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Abstract— Thermal simulation has become increasingly important
in chip design especially in the nanometer regime, where then-
chip hot spots severely degrade the performance and reliality of
the circuit and increase the leakage power. In this paper, weresent
a highly efficient and accurate thermal simulation algorithm that is
capable of performing full-chip temperature calculations at the cell
level. The algorithm is a combination of several important umer-
ical techniques including the Green function method, the dicrete
cosine transform (DCT), and the frequency domain computatns.
Experimental results show that our algorithm can achieve oders of
magnitude SEeedup compared with previous Green function bsed
algorithms while maintaining the same accuracy.

I. INTRODUCTION

Thermal simulation algorithms in chip desi%n can be rougtilyided
into two categories based on whether the meshing of thecesulvstrate is
necessary during the simulation process. The generic #iesimulation
algorithms such as the finite difference method (FDM) and fihge
element method (FEM) used in [1] and [2] enjoy the advantaifdsigh
flexibility in handling different kinds of boundary condbtis in thermal
problems and the capability of achieving high accurac?/. elmw, the
requirement of meshing the entire substrate and laterrgpbviarge system
of linear equations in the simulations using these methodkes them
relatively inefficient. In [3], the thermal-ADI algorithm ag proposed to
efficiently solve the transient thermal problems using ahmesscheme
similar to that used in the FDM. However, for steady-statalysis, the
ADI algorithm can also become slow if the initial guess of temperature
distribution is far from the final solution.

The boundary element method (BEM) constitutes anothes dather-
mal simulation algorithms in which the volume meshing of shibstrate is
completely avoided. An important underlying concept in BEEM is the
Green function which describes the temperature distobuin the chip
when a unit point power source is present. In [4] and [5], thalwical
forms of the Green function were derived by assuming thaftcttip was
infinitely large horizontally. One significant advantage thé analytical
forms of the Green function is that they are very cheap touawal and
hence can be easily incorporated into optimization proesiwhere the
Green function needs to be evaluated many times. Howevesssyming
that the chip is infinitely large horizontally, the derivede®n functions
tend to severely underestimate the temperature, alth n correctly
identify the locations of the hot spots as shown in [4]. In, [8] Green
function that is suitable for the rectangular shaped chipnggry was
presented and look-up tables were established based orrelea @inction
to assist the efficient evaluation of the temperature fieldvextheless,
the cost of this algorithm can become prohibitive for cellelefull-chip
thermal simulations where both the number of heat sourca$tennumber
of field regions are large.

In [7], an efficient thermal simulation algorithm based oa #olution of
the finite difference equations using the multigrid apphoa@as proposed,
and it has the capability of performing the full-chip thetnzmalysis.
In this paper, we present another highly efficient and aceufall-
chip thermal simulation algorithm that is based on the Grieiction
method, the discrete cosine transform (DCT), and the f elomain
computations. Since the temperature field can be obtainezbbyolving
the power distribution with the underlying Green functiamsing the
frequency domain computations in conjunction with the DA result in
a significant improvement in efficiency as can be achievedanynsignal
processing works where the time or space domain convoligioeplaced
py the frequency domain analysis. The functional eigerengosition
approach used in the substrate parasitic extraction wor§]itis also a
specific implementation of the frequency domain analysis: &gorithm
takes a piece-wise constant power density map as the inpugeamerates
a piece-wise constant temperature map as the output. Threanristeps
of the algorithm include

1) Obtain the frequency domain representation of the poveesitly
map using the 2D DCT.
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2) Calculate the frequency domain representation of thepéeature
map by multiplying each frequency component of the powesitgn
map by the corresponding frequency response of the linesdersy
determined by the Green function.

3) Use a 2D inverse discrete cosine transform (IDCT) to obthe
temperature map from its frequency domain representation.

Both the 2D DCT and the 2D IDCT can be calculated efficientipgishe
2D fast Fourier transform (FFT) i®)((M-N)xlog(M-N)) time, where
M-N is the total number Ofc?rid cells in the power density map,chilis
also the total number of grid cells in the resulting tempeatmap. This
is a significant improvement over ti@((A-N)?) time complexity of the
algorithm presented in [6]. Experimental results show that algorithm
proposed In this paper can achieve orders of magnitude spemer the
algorithm in [6], while still maintaining the same accuracy
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Fig. 1. Schematic of a VLSI chip with packaging (a) IC chip ahd packaging
structure (b) simplified model of the chip and packaging.

Fig. 1(a) shows an IC chip with the associated packaging,Fagdl(b)
shows a schematic of the structure in Fig. 1(a) where the guacl
including the heat spreader and the heat sink has been Sedut the
multilayered structure of the chip is explicitly shown. Thteady state
temperature distribution inside the chip are governed By Foisson’s
equation
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wherer = (z,y,2), T(r) is the temperature (°C) distribution inside
the chip, g(r) is the volume power density (W), and k., is the
thermal conductivity (W/(nfC)) of the layer where point is located [9].
The vertical surfaces and the top surface of the chip arenasuo
be adiabatic [10], and the bottom surface of the chip is assuto be
convective, with an effective heat transfer coefficienW/(m?.°C)) [11].

In mathematical forms, these boundary conditions can beesspd as
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whereT, is the ambient temperature, akd; is the thermal conductivity
of the bottom layer of the chip. In addition, we enforce thetowity
conditions at the interface between adjacent layers witienmultilayered
chip, i.e.,
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wheree is an infinitely small quantity and; is the thermal conductivity
of the i*" material layer in the multilayered chip structure.



I1l. FULL-CHIP THERMAL SIMULATION ALGORITHM
A. The Green function of the rectangular-shaped multilayesedcture
Let G(r,r'), withr = (z,y, 2z) andr’ = (2,4, 2), be the distribution

of temperature aboVvé&, in the multilayer when a unit point power source

of 1W is placed at positiom’. ThenG(r,r’) satisfies the equation
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is the resPonse of the linear system to the frequency com]n@nﬁ(bx, ).
After the frequency domain representation of the poweritkedsstribution
in the source plane is obtained, the temperature distabuiti the field
plane can be calculated easily by

T(x,y) =Ta+ D D Aijaijéi;(z,v)

i=0j=0

(1)

As will be shown next, both the frequency decomposition i) (And the
double-summation in (21) can be calculated efficiently gishe DCT and
IDCT through the FFT.
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whered(r,r’) = §(x — 2')é(y — y')d(z — 2’) is the three-dimensional Fig. 2. The arrangement of the/ x N grid cells on the source plane.

Dirac delta function, and(r,r’) is the Green function. The temperature

field under an arbitrary power density distribution can beaoied easily

as
a b 0
T(r):TaJr/ dz’/ dy’/
0 0 —

an

dz'G(r,r")g(r") (13)

Using a derivation similar to that presented in [12], the érdunction
can be written in the form
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where 7, (z, 2")’s are functions of only the: coordinates of the source

and field points.

B. Full-chip thermal simulation algorithm

In the following analysis, we assume that both the heat ssuand the
field regions are located on discrete horizontal planesceSthe vertical
dimensions of the devices are much smaller than that of tlwsichip,
this assumption is reasonable for most practical purpdsmsa particular
pair of source and field planes, i.e., for a particutaand ', the Green
function can be written as

> > mmx nmTy mmz’ n‘rry,
G,y 2z’ y') = 3 > Cmncos ( )cos ( ) cos ( cos (15)
a b a b
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The temperature distribution on the field plane due to thé $earces on
the source plane is given by

"a b
T(z,y) = Ta +/ dm’/ dy'G(z,y, 7',y ) Pa(e ) (16)
0 0

divided into M x N rectangular grid cells of equal size as shown in Fig.
2, and the power density in each grid cell on the source plsnmiform,
}.e., the power density distribution can be written in thege-wise constant
orm
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where

if |2'|<iAzand|y’|<iAy

otherwise 23)

o) ={ §
and Az = 7, Ay = % Pran is the power density of thenn'® grid
cell. Substituting (22) into (17) and using the orthogadyaproperty of
the cosine functions in the integral sense, we obtain
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where
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Aij =\ h=sin (4 if i = 0,70 (25)
”_17?2 sin (£2) sin (g—N) if 140, j7#0

Note that to accurately represent the power density digtdb
Py(z',y’) using (17), the theoretical upper limit of the double suniamat
should be infinity. In practical implementations, howeuwbe summation
must be truncated to ensure a reasonable runtime. Sincés(&g3$entially

whereP,(x’, y') is the power density distribution on the source plane. Thbe Fourier expansion df,(z’, '), a natural criterion for determining the

convolution integral in (16) can be considered as the g(ingrequation

of a linear system determined by the Green functitfx, y, =, y').
As stated previously, the first step of our algorithm is toaaitthe

frequency domain representation of the power density mahdrform

Pa(a',y') = D> aidi(a’y')

@an
i=0j=0
where
bij(x,y) = cos <ﬂ) cos <ﬂ> "
a b
It is easy to show thap;;(z,y) satisfies the equation
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truncation point is that enough “energy” containedAf(«’, y') is covered
by the truncated Fourier expansion. Mathematically, weshav

o b 0o oo
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if i = 0,570 or i#0,5 = 0
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Substituting (22) into the left hand side of (26), we obtain
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where

ifi=j=0
(27)
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which can be considered as a form of the Parseval's theordms. T
truncation pointsM’ and N’ are then determined by

(28)
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Now we assume that both the source plane and the field plane are



where 7 is the proportion of the “energy” of the space domain signal

Py(z',y’) that must be covered by the truncated Fourier expansion.
practice, we found that settingto 90% will usually be enough to obtain
very accurate results in temperature calculations.

Note that foro<i<M and0<j<N, the double summation in (24) can
be considered as a term in the 2D type-ll DCT [13] of the powesisity
matrix P. Fori>M or j>N, we can always find integers ands» such
thati = 251 M+ andj = 2so N+j where0<i<M and0<j<N. Hence,
for any i and j, we always have

where
M—-1N-1 a4 -
=DV SET (M) cos (M) 1)
— = 2M 2N

with 0<i<M and 0<j<N is the 2D type-ll DCT of theP matrix and
the sign of (30) is determined by whether and s, are even or odd
numbers. Equation (31) can be calculated efficiently udieg2D FFT in

O((M-N)xlog(M-N)) time. After the 2D DCT matrixP _is obtained,
the calculation ofa,;; simply involves computing the coefficient;; and

finding the corresponding terd;;.
From (18) and (21), the temperature distributifiz, y) can now be

written as
(5)
o (1TY
b

and the average temperature of the!” grid cell can be obtained by
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As stated previously, ani>M andj>N can be written ag = 251 M1

andj = 255N+ such thatO<z<M 0<j<N and s;,s2 are integers.
lﬁ]sw}g the periodicity of the cosine functlon we can finalgstT,,, Into

the form
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Input:
« Chip geometry and physical properties of the material kyer
« Power density map - matri®.

Output: Temperature distribution map - matflx

Algorithm:

Calculate the Green function coefficiem?s,j/s

Calculate the frequency responses of the sysiems;

Calculate the type-1l 2D DCT of the power density matfix= 2DDCT(P);

TSE — M—1

In

ASE — Ei—lzN -1

2.
Sij Qs
while ( ASE < nx1'sE)

M' =M+ M, N =N+ N;
Update ASE;
end while
6) Calculate the matri¥<; ~
7) Calculate the matriX. with L-- i = K;: P
8) Calculate the temperature distribution map using they2D IDCT T =

To + 2DIDCT(L);

Fig. 3. Thermal simulation algorithm using the Green fumttmethod, the DCT,
and the frequency domain computations.

After the coefficientsngs are calculated, the matriX can be easily

obtained by point-wise multiplying the matricds and P. The double
summation in (35) can then be calculated efficiently usirg2b IDCT.

The complete thermal simulation algorithm using the Gragmction
method, the DCT, and the frequency domain computations ésvishin
Fig. 3. The asymptotic time complexity of the algorithm@$(M-N) x
log(M-N)) where M-N is the total number of grid cells. This is a
significant improvement over th@((M-N)?) complexity of the algorithm
given in [6]. Note that up to now, we have focused on the effect
of one source layer on the temperature distribution of thi fiayer.
When multiple source layers are present, such as in the @meBD
IC technology, their effects can be calculated individpahd summed
up. The ambient temperaturE, should only appear once in the final
summation.

IV. EXPERIMENTAL RESULTS
A. Accuracy and Efficiency of the Algorithm
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Fig. 4. Power density and temperature distribution of am®ta chip (a) power
density distribution (b) temperature distribution.

Because the method presented in [6] is accurate exceptdaetly small
truncation error of the Green function, we use the resuljra the bench-
mark to test the accuracy and efficiency of our algorithm. Bighows the
power distribution of an example chip and the calculatedpenature map
using the algorithm proposed in this paper. The heat soweEassumed
to be located on the top surface of the chip and the size oftingpérature
map is 64 64. The chip has dimensions of 3.3nmB.3mmx0.5mm. The
thermal conductivity of silicon is 148W/(C) and the bottom surface
of the chip has an effective heat transfer coefficient of V(@2 -°C).
We require our algorithm to achieve a similar accuracy as |thgﬁ] %
choosingn in (29) appropriately, i.e., within 1% error compared witfet
results from commercial computational fluid dynamic sofega and the
runtimes of the two algorithms are compared. Each runtimdiigled
into two parts, i.e., the time spent on the steps that arepentdent of
the input power density matrix and hence can be pre-cakmlilatutside
the optimization loop in thermal-aware designs, and theetspent on
the steps that depend on the input power density matrix andeheust
be executed within the optimization loop. For both algarith the Green
function coefficientsC;;'s can always be pre-calculated and stored.
addition, the look-up tables in the algorithm in [6] can be-pelculated
while the frequency responsgs;’s in our algorithm can be pre-calculated.
For the pre-calculated steps, the runtime Is dominated &yctmputation

n



of the coefficientsC;;’s in both algorithms, which may take about 95sec Fig. 6 shows a chip that is divided inth/ x N coarse grid cells each
to obtain a 20482048 C' matrix. However, since these steps only need tof which contains several logic gates or analog functiomatsy and let

be executed once for each die geometry and then used margitirtager
thermal simulations, the amortized cost is usually exttgnsenall and
we will ignore this part of the runtime in further analysisxgerimental
results show that for the steps that are not pre-calcul#tteduntime of our
algorithm using MATLAB is 0.09sec while that of the algorithin [6] is
128sec. Note that the runtime of the algorithm in [6] is lineéth respect
to the number of heat sources and there are only 13 heat sourthe
example given here. For cell level full-chip simulationses the number
of heat sources is significantly larger, the advantages o&tmorithm will
become even more obvious.

B. Cell Level Full-Chip Thermal Simulation

Power Density W / cmz)

05 05
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Fig. 5. Cell level power density and temperature distritoutof a 1cnmx 1cm chip
(a) power density distribution (b) temperature distribati

In this subsection, we show an example of cell level fullpcttiermal
simulations. We consider a chip with dimensions of ichemx0.5mm
and the same physical properties as the chip used in theopseekample.

There are 10241024 square grid cells of equal size located on the top
surface of the chip and a 1024024 temperature distribution map of the

cell layer is calculated. Fig. 5 shows the input power dgnsiap and
the resulting temperature map. The time it takes for MATLABobtain
this temperature map containing 1.05M grid cells is onlyséatexcluding
the time for the pre-calculations while the runtime of thgoaithm in [6]
becomes intractable.

V. DISCUSSIONS- STRATEGIES FORPERFORMING THETHERMAL
SIMULATIONS WITH LOCAL HIGH ACCURACY REQUIREMENTS

The situation frequently arises in real design environimeniere the
accuracy requirements on the thermal simulation diffemfrdace to place
on the same chip. For example, in mixed signal designs winerarnalog
circuits are fabricated on the same chip as the digital itBcthe analo
blocks often have more stringent accuracy requirementshernttiermal
simulation because the operations of the analog circuitsraare sensitive
to temperature. For these kinds of problems, a better giratan be
adopted to accelerate the runtime of the algorithm furthbe key idea
is to use a coarse grid to divide the source and field layeis that each
grid cell can contain several logic gates or analog funetiamits. The
power density of each grid cell is calculated by summing up power
dissipations of all the logic gates and analog functionatsuocated in it
and divide the sum by the area of the grid cell. A coarse teatper map
is then obtained from the coarse power density map using lguittam
presented in section Il and is used for the digital blockgtanchip. Note
that we must ensure that the coarse grid is fine enough for igitald
B:OCES but they may not achieve the accuracy requirementleofnalog

ocks.

=
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Fig. 6. A mixed signal chip where the analog block has higleguuirement on
the accuracy of the thermal simulation.

the shaded area represent the analog block MArR N temperature map
is first obtained. The inaccuracies in the temperature tlons, besides
that due to the truncation of the eigen-decomposition ofpiv@er density
map, will come from two sources which include
« Assuming that the power density in each grid cell is uniform.
« Only the average temperature of each grid cell is calculated all
the logic gates and analog functional units inside the saraecgll
obtain the same calculated temperature.

Now assume that we need to calculate the temperature of th®gan

functional unit located in thé;j*" grid cell and represented by the black
rectangle more accurately. L&f; andT;;,x; be the average temperature of
thei5" grid cell and the contribution of the average power densitihe
EIth grid cell to the average temperature of th&" grid cell in the coarse
grid temperature calculations respectively, andlgt. represent the more
accurate average temperature of the analog functional \Weitdivide the
grid cells into two categories, i.e., those with close iattions with the
ijth grid cell (denoted byCI;;) and those without close interactions with

theij*" grid cell. The effects of the logic gates and analog functiamits
that are contained in the grid cells belongingdd;; are re-calculated for

increased accuracy. For example, we can putljﬁe grid cell and all the
grid cells surrounding it into the first category and all thkes grid cells
into the second category. If higher accuracy is requiredn tinore grid
cells should be put into the first category. The temperaiure can then
be calculated using

T T T d functional unit
_ . L el gatc an 40
a-c B Zkzect. 0 Zs s (40)

where T8>te and functional unit g the contribution tol, .. from the s**
logic gate or analog functional unit in the grid cells thatvénaclose
interactions with thé;*" grid cell. BothT}; 5, and7g>te and functional unit
can be calculated efficiently using the table look- up apghnagiven in [6]
and will not be reiterated here.

V1. CONCLUSIONS

In this paper, we presented a cell level full-chip thermahwdation
algorithm that is a combination of the Green function methibe DCT,
and the frequency domain computations. Experimental testlow that
our algorithm can achieve orders of magnitude speedup amupaith
previous Green function based thermal simulation algorsttwhile still
maintain the same accuracy. The simulation of a chip coimigit.05M
grid cells only takes about 6.4sec after the pre-calcuiatibave been
performed. In addition, the strategies that can be usedh@rproblems
that have local high accuracy requirements on temperaticelations are
also discussed.
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