
A Hybrid Linear Equation Solver and its Application
in Quadratic Placement

Haifeng Qian and Sachin S. Sapatnekar
University of Minnesota, Minneapolis, MN

{qianhf,sachin}@ece.umn.edu

Abstract— This paper presents a new hybrid linear equation solver
for quadratic placement. The new solver is a combination of stochastic
solver and iterative solver: it is proven in this paper that an approximate
LDL factorization can be obtained from random walks, and used
as a preconditioner for conjugate gradient solver. Testing on real-life
placement benchmarks shows a speedup of up to 7.1 times over traditional
Incomplete Cholesky preconditioned Conjugate Gradient (ICCG).

I. I NTRODUCTION

Placement is a critical and computationally intensive step during
the VLSI design cycle that must handle instances of large size. The
most widely used approaches fall into several different paradigms:
quadratic placement [6][10][18][19], simulated annealing [16], and
partitioning-based placement [4]. Of these, quadratic placement, also
referred to as analytical or force-directed placement, has emerged as a
very popular method, and is the focus of this paper. The essential idea
is to define a set of attractive and repulsive forces between the mod-
ules, and to iteratively find an equilibrium point that corresponds to
the optimal placement. Each iterative step involves the minimization
of a cost function, whose components typically include an indirect
measure of wire length, plus factors such as congestion, overlap, or
timing, and requires the solution of a large set of linear equations to
compute new locations for modules/cells. The set of linear equations
can be written asAx = b, whereA is a square matrix that is typically
symmetric and positive definite,b is a given vector based on the cost
function, andx is the vector of new coordinates of modules/cells to be
computed. The most widely used solver in placers is the Incomplete
Cholesky Factorization preconditioned Conjugate Gradient (ICCG)
[3][11][15] method: examples of state-of-the-art quadratic placers that
use ICCG or its variants include [18] and [19].

In this paper, we propose a hybrid linear equation solver, which
combines stochastic solvers [7][14] and iterative solvers, and per-
forms favorably when compared with existing approaches. We prove
that an incomplete LDL factorization ofA can be obtained from
the stochastic solution process of [14], and that it can be used as
the preconditioner for preconditioned conjugate gradient (PCG). We
argue that the obtained incomplete LDL factors have better quality,
i.e., better accuracy-size tradeoffs, than the incomplete Cholesky
factor obtained by a traditional method, and we test the proposed
solver on real-life placement matrices to support this claim.

II. FRAMEWORK OF THEHYBRID SOLVER

A. The Random Walk Game

This section briefly describes the stochastic portion of the solver,
and more details can be found in [14]. For clarity of presentation, the
discussion in this paper is limited to R-matrices defined as follows.

Definition 1: Matrix A is said to be an R-matrix if it satisfies these
four properties: 1)Ai,i > 0, ∀i. 2) Ai,j ≤ 0, ∀i 6= j. 3) Ai,j = Aj,i,
∀i 6= j. 4) Matrix A is irreducibly diagonally dominant [17].

[14] defines a random walk “game” as follows. Given a finite
undirected connected graph representing a street map, a walker starts

from one of the nodes, and goes to one of the adjacent nodes every
day with a certain probability. The walker pays an amount of money,
mi at nodei, to a motel for lodging everyday, until he/she reaches
one of the homes, which are a subset of the nodes. Then the journey
is complete and he/she will be rewarded a certain amount of money,
m0. The problem is to determine the gain function:

f(i) = E[money earned|walk starts at nodei] (1)

These gain values satisfy the following linear equations [14]:

f(i) =
∑

j∈neighbors ofi

pi,jf(j)−mi , ∀i

f(a home node) = m0 (2)

wherepi,j is the transition probability of going from nodei to node
j, and note thatj can be a home node. Thus a random walk game
is mapped onto a system of linear equations. Conversely, it can be
verified that givenAx = b, whereA is an R-matrix, we can always
construct a random walk game that is mathematically equivalent, in
which the set off values is equal to the solution vectorx.

To find theith entry of x, one may run a number of walks from
node i and take the average of the results. To get the complete
solution, one may repeat the process for every entry ofx. This,
however, is not the most efficient way, and [14] proposed two speedup
techniques, which will play an important role in our theory:

1) Every calculated node becomes a new home in the game with
an award amount equal to its calculatedf value.

2) To facilitate re-solves with different right-hand-side vectors, a
record is set up for each node in the game. The record for node
i keeps a count of the locations where awards are received at
the end of each walk started from nodei (they possibly include
the original home nodes and the new home nodes created by
the first speedup technique), and the number of stays at a
particular motel during all the walks from nodei. If the right-
hand-side vectorb changes while matrixA remains the same,
only the award amounts and motel prices have changed, and we
can assume that the walker receives awards at the very same
locations and pays for the very same motels. Using the journey
information from the record, new solutions can be computed
efficiently without running any extra walks.

B. The Sequential Monte Carlo Method

A second basis for our approach is the sequential Monte Carlo
method, which was initiated in [13] and was developed in [7][8].

Let x′ be an approximate solution toAx = b found by a stochastic
solver, such as that in the previous subsection. Define:

r = b−Ax′ y = x− x′ (3)

It is easy to verify the following relation:

Ay = r (4)



The idea is to iteratively solve (4) using the stochastic solver. In
each iteration, an approximatey is computed and then used to correct
the current solutionx′. The algorithm can be written as follows.

Algorithm 1: Sequential Monte Carlo algorithm:

1) Stochastic solveAx = b, find x0

2) For j = 0, 1, 2, · · ·, until convergence
3) rj = b−Axj

4) Stochastic solveAy = rj, find yj

5) xj+1 = xj + yj

C. An Initial Hybrid Solver

We now combine the techniques from the previous two subsections
and realize their full potential. With the bookkeeping technique from
the end of Section II-A, we only need random walks in the initial
solve of Algorithm 1, and we can use the record to solveAy = rj
without a single extra walk. This results in Algorithm 2. Note that
this is only an initial prototype algorithm.

Algorithm 2: An initial hybrid algorithm:

1) SolveAx = b, find x0, create record
2) For j = 0, 1, 2, · · ·, until convergence
3) rj = b−Axj

4) Apply record onAy = rj, find yj

5) xj+1 = xj + yj

The calculations that are used to apply the record are purely linear
operations. Therefore, for the approximate solution ofAy = rj, the
overall effect can be written as a matrix-vector multiplication:

yj = Trj (5)

whereT is a square matrix that represents the process of applying
the record of random walks. The matrixT has a special structure
that we will discuss in the next section. Thus the computation during
one iteration of Algorithm 2 can be represented as follows:

xj+1 = xj + Trj = xj + T (b−Axj) = (I − TA)xj + Tb (6)

Equation (6) is in exactly the same form as a preconditioned Gauss-
Jacobi iterative solver, where the preconditioner isT . In other words,
Algorithm 2 is an iterative solver with a preconditioner built by an
stochastic solver, and thus we call it ahybrid solver. Again, this is
only a first cut at the hybrid approach. To generalize the approach,
the iterative part does not have to be Gauss-Jacobi and potentially
can beany iterative solver. We will prove in the next section that an
incomplete LDL factorization (definition to follow) can be obtained
from random walks, and can be used to precondition CG.

III. PROOF OFINCOMPLETEFACTORIZATION

The complete LDL factorization of a symmetric and positive
definite matrixA is a slight variation of the Cholesky factorization,
and is defined asA = LDLT whereL is a lower triangular matrix
with all diagonal entries being 1, andD is a diagonal matrix with all
positive diagonal values. TheincompleteLDL factorization is defined
asL′D′L′T ≈ A whereD′ ≈ D, L′ ≈ L, and the non-zero pattern
of L′ is a subset of that ofL. We now examine the details of the
record created by the bookkeeping technique in Section II-A, and
prove that it provides an incomplete LDL factorization of matrixA.

A. The Approximate Factorization

Suppose the dimension of matrixA is N , and its ith row
corresponds to nodei in the game,i = 1, 2, · · · , N . Without
loss of generality, let us assume that in the stochastic solve, the
order in which we solve the nodes is the same as the index order.
Therefore, when we are solving nodek, the nodes{1, 2, · · · , k− 1}

are already solved and they now serve as home nodes where a random
walk ends. The awards for reaching nodes{1, 2, · · · , k − 1} are
{x1, x2, · · · , xk−1} respectively. Suppose we choosem0 = 0, then
mi = − bi

Ai,i
, for i = k, k + 1, · · · , N [14].

Now, if Wk walks are carried out from nodek, we get:

xk =

∑k−1

i=1
Mk,ixi +

∑N

i=k
Jk,i

bi
Ai,i

Wk
(7)

whereMk,i is the number of walks from nodek that end at node
i ∈ {1, 2, · · · , k − 1}, and Jk,i is the number of times that walks
commencing at nodek pass the motel at nodei ∈ {k, k+1, · · · , N}.
Note that the awards received at the original home nodes are ignored
sincem0 = 0. Moving theMk,i terms to the left side, we obtain:

−
k−1∑
i=1

Mk,i

Wk
xi + xk =

N∑
i=k

Jk,i

WkAi,i
bi (8)

The above equation can be written in matrix form:

Y x = Zb (9)

whereY andZ are two square matrices of dimensionN :

Yk,k = 1, ∀k
Yk,i = −Mk,i

Wk
, ∀k > i

Yk,i = 0, ∀k < i

Zk,i =
Jk,i

WkAi,i
, ∀k ≤ i

Zk,i = 0, ∀k > i (10)

ObviouslyY is a lower triangular matrix with unit diagonal entries,
Z is a upper triangular matrix, and their entries are independent of
b. OnceY andZ are built, given anyb, one can apply equation (9)
and findx efficiently. The matrixT defined in (5) is simplyY −1Z.

From equation (9), we have:

Z−1Y x = b (11)

Since the vectorx in the above equation is an approximate solution
to the original equation setAx = b, it follows that:

Z−1Y ≈ A (12)

Because the inverse of an upper triangular matrix,Z−1, is also upper
triangular, equation (12) is in the form of a “UL factorization” ofA.
The following definition and lemma present a simple relation between
UL factorization and the common LU factorization.

Definition 2: The operatorrev(·) is defined on square matrices as
follows: given matrixA of dimensionN , B = rev(A) is also a
square matrix of dimensionN , and satisfies:

Bi,j = AN+1−i,N+1−j , ∀i, j ∈ {1, 2, · · · , N}
Lemma 1:Let A = LU be the LU factorization of a square matrix

A, thenrev(A) = rev(L)rev(U) is true and is the UL factorization
of rev(A).

The proof is omitted. Applying Lemma 1 on (12), we obtain:

rev(Z−1)rev(Y ) ≈ rev(A) (13)

Since A is an R-matrix and is symmetric,rev(A) must be also
symmetric, and we can take the transpose of both sides, and have:

(rev(Y ))T
(
rev(Z−1)

)T ≈ rev(A) (14)



The above equation has the form of a Doolittle LU factorization:
matrix (rev(Y ))T is lower triangular and have unit diagonal values;
matrix

(
rev(Z−1)

)T
is upper triangular.

Lemma 2:The Doolittle LU factorization of a matrix is unique.
The proof is omitted. Let the Doolittle LU factorization ofrev(A)

berev(A) = Lrev(A)Urev(A), and its LDL factorization berev(A) =

Lrev(A)Drev(A)

(
Lrev(A)

)T
. Since equation (14) is an approximate

LU factorization of rev(A), while the exact LU factorization is
unique, it must be true that:

(rev(Y ))T ≈ Lrev(A) (15)(
rev(Z−1)

)T ≈ Urev(A) = Drev(A)

(
Lrev(A)

)T
(16)

Note that, the above two equations only tell us that from the
matrix Y built by random walks, we can obtain an approximate
factor Lrev(A). We have yet to prove that the non-zero pattern of
(rev(Y ))T is a subset of that ofLrev(A). The proof is omitted here,
and is based on the combination of established theory on the structure
of LU factors [2][5][9], equation (10), and the fact that intermediate
nodes of a walk from nodek must be in the set{k, k + 1, · · · , N}.
This and equation (15) give rise to the following lemma.

Lemma 3:(rev(Y ))T is the L factor of an incomplete LDL
factorization of matrixrev(A).

B. The Diagonal Component

To evaluate the approximateD matrix, we take the transpose of
both sides of equation (16), and get:

rev(Z−1) ≈ Lrev(A)Drev(A) (17)

Lemma 4:For a non-singular square matrixA, rev(A−1) =
(rev(A))−1.

The proof is omitted. Applying the lemma on (17), we have:

(rev(Z))−1 ≈ Lrev(A)Drev(A)

I ≈ rev(Z)Lrev(A)Drev(A) (18)

Recall thatrev(Z) andLrev(A) are both lower triangular, thatLrev(A)

has unit diagonal entries, and thatDrev(A) is a diagonal matrix, the
{i, i} diagonal entry in the above equation is simply:

(rev(Z))i,i

(
Lrev(A)

)
i,i

(
Drev(A)

)
i,i

≈ 1

(rev(Z))i,i · 1 ·
(
Drev(A)

)
i,i

≈ 1

(
Drev(A)

)
i,i

≈ 1

(rev(Z))i,i

(19)

Applying Definition 2 and equation (10), we finally have the equation
for computing the approximateD factor, given as follows:

(
Drev(A)

)
i,i

≈ 1

ZN+1−i,N+1−i

=
WN+1−iAN+1−i,N+1−i

JN+1−i,N+1−i
(20)

Definition 3: The operatorrev(·) is defined on vectors as follows:
given vectorx of length N , y = rev(x) is also a vector of length
N , and satisfies:yi = xN+1−i,∀i ∈ {1, 2, · · · , N}.

It is easy to verify that the equation setAx = b is equivalent to
rev(A)rev(x) = rev(b).

By now, we have collected the necessary pieces of the proposed
hybrid solver, and it is summarized as in the pseudocode below:

Algorithm 3: The final hybrid solver:

1) Precondition
2) Run random walks, build matrixY and find diagonal

entries ofZ, using equation (10).
3) Build Lrev(A) using equation (15).
4) Build Drev(A) using equation (20).
5) Givenb, solve
6) ConvertAx = b to rev(A)rev(x) = rev(b).
7) Apply ICCG onrev(A)rev(x) = rev(b) with the

preconditioner
(
Lrev(A)Drev(A)

(
Lrev(A)

)T
)−1

.

8) Convertrev(x) to x.

C. Stopping Criterion

In this subsection, we look at the accuracy control of random walks,
which must be independent of the right-hand-side vectorb. We define
a stopping criterion on a value that is a function of only matrixA,
as follows. LetHk = E [length of a walk from nodek], let H ′

k be
the average length of theWk walks, and the stopping criterion is:

P [−∆ <
H ′

k −Hk

Hk
< ∆] > α (21)

where∆ is a relative error margin, andα is a confidence level, e.g.
α = 0.99. Practically, this criterion is checked by the inequality:

H ′
k√

V ark/Wk

>
Q−1

(
1−α

2

)

∆
(22)

whereV ark is the variance of the lengths of theWk walks, andQ is
the standard normal complementary cumulative distribution function.
Thus,Wk is decided on the fly, and random walks are run from node
k until condition (21) is satisfied.

D. Random walks versus ILUT

In this section, we argue that the incomplete LDL factorization pro-
duced by random walks has better quality than traditional incomplete
Cholesky factorB. In other words, if matricesY and B have the
same number of non-zero entries, and given the same target accuracy
requirement, we expect the hybrid solver to converge with fewer
iterations than a traditional ICCG preconditioned by

(
BBT

)−1
.

Existing techniques perform Gaussian elimination onA, and use a
specific strategy to drop insignificant entries during the process. Such
a strategy can be pattern-based, such as ILU(0), or value based, such
as ILUT, or a combination of multiple criteria [15]. Our argument
is based on the fact that, in traditional Gaussian-elimination-based
methods, the operations of eliminating different nodes are correlated
and the error introduced at an earlier node gets propagated to a later
node, while in random walks, the operation on a node is totally
independent from other nodes.

Fig. 1. One step in Gaussian elimination.

Let us use ILUT as an example. Given a symmetric matrixA
of dimensionN , the matrix graph G is defined as a undirected
graph withN nodes{1, 2, · · · , N} such that an edge exists between
two nodesi 6= j if and only if Ai,j 6= 0. Figure 1 illustrates one
step incompleteGaussian elimination: removing one node from the
matrix graph, and creating a clique among its neighbours. The new
edges correspond to fills added to the remaining matrix; at the same
time, five non-zero values are written into theL factor. Suppose in



the process of eliminating nodea, ILUT decides that the new edge
between nodesb1 and b2 corresponds to a below-threshold entry,
then that entry is dropped from the remaining matrix, and that edge is
removed from the remaining graph. Later when the algorithm reaches
the stage of eliminating nodeb1, because of that missing edge, no
edge is created fromb2 to the neighbors ofb1, and thus more edges
are missing, and this new batch of missing edges will then affect
later computations accordingly. Therefore, an error introduced at an
early node gets propagated throughout the ILUT process. On one
hand, this leads to the sparsity ofB, which is desirable; on the other
hand, there is no control over error accumulation, and later columns
of B can deviate from the exact Cholesky factor by an amount that
is greater than the planned threshold of ILUT.

The hybrid solver does not suffer from this problem. When we run
random walks from nodek and collect theMk,i values to build the
kth row of matrixY , we only know that the nodes{1, 2, · · · , k−1}
are homes, and this is the only information needed. If for some reason
a mistake is made, and thekth row of matrix Y is of lower quality,
this error does not affect other rows at all; every row is responsible
for its own accuracy, given by equation (21). In summary, because
of the absence of error accumulation, we expect the hybrid solver to
outperform traditional ICCG.

IV. A PPLICATION IN QUADRATIC PLACEMENT

In quadratic placement, the cost of a two-pin net that connects
modulei and modulej is typically defined as [6][10][18][19]:

netcost = w
(
(xi − xj)

2 + (yi − yj)
2
)

where w is the weight of the net,(xi, yi) and (xj , yj) are the
coordinates of the two modulesi and j. The net weightw depends
on the optimization goal, for example, it can be a function of timing
criticality [10]. The overall cost function of the placement is the sum
of the net costs, and is typically in the following form.

cost =
1

2
xTQx +

1

2
yTQy + dx

Tx + dy
Ty (23)

where x and y are the vectors of unknown x-coordinates and y-
coordinates of the modules,Q is a square matrix,dx and dy are
two given vectors. The cost function is minimized by solving the
following two sets of linear equations.

Qx + dx = 0 Qy + dy = 0 (24)

By examining contribution of the cost of each net to matrixQ,
it can be verified thatQ satisfies the first three conditions of an
R-matrix. The fourth condition translates to the requirement that in
every connected component of a circuit design, at least one module
must be connected to an I/O pin, which is generally true. Thus,Q is
an R-matrix, and the proposed hybrid solver can be applied on (24).

A placement flow involves solving (24) repeatedly, typically with
different dx and dy vectors, which contain not only contributions
from net costs, but also cost of overlapping modules, congestion or
timing criticality, depending on the placement algorithm. MatrixQ
may also change during the placement, for example, due to adding
friction [19], in which case the preconditioning part of the hybrid
solver needs to run again and update the LDL factorization.

V. RESULTS

In this section, we use real-life placement matrices to evaluate the
proposed hybrid solver. Computations are carried out on a Linux
workstation with a 2.8GHz Intel CPU. The first set of benchmarks,
Table I, are matrices generated by an industrial placement tool
for real-life circuits. One actual right-hand-side vector instance is

also available for each of them. The second set are the ISPD02
benchmarks [1] and their matrices are generated by the Waterloo
placer [19] before the initial placement, and hence contain only
connectivity component from the original netlists. A right-hand-side
vector with all entries being 1 is used with each of them in the tests
shown in Table II. Due to space limitations, only half of each set (the
largest matrices) is shown.

In Table I and Table II, we compare the hybrid solver against
ICCG with ILU(0) and ICCG with ILUT. The complexity metric is
the number of double-precision multiplications needed at the iterative
solving stage for the equation setAx = b, in order to converge with
an error tolerance of10−6, defined as:

‖ b−Ax ‖2 < 10−6· ‖ b ‖2 (25)

LASPack [12] is used for ICCG with ILU(0). MATLAB is used
for ICCG with ILUT. Approximate minimum degree ordering (AMD)
[2] gives the best performance among available ordering options, and
is used for all MATLAB tests. The dropping threshold of ILUT in
MATLAB is tuned, and the setting of the hybrid solver is adjusted,
such that the sizes of the Cholesky factors produced by both methods
are similar, i.e., theC values in the tables are close. For LASPack and
MATLAB, the M1 values are computed from the following equation.

M1 = C · 2 + E + N · 4 (26)

According to the PCG pseudo codes in [3] and [15], the above
equation is the best possible implementation. TheM1 values of the
hybrid solver is obtained by a embedded detailed count, and in fact
equation (26) is roughly true for the hybrid solver as well.

In Table I, the hybrid solver shows up to 8.4 times speedup over
ICCG with ILU(0), and up to 7.1 times speedup over ICCG with
ILUT. In Table II, the hybrid solver is also at least 2 times faster than
ICCG for any matrix with over 1e5 dimension. It is worth noting that
m1-m5 are larger and denser than the ISPD02 matrices, and there is
a trend that the larger and denser a matrix is, the more the hybrid
solver outperforms ICCG. This is consistent with Section III-D: when
the matrix is larger and denser, the effect of error accumulation in
traditional methods becomes stronger.

Physical runtimesT1 and T2 are also included.T1 is only 3 to
5 timesT2, and is a relatively low overhead: this makes the hybrid
solver preferable even if the equation set is only solved once.

In Table III, the hybrid solver is embedded into the Waterloo
placement tool version 1.1 [19], and the new runtimes on the ISPD02
benchmarks are compared with the original runtimes. The replaced
original solver is BICGSTAB preconditioned by ILU(0) with reverse
Cuthill-McKee ordering (RCM) [5]. The results suggest 5%-10%
runtime reduction. The speedup is not as dramatic as in Table I and
Table II, because solving linear equations is not the dominant portion
of the runtime of this placer. Circuit ibm18 is not included because
the placer has certain stability issue. Another purpose of Table III
is to show that the hybrid solver is fully capable of supporting a
placement tool. For example, for ibm17, the hybrid solver performs
preconditioning on 94 different left-hand-size matrices, and solves
each matrix with on average 14 different right-hand-side vectors. Note
that most of these matrices takes less runtime than the original ibm17
matrix used in Table II, due to internal processing of the placer.

ACKNOWLEDGMENT

The authors would like to thank Gi-Joon Nam for the benchmarks,
thank Kristofer Vorwerk and Andrew Kennings for their open-source
placer and their help with its usage.



TABLE I
COMPUTATIONAL COMPLEXITY COMPARISON OF THE HYBRID SOLVER, ICCG WITH ILU(0) (LASPACK), AND ICCG WITH ILUT (MATLAB), TO

SOLVE FOR ONE RIGHT-HAND-SIDE VECTOR, FOR THE FIRST SET OF MATRICES, WITH 10−6 ERROR TOLERANCE. N IS THE DIMENSION OF A MATRIX; E

IS THE NUMBER OF NON-ZERO ENTRIES OF A MATRIX; C IS THE NUMBER OF NON-ZERO ENTRIES OF THECHOLESKY FACTOR; M1 IS THE NUMBER OF

MULTIPLICATIONS PER ITERATION; I IS THE NUMBER OF ITERATIONS TO REACH10−6 ERROR TOLERANCE; M2 IS THE TOTAL NUMBER OF

MULTIPLICATIONS ; T1 IS PRECONDITIONINGCPU TIME ; T2 IS SOLVING CPU TIME ; R1 IS THE SPEEDUP RATIO OF THE HYBRID SOLVER OVERICCG
WITH ILU(0); R2 IS THE SPEEDUP RATIO OF THE HYBRID SOLVER OVERICCG WITH ILUT.

Ckt N E ICCG with ILU(0) ICCG with ILUT Hybrid R1 R2

C M1 I M2 C M1 I M2 C M1 I M2 T1(sec) T2(sec)

m1 2.7e5 3.2e6 1.7e6 7.8e6 150 1.2e9 3.9e6 1.2e7 77 9.3e8 3.9e6 1.2e7 12 1.4e8 20.77 6.22 8.3 6.7

m2 4.3e5 5.2e6 2.8e6 1.3e7 122 1.5e9 6.5e6 2.0e7 62 1.2e9 6.5e6 2.0e7 12 2.3e8 33.00 11.90 6.6 5.3

m3 3.5e5 5.5e6 2.9e6 1.3e7 82 1.0e9 5.1e6 1.7e7 27 4.6e8 5.0e6 1.6e7 12 2.0e8 21.67 9.73 5.3 2.4

m4 4.6e5 8.2e6 4.3e6 1.9e7 110 2.1e9 7.5e6 2.5e7 55 1.4e9 8.0e6 2.5e7 13 3.3e8 46.91 17.07 6.3 4.2

m5 8.8e5 9.4e6 5.2e6 2.3e7 159 3.7e9 1.3e7 3.9e7 82 3.2e9 1.2e7 3.7e7 12 4.4e8 68.90 26.09 8.4 7.1

TABLE II
COMPUTATIONAL COMPLEXITY COMPARISON FOR THEISPD02BENCHMARKS, WITH 10−6 ERROR TOLERANCE. N , E, C , M1, I , M2, T1, T2, R1 AND

R2 ARE AS DEFINED IN TABLE I.

Ckt N E ICCG with ILU(0) ICCG with ILUT Hybrid R1 R2

C M1 I M2 C M1 I M2 C M1 I M2 T1(sec) T2(sec)

ibm10 9.3e4 5.9e5 3.4e5 1.7e6 130 2.1e8 9.4e5 2.9e6 42 1.2e8 1.0e6 2.9e6 19 5.4e7 7.00 1.42 4.0 2.2

ibm11 9.2e4 5.5e5 3.2e5 1.6e6 120 1.9e8 8.5e5 2.6e6 36 9.4e7 9.6e5 2.6e6 20 5.2e7 6.64 1.25 3.6 1.8

ibm12 9.5e4 6.4e5 3.7e5 1.7e6 110 1.9e8 1.0e6 3.1e6 47 1.4e8 1.1e6 3.0e6 20 6.0e7 7.50 1.54 3.2 2.4

ibm13 1.1e5 7.0e5 4.0e5 2.0e6 130 2.5e8 1.1e6 3.3e6 45 1.5e8 1.2e6 3.4e6 20 6.8e7 8.81 1.99 3.7 2.2

ibm14 1.9e5 1.1e6 6.5e5 3.2e6 145 4.6e8 1.7e6 5.3e6 53 2.8e8 2.0e6 5.3e6 26 1.4e8 15.93 4.88 3.3 2.0

ibm15 2.2e5 1.4e6 8.2e5 3.9e6 153 6.0e8 2.2e6 6.7e6 50 3.4e8 2.6e6 7.2e6 23 1.6e8 23.34 6.88 3.7 2.0

ibm16 2.5e5 1.6e6 9.1e5 4.4e6 170 7.5e8 2.5e6 7.6e6 62 4.7e8 2.9e6 7.9e6 21 1.7e8 24.09 6.50 4.5 2.9

ibm17 2.5e5 1.8e6 1.0e6 4.8e6 137 6.6e8 2.9e6 8.5e6 47 4.0e8 3.1e6 8.6e6 20 1.7e8 25.25 6.94 3.8 2.3

ibm18 2.7e5 1.7e6 9.8e5 4.8e6 191 9.1e8 2.6e6 8.0e6 65 5.2e8 3.1e6 8.5e6 23 2.0e8 30.67 8.10 4.7 2.7

TABLE III
RUNTIME COMPARISON INSIDE THEWATERLOO PLACER. T3 IS THE

PLACER RUNTIME WITH ITS ORIGINAL SOLVER. T4 IS THE PLACER

RUNTIME WITH THE HYBRID SOLVER. UNIT IS MINUTE .

Ckt ibm10 ibm11 ibm12 ibm13 ibm14 ibm15 ibm16 ibm17

T3 53.4 42.1 57.1 54.1 106.7 117.0 123.9 181.4

T4 48.7 39.0 51.0 51.8 101.4 110.1 117.0 170.6

REFERENCES

[1] S. Adya and I. Markov, ISPD02 Benchmarks [Online]. Available:
http://vlsicad.eecs.umich.edu/BK/ISPD02bench.

[2] P. R. Amestoy, T. A. Davis and I. S. Duff, “An approximate minimum
degree ordering algorithm,”SIAM Journal on Matrix Analysis and
Applications, vol. 17, no. 4, pp. 886–905, 1996.

[3] R. Barrett, M. Berry, T. F. Chan, J. W. Demmel, J. Donato, J. Dongarra,
V. Eijkhout, R. Pozo, C. Romine and H. A. van der Vorst,Templates for
the Solution of Linear Systems: Building Blocks for Iterative Methods.
Philadelphia, PA: SIAM, 1994.

[4] A. E. Caldwell, A. B. Kahng and I. L. Markov, “Can recursive bisection
alone produce routable placements?,” inProc. DAC, pp. 477–482, 2000.

[5] E. Cuthill and J. McKee, “Reducing the bandwidth of sparse symmetric
matrices,” inProceedings of the ACM National Conference, pp. 157–
172, 1969.

[6] H. Eisenmann and F. M. Johnannes, “Generic global placement and
floorplanning,” inProc. DAC, pp. 269–274, 1998.

[7] J. H. Halton, “Sequential Monte Carlo,” inProceedings of the Cambridge
Philosophical Society, vol. 58, pp. 57–78, 1962.

[8] J. H. Halton, “Sequential Monte Carlo techniques for the solution of
linear systems,”Journal of Scientific Computing, vol. 9, pp. 213–257,
1994.

[9] P. Heggernes, S. C. Eisenstat, G. Kumfert and A. Pothen, “The compu-
tational complexity of the Minimum Degree algorithm,” inProceedings
of 14th Norwegian Computer Science Conference, pp. 98–109, 2001.

[10] A. P. Hurst, P. Chong and A. Kuehlmann, “Physical placement driven
by sequential timing analysis,” inProc. ICCAD, pp. 379–386, 2004.

[11] D. S. Kershaw, “The incomplete cholesky-conjugate gradient method
for the iterative solution of systems of linear equations,”Journal of
Computational Physics, vol. 26, pp. 43–65, 1978.

[12] LASPack [Online]. Available:
http://www.tu-dresden.de/mwism/skalicky/laspack/laspack.html.

[13] A. W. Marshall, “The use of multi-stage sampling schemes in Monte
Carlo,” Symposium of Monte Carlo Methods, pp. 123–140. New York,
NY: John Wiley & Sons, 1956.

[14] H. Qian, S. R. Nassif, and S. S. Sapatnekar, “Random walks in a supply
network,” in Proc. DAC, pp. 93–98, 2003.

[15] Y. Saad,Iterative Methods for Sparse Linear Systems. Philadelpha,
PA: SIAM, 2003.

[16] C. Sechen and A. Sangiovanni-Vincentelli, “The TimberWolf placement
and routing package,”IEEE Journal of Solid-State Circuits, vol. 20,
no. 2, pp. 510–522, 1985.

[17] R. S. Varga,Matrix Iterative Analysis. Englewood Cliffs, NJ: Prentice-
Hall, 1962.

[18] N. Viswanathan and C. C. Chu, “FastPlace: Efficient analytical place-
ment using cell shifting, iterative local refinement and a hybrid net
model,” in Proc. ISPD, pp. 26–33, 2004.

[19] K. P. Vorwerk, A. Kennings and A. Vannelli, “Engineering details of a
stable force-directed placer,” inProc. ICCAD, pp. 573-580, 2004.


