propose a new approach to timing-constrained global routing.
We formalize the routing tree topology flexibilities under timing
constraints through the concepts of a soft edge and a slideable
Steiner node, and trade these flexibilities into congestion reduc-
tion while the timing constraints are satisfied. Experimental results
show that our proposed algorithm can achieve good congestion re-
sults while satisfying timing constraints.

REFERENCES
[1] C. Chiang, C. K. Wong and M. Sarrafzadeh, “A weighted Steiner

tree-based global router with simultaneous length and density min-
imization,” IEEE Trans. on CAD, Vol. 13, No. 12, pp. 1461-1469,
Dec., 1994.

[2] B. S. Ting and B. N. Tien, “Routing techniques for gate array,” IEEE
Trans. on CAD, Vol. CAD-2, No. 4, pp. 301-312, Oct., 1983.

[3] R. C. Carden IV, J. Li and C.-K. Cheng, “A global router with a
theoretical bound on the optimal solution,” IEEE Trans. on CAD,
Vol. 15, No. 2, pp. 208-216, Feb., 1996.

[4] M. Burstein and R. Pelavin, “Hierarchical wire routing,” IEEE Trans.
on CAD, Vol. CAD-2, No. 4, pp. 223-234, Oct., 1983.

[5] M. Marek-Sadowska, “Route planner for custom chip design,” Proc.
ICCAD, pp. 246-249, 1986.

[6] D. Wang and E. S. Kuh, “Performance-driven interconnect global
routing,” Proc. of the IEEE Great Lakes Symp. on VLSI, pp. 132-
136, 1996.

[7] J. Huang, X.-L. Hong, C.-K. Cheng and E. S. Kuh, “An efficient
timing-driven global routing algorithm,” Proc. DAC, pp. 596-600,
1993.

[8] J. Cong and P. H. Madden, “Performance driven global routing for
standard cell design,” Proc. ISPD, pp.73-80, 1997.

[9] K. D. Boese, A. B. Kahng, B. A. McCoy and G. Robins, “Near-
optimal critical sink routing tree constructions,” IEEE Trans. on
CAD, Vol. 14, No. 12, pp. 1417-36, Dec. 1995.

[10] K. Zhu, Y.-W. Chang and D. F. Wong, “Timing-driven routing for
symmetrical-array-based FPGAs,” Proc. ICCD, pp.628-633, 1998.

[11] J. Hu and S. S. Sapatnekar, “FAR-DS: full-plane AWE routing with
driver sizing,” Proc. DAC, pp. 84-89, 1999.

[12] H. Hou, J. Hu and S. S. Sapatnekar, “Non-Hanan routing”, IEEE
Trans. on CAD, Vol. 18, No. 4, pp. 436-444, Apr., 1999.

[13] J. Lillis, C. K. Cheng, T. T. Lin and C. Y. Ho, “New performance
driven routing techniques with explicit area/delay tradeoff and si-
multaneous wire sizing,” Proc. DAC, pp. 395-400, Jun. 1996.

[14] J. Cong and C. K. Koh, “Interconnect layout optimization under
higher-order RLC model,” Proc. ICCAD, pp. 713-720, 1997.

[15] R. K. Ahuja, T. L. Magnanti and J. B. Orlin, Network flows: theory,
algorithms, and applications. Prentice Hall, Upper Saddle River, NJ,
1993.

[16] K. D. Wayne and L. Fleischer, “Fast and simple approximation
schemes for generalized flow,” Proc. Symposium on Discrete Algo-
rithms, pp. 981-982, 1999.

