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Abstract— In nanometer technologies, shallow trench isolation (STI)
induces thermal residual stress in active silicon due to post-manufacturing
thermal mismatch. The amount of STI around an active region depends
on the layout of the design, and the biaxial stress due to STI results
in placement-dependent variations in the the transistor mobilities and
threshold voltages of the active devices. An analytical model based on
inclusion theory in micromechanics is employed to accurately estimate the
stresses and the strains induced in the active region by the surrounding
STI in the layout. The induced changes in mobility and threshold voltage
changes are computed at the transistor level, and then propagated to the
gate and circuit levels to predict circuit-level delay and leakage power
for a given placement.

Key Terms : Shallow Trench Isolation, Static Timing Analysis, Analyt-
ical Model, Inclusion Theory

I. INTRODUCTION

In nanometer technologies, shallow trench isolation (STI) is used
to isolate active transistor regions in the layout. In typical fabrication
technologies, shallow blocks of STI, made of SiO2, are inserted into
a much larger three-dimensional silicon structure. Figure 1(a) shows
a representative layout of a standard cell showing a 2D view of STI.

During manufacturing, the STI oxide is grown from Si around an
active region at a temperature of 1000◦C using oxidation. When the
chip returns to room temperature, the unequal coefficients of thermal
expansion (CTEs) of SiO2 and Si result in an unintentional residual
thermal stress in the active Si. This stress can affect the mobility and
threshold voltage of the transistors, and hence the circuit performance.
The work in [1] documents the impact of STI stress and shows that
the PMOS (NMOS) delay of a CMOS inverter improves (degrades)
by about 17% (8%) when moved from a denser layout region with
many surrounding gates to a sparser region with no neighbours.

Fig. 1. A segment of a circuit layout showing how the STI in adjacent cells,
or in gaps between cells, imply that the shape of an STI region depends on
the layout of neighboring cells.

This STI-induced stress, and hence its performance impact, is
highly layout-dependent since STI surrounds and abuts the active
region in the physical layout in nonuniform ways. Therefore, the
amount of STI around a transistor is determined by the relative
locations and layouts of its neighbouring cells. For instance, to
evaluate the stress affecting gate g6 in the middle row in the Figure 1,
we must consider STI contributions from its eight neighbours g2
through g10, and also the STI within g6.
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Therefore, STI stress can only be correctly evaluated after lay-
out. In theory, it may be possible to precharacterize the stress by
parameterizing the layout of the neighbors of a cell, but the number
of cases to be characterized for all possible neighbors can be large.
In the published literature [1], [2], the only known accurate method
involves computationally expensive finite element simulation for each
transistor, which is impractical for layouts of realistic-sized circuits.

An alternative to finite element simulations involves the use of
analytical models, which can be evaluated fast enough to permit the
analysis of large layouts. Much of the literature in this area [3]–[6] is
based entirely on the use of one-dimensional models that account for
stress components only along the longitudinal direction (i.e., along
the channel direction). However, finite element simulations in [1], [2]
show that STI stress in the transverse direction, perpendicular to the
channel direction, also impacts the circuit performance. Furthermore,
[3]–[6] use only a single component of the stress tensor for perfor-
mance evaluation, while the entire stress tensor must be evaluated to
accurately analyze STI-induced circuit performance variation. The
work in [7] uses both longitudinal and transverse direction STI
contributions, but is based on an empirically fitted model that is not
scalable for nonrectangular shaped active/STI regions.

In this work, we present an analytical method to accurately capture
the effects of STI on circuit performance for a given layout, taking
into account the three-dimensional geometry of the STI together with
its nonrectangular shape around an active region. Specifically, we
• model the effects of STI using a three-dimensional stress model

based on inclusion theory in micromechanics,
• translate STI-induced stress effects into corresponding transistor

mobility and threshold voltage variations.
• capture the dependencies of gate delay and leakage variations

on placement for single and multifingered standard cells, and
• analyze the impact of STI on circuit timing and leakage power.
The paper is organized as follows. In Section II, we describe the

electrical effects of STI stress, and determine the precise stress and
strain components that must be modeled. Next, a stress modeling ap-
proach based on results in inclusion theory is described in Section III.
In Section IV, we see how all of this information is drawn together
to evaluate performance. The results of our method are presented in
Section V, followed by concluding remarks.

II. ELECTRICAL EFFECTS OF STI-INDUCED STRESS

Applied mechanical stress causes changes in transistor electrical
properties, specifically in the mobility and the threshold voltage.
Mobility variations are caused by the piezoresistive behavior of
silicon, while threshold voltage variations occur due to changes in
electronic band potentials due to applied stress. The induced changes
in the mobility and threshold voltage can be expressed in terms of
the stress and strain tensor, which characterize the mechanical stress
and are described in greater detail in Section III.

A. Variation of Mobility with Stress

According to piezoresistivity, an applied mechanical stress causes
changes in resistivity and hence the mobility of the transistors. Most



integrated circuits are manufactured on wafers with their channels
parallel or perpendicular to [110] silicon crystal orientation, which
also corresponds to the wafer flat direction [8]. The axis perpen-
dicular to the wafer surface usually corresponds to (001) Si crystal
orientation. Thus a natural coordinate system would be along [110],
[110] and [001] [8], which corresponds to a 45◦ rotation of the
Cartesian coordinate system. A complete mathematical model for
piezoresistivity has been presented and demonstrated in silicon in
[8]. The relative change in mobility for transistors oriented along
[110] crystallographic direction is given as:

∆µ′

µ′
= π′11σ

total
x′x′ + π′12σ

total
y′y′ (1)

Here, π′11 and π′12 are the piezoresistive coefficients in [110]− [110]
coordinate system. The values of the piezoresistive coefficients are
given in Table I. Here, σx′x′ and σy′y′ are two primary components
of the stress tensor that significantly affect the transistor mobilities.

TABLE I
PIEZORESISTIVITY COEFFICIENTS (X10−12 Pa−1) IN [100] SI [9]

π11 π12 π44 π′11 π′12 π′44
NMOS 1022.0 −537.0 136.0 310.5 174.5 1559.0
PMOS −66.0 11.0 −1381.0 −717.5 662.5 −77.0

B. Variation of Threshold Voltage with Stress

According to deformation potential theory [10], [11], mechanical
strain in the channel causes shifts and splits in conduction and valence
band potentials. This results in corresponding shifts in the threshold
voltage of the transistors and can be attributed to changes in silicon
electron affinity, band gap, and valence band density of states. The
changes in conduction and valence band potentials are given by [10]:

∆E
(i)
C (ε) = Ξd (εxx + εyy + εzz) + Ξuεii, i ∈ {x, y, z}

∆E
(hh,lh)
V (ε) = a (ε1 + ε2 + ε3) (2)

±
√
b2

4
(εxx + εyy − 2εzz)2 +

3b2

4
(εxx − εyy)2 + d2ε2xy

Here, ∆E
(i)
C is the change in the conduction band potential energy in

the carrier band number i. The term EhhV [ElhV ] denotes the heavy-
hole [light-hole] valence band potential. The positive [negative] sign
is used for EhhV [ElhV ]. The terms Ξd and a are the hydrostatic
deformation potential constants and the terms Ξu, b, and d are the
shear splitting deformation potential constants whose values are given
in Table II. The terms εi, i ∈ {1, · · · , t} correspond to the six strain
components in the Cartesian coordinate system, and correspond to
εxx, εyy , εzz , 2εyz , 2εzx, and 2εxy , respectively. The expressions for
the strains are given in the Section III-C.

TABLE II
BAND EDGE DEFORMATION POTENTIAL CONSTANTS [10]

Ξd (eV) Ξu (eV) a (eV) b (eV) d (eV)
1.13 9.16 2.46 −2.35 −5.08

The threshold voltage is a function of band-gap potential and thus
can be expressed as a function of the changes in conduction band and
valence band potentials. In this work, the changes in the electronic
band potentials are dependent on the STI-induced stains. Ignoring
negligible contributions from density of states changes [11],

q∆Vthp = m∆EC − (m− 1)∆EV

q∆Vthn = m∆EV + (m− 1)∆EC (3)

where ∆Vthp and ∆Vthn are the changes in PMOS and NMOS
threshold voltages, respectively. The term q = 1.6 × 10−19C
represents the electron charge and the term m is the body-effect
coefficient with a typical value of 1.3 to 1.4. The term ∆EC is the

minimum of the changes in conduction band potentials, ∆EiC and
the term ∆EV denotes the maximum of the changes in valence band
potentials, ∆EhhV and ∆ElhV . It should be noted that ∆EC [∆EV ] is
always negative [positive] valued and denotes conduction [valence]
band lowering [raising] with STI stress. This reduces the band-gap
and improves th threshold voltages of both NMOS and PMOS.

III. STRESS MODELING

As seen in Section II, the changes in electrical properties require
the computation of specific components of the STI-induced stress
in Si: specifically, we must determine the two components σx′x′ and
σy′y′ of the stress tensor, as well as the six strain tensor components.

In the Manhattan geometries employed in chip design, STI shapes
are rectilinear. In this work, we work directly with three-dimensional
cuboidal shapes by employing inclusion theory from micromechan-
ics [12] to estimate the stresses and strains in the active silicon
arising due to thermal mismatches with cuboidal STI shapes that have
finite sizes in three dimensions. In micromechanics, an inclusion is a
subdomain with an initial strain embedded in a larger domain, either
having similar or dissimilar mechanical properties.

We will first present a solution to the basic problem of finding the
stress due to a cuboidal STI structure, with finite dimensions along
all three coordinate axes, embedded in silicon. However, general
STI geometries may be have arbitrary three-dimensional rectilinear
shapes, as observed in Figure 1. It is common practice [13] in
micromechanics to divide an arbitrary shaped inclusion into smaller
substructures and use linear superposition to find the total stress.
Here, a general STI geometry is as a union of smaller cuboidal shapes,
whose stress and strain contributions are superposed.

A. Notation and Fundamental Equations of Elasticity

Before we develop the stress model, we describe the notation and
the fundamental equations used in describing a stress state. In this
paper, all materials are assumed to be isotropic and homogeneous.
We employ the standard concise Einstein notation, where repeated
indices imply summation, and we represent the three coordinate axes
as (x1, x2, x3), respectively. In general, to obtain the stress state of
a mechanical system, we need 15 components:
• six unique stress components σij (stress tensor),
• six unique strain components εij (strain tensor), and
• three displacements ui (displacement tensor)

where i, j ∈ {x1, x2, x3} for any orthogonal coordinate system. The
15 unknowns are determined by solving the following 15 equations:
• 6 stress-strain equations (Hooke’s Law):

σij = Cijkl(εkl − δklα∆T ) (4)

• 6 strain-displacement equations:

εij =
1

2

(
∂ui

∂j
+
∂uj

∂i

)
+ δijα∆T (5)

• 3 force-balance equations:
∂σix1

∂x1
+
∂σix2

∂x2
+
∂σix3

∂x3
+Bi = 0 (6)

Here, i, j, k, l ∈ {x1, x2, x3}, δij is Kronecker’s delta function, α
denotes the coefficient of thermal expansion, ∆T refers to the change
in temperature, and Bi is the external body force. The values of the
physical constants used in this work are given in Table III.

TABLE III
PHYSICAL CONSTANTS FOR STRESS COMPUTATION

E (GPa) CTE (ppm/oC) ν
Silicon 162.0 3.05 0.28
SiO2 71.7 0.51 0.16

The Cijkl elements here represent the components of the stiffness
tensor and is a function of Young’s modulus E and Poisson’s ratio
ν of the material. The nonzero components are given below:
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C1111 = C2222 = C3333 =
E(1− ν)

(1 + ν)(1− 2ν)

C1122 = C2233 = C1133 =
Eν

(1 + ν)(1− 2ν)

C2211 = C3322 = C3311 =
Eν

(1 + ν)(1− 2ν)

C1212 = C3131 = C2323 =
E

2(1 + ν)
(7)

The solution of Equations (5) and (6) depends upon the geometry
and boundary conditions of the mechanical system. The Equation (4)
purely depends upon the material under consideration.

When the body forces Bi, i ∈ {x1, x2, x3} are zero, it can be
shown that the displacements or stresses can be represented in terms
of a function Φ that satisfies the relation:

∇4Φ = 0 (8)

The solution to the system of elasticity equations can be found in
terms of a biharmonic function, Φ, that satisfies the specified bound-
ary conditions of the system. A biharmonic [harmonic] function is a
function whose fourth [second] order partial derivative is zero. This
useful result has been exploited in micromechanical stress modeling
to deduce the stress state for complex geometries. In a displacement
formulation [stress formulation] the displacement [stress] is equated
to the second partial derivative of a biharmonic function that satisfies
the boundary conditions [14]. Once the displacement [stress] is
known, the other unknowns of the stress state can be determined
from Equations (4), (5), and (6). For the rest of this section, the
terms qualified by a superscript M ∈ {Si, SiO2} that refers to the
terms corresponding to the material M .

B. The Inclusion Problem in Micromechanics

In continuum mechanics, inelastic strains are those that occur even
in the absence of external body forces and thus can never be removed.
Residual strains such as thermal mismatch strains, initial strains, and
misfit strains (due to crystal defects) are examples of inelastic strains.
In micromechanics such strains as termed as eigenstrains [12]. The
six possible eigenstrains in any coordinate system (x1, x2, x3) are
denoted by eij for i, j ∈ {x1, x2, x3}.

Furthermore, any subdomain Ω having an initial nonzero eignen-
strain, embedded in a domain D with zero initial eigenstrains, and
either having similar or dissimilar mechanical properties, is known as
a mechanical inclusion. Figure 2(a) shows an example of a cuboidal
inclusion embedded in a semi-infinite space. A homogeneous [in-
homogeneous] inclusion is one with domain D and subdomain Ω
having similar [dissimilar] mechanical properties. The domain has
typically much larger dimensions as compared to the subdomain. The
inclusion problem in micromechanics finds the stress state of such a
system. There is a rich body of work on this class of problems in
micromechanics [13], [15]–[17].

(a) (b)
Fig. 2. (a) A general inclusion in half-space. (b) STI as a cuboidal inclusion.

Shallow trench isolation (STI) is made up of SiO2 and is embedded
in silicon at a high temperature of 1000◦C. The thickness of STI is
of the order of few hundreds of nanometers, while the thickness of

silicon substrate is typically of the order of several tens or hundreds
of micrometers. Figure 2(b) shows three STI inclusions in silicon.

After manufacturing, owing to the CTE mismatch, seen in Table III,
between Si and SiO2, there is a residual thermal stress induced
in active silicon. Compared to when it was manufactured, STI is
comparatively smaller in volume to the silicon substrate and causes
inelastic thermal strains, and it can be considered as an inhomoge-
neous inclusion within Si. In general, an STI structure is in the form
of an arbitrary rectilinear shape, and we decompose this shape STI
into elementary cuboidal shapes and superpose known solutions for
cuboidal inclusion problems. Thus, we can treat STI as a cuboidal
inclusion and obtain the effective eigenstrains in silicon by following
a series of fictitious mechanical operations, as is the case with most
inhomogeneous inclusion problems [12].

Summarizing the procedure for analyzing an STI inclusion in Si,
1) We first conceptually “remove” the STI from substrate at

T = 1000◦C and allow both STI and the silicon substrate to
undergo thermal contraction to room temperature, i.e., 25◦C.
This implies that ∆T = 975◦C can be used in the stress formu-
lation. The thermal strains in STI and silicon are εT (SiO2)

ij =

δijα
SiO2∆T and εT (Si)

ij = δijα
Si∆T , respectively. Since the

inclusion (STI) as well as the domain (silicon) undergo free
thermal contractions, the stresses in both materials are zero.

2) Next, we apply a fictitious tensile force of FSiO2
ij =

CSiO2
ijkl ε

T (SiO2)
ij on the STI inclusion and a fictitious compres-

sive force of −FSiij = −CSiijklε
T (Si)
ij on silicon to bring them

to original shapes.
3) The SiO2 is now considered to be welded back into the silicon

and the fictitious forces are removed and are replaced by an
effective force applied on the insides of the silicon domain of
∆Fij = FSiij − FSiO2

ij . ∆Fij is the equivalent force applied
by a homogeneous inclusion with a initial strain.

4) The equivalent eigenstrain due to this equivalent force in silicon
is given by eSiij = CSiijkl

−1
∆Fij .

C. Galerkin Vector Function Based Stress Formulation

From Section III-A, in the absence of body forces, the system of
elasticity equations are reduced to a biharmonic equation. Using dis-
placement potential theory, the elastic displacement can be expressed
as a second partial derivative of a single vector function, the Galerkin
vector function [13]. Elastic strains and stresses can be deduced from
Equations (4) and (5). The form of these potentials depends on the
geometry of the exterior domain and the inclusion subdomain.

In a general coordinate system, any point can be represented by a
tuple (x1, x2, x3) and the corresponding position vector is denoted
by x. The points in an inclusion are known as source points and
the points in the domain are known as observation points. We are
interested in computing the stress state at the observation points. Let
(x̂1, x̂2, x̂3) denote a point in the source subdomain; the correspond-
ing position vector is denoted by x̂. The elastic displacements ui and
stress components σij due to eigenstrains eij , i, j ∈ {x1, x2, x3} in
terms of a Galerkin vector function Φ(x) are given by [13]:

2µui(x) = 2(1− ν)Φi,jj − Φk,ki

σij(x) = νΦk,kmmδij − Φk,kij + ν(Φi,kkj + Φj,kkj),x /∈ Ω

σij(x) = νΦk,kmmδij − Φk,kij + ν(Φi,kkj + Φj,kkj)

−2µeij − λekkδij ,x ∈ Ω (9)

Here, µ and λ are the elastic Lamé constants given in Table IV. The
Galerkin vector function Φ(x) is biharmonic and satisfies∇4Φ(x) =
0, and is in turn a function of elementary Galerkin vectors composed
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of biharmonic and harmonic potential functions. It is chosen so that it
satisfies two primary boundary conditions of the inclusion problem:
• all components of stress should vanish at infinite distance from

the inclusion, σDij (∞) = 0 for i, j ∈ {x1, x2, x3}.
• there should be a displacement continuity across the inclusion

and domain boundary. uΩ
i = uDi for every i ∈ {x1, x2, x3}.

A general solution for a cuboidal inclusion has been presented
in [13]. The work presents a detailed mathematical framework based
on Galerkin vector formulation. The general solution in [13] can
predict the stress state at every point in the domain for an any
given eigenstrain tensor. For the STI-induced thermal stress problem,
further simplifications are possible based on two observations:
• For a thermal stress problem, only the normal components of the

eigenstrain tensor are present, eSiij 6= 0 for i = j; zero otherwise.
• Since STI is near the surface of silicon and electrical current

flows near the device surface, z1 = 0 for the observation points.
Making use of these ensuing simplifications, we obtain closed-

form expressions for the major stress and strain components used
in computing electrical variations as seen in Section II. As pointed
out in Section II-A, since integrated circuits are manufactured in the
primed coordinate system, (x1, x2, x3) can be replaced by (x′, y′, z′)
to represent the stress and strain tensor components in this primed
system. The strain components in Cartesian coordinate system can
be obtained by Hooke’s Law and by appropriate coordinate transfor-
mations. For an cuboidal inclusion whose coordinates are described
by the closed intervals, x̂′ ∈ [a1, a2], ŷ′ ∈ [b1, b2], and ẑ′ ∈ [c1, c2],
the final closed-form expressions are given in Table IV in terms of
elementary functions and constants. The constant Cσ denotes the
multiplicative constant for the stress components.

To obtain the overall STI impact, we divide the STI in the
transverse and longitudinal directions around an active region into
nonintersecting cuboidal shapes and use the solution presented in
Table IV. We apply linear superposition and add all contributions
from the adjoining STI to find the total stress and strains:

σtotalij =
∑
STI

σSiij ; εtotalij =
∑
STI

εSiij (10)

D. Comparison with the Finite Element Method

To verify the accuracy of the analytical stress model and the
validity of linear superposition we perform finite element (FE)
simulations using ABAQUS [18] on representative active silicon
regions surrounded by STI (SiO2) on all sides. To demonstrate the
effectiveness of the superposition we use an irregular shaped active
region as shown in Figure 3. We consider four diffusion connected
transistors T1, T2, T3, and T4. This represents the series pull-
down NMOS transistors of a NAND4 gate with T1 being closest
to the output. Each active region (green) is about 250 nm wide. The
electrical widths or the physical heights of the transistors are: W(T1)
= 100nm, W(T2) = 200nm, W(T3) = 300nm, and W(T4) = 400nm.
The channel length is 50nm. The boundary of the STI is 1600nm ×
1200nm. We decompose these STI regions into smaller cuboids as
shown in the top view in Figure 3. We then apply our model described
in Section III-C and use linear superposition to add contributions
from each STI cuboid. The resultant stress components probed under
the channel region below the poly (red) and are shown in Figure 4.
Our analytical model provides a good match even for nonrectangular
active or STI regions. Table V compares the NAND4 FO4 fall-time
delays in a 45nm technology for low-to-high transitions on inputs of
each of the transistors, obtained using our analytical stress model and
the FEM model. The delays are computed using HSPICE. It can be
seen that although the FEM stress can be different from the analytical

TABLE IV
STRESS AND STRAIN TENSOR COMPONENTS

Stress components used in mobility computations

σ
x′x′ = C

σ
[
(2 + 4ν

Si
)φ1 + (6 − 4ν

Si − 8(ν
Si

)
2
)φ̄1 + 2ν

Si
φ2

−2ν
Si
φ̄2 + 2ν

Si
φ3 − 2ν

Si
(5 + 4ν

Si
)φ̄3

]x1−a1,x2−b1,x3±c1

x1−a2,x2−b2,x3±c2

σ
y′y′ = C

σ
[
(2 + 4ν

Si
)φ2 + (6 − 4ν

Si − 8(ν
Si

)
2
)φ̄2 + 2ν

Si
φ1

−2ν
Si
φ̄1 + 2ν

Si
φ3 − 2ν

Si
(5 + 4ν

Si
)φ̄3

]x1−a1,x2−b1,x3±c1

x1−a2,x2−b2,x3±c2

σ
x′y′ = C

σ
[
(2 + 2ν

Si
)χ + (6 − 2ν

Si − 8(ν
Si

)
2
)χ̄ − ψ − (3 − 4ν

Si
)ψ̄

+4(1 − 2ν
Si

)(1 − νSi)η̄
]x1−a1,x2−b1,x3±c1

x1−a2,x2−b2,x3±c2

Strain components used in threshold voltage computations

εxx =
1

2ESi
[(1 − νSi)(σ

x′x′ + σ
y′y′ ) + 2(1 + ν

Si
)σ
x′y′ ]

εyy =
1

2ESi
[(1 − νSi)(σ

x′x′ + σ
y′y′ ) − 2(1 + ν

Si
)σ
x′y′ ]

εxy =
(1 + νSi)

2ESi
[σ
y′y′ − σx′x′ ]

εzz = εzx = εzy = 0

Elementary functions and constants

φ1 = − tan
−1

(
ξ2ξ3

ξ1r

)
; φ2 = − tan

−1
(
ξ1ξ3

ξ1r

)
; φ3 = − tan

−1
(
ξ1ξ2

ξ3r

)

φ̄1 = − tan
−1

(
ξ2 ξ̄3

ξ1r̄

)
; φ̄2 = − tan

−1
(
ξ1ξ̄3

ξ1r̄

)
; φ̄3 = − tan

−1
(
ξ1ξ2

ξ̄3r̄

)
χ = log(r + ξ3); χ̄ = log(r̄ + ξ̄3);

ψ =
ξ21 + ξ22

r(r + ξ3)
+
ξ3

r
; ψ̄ =

ξ21 + ξ22

r̄(r̄ + ξ̄3)
+
ξ̄3

r̄
; η̄ =

ξ21 + ξ22

2(r̄ + ξ̄3)2
+

ξ̄3

r̄ + ξ̄3

r =
√
ξ21 + ξ22 + ξ23; r̄ =

√
ξ21 + ξ22 + ξ̄23;

ξ1 = x
′ − x̂′; ξ2 = y

′ − ŷ′; ξ3 = z
′ − ẑ′; ξ̄3 = z

′
+ ẑ
′

C
σ

=
µeSi

8π(1 − νSi)
; e
Si

=
1 − 2νSi

ESi

(ESiαSi∆T
1 − 2νSi

−
ESiO2αSiO2∆T

1 − 2νSiO2

)

µ
M

=
EM

2(1 + νM )
; λ
M

=
EMνM

(1 + νM )(1 − 2νM )
, forM ∈ {Si, SiO2}

models, the delay error in using our analytical model compared to
the FEM model is well under 1%.

Fig. 3. An irregular shaped active region in STI. The STI is fragmented into
smaller cuboids (rectangles in 2D) around the active regions.
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TABLE V
DELAY COMPARISON BETWEEN FEM AND ANALYTICAL MODELS

Transistor T1 T2 T3 T4
FEM (ps) 44.45 46.11 47.61 48.04

Analytical (ps) 44.62 46.23 47.7 48.06
Error (%) 0.38% 0.26% 0.19% 0.04%

IV. CIRCUIT PERFORMANCE EVALUATION

Using the methods described in Sections II and III, for a given
layout, the changes in the device mobility and threshold voltage can
been computed for each transistor along the width of the transistor.
We use the average of the electrical variations along the transistor
width. We then evaluate the variations in circuit performance by
conducting static timing analysis and leakage power analysis.

For a gate with n transistors, the delay under variations in the
threshold voltage V strth,i and mobility µstri for the ith transistor, 1 ≤
i ≤ n, can be computed using a first-order Taylor expansion:

Dstr = D0 +

n∑
i=1

(
∂D

∂µi

∣∣∣∣
0

∆µstri +
∂D

∂Vth,i

∣∣∣∣
0

∆V strth,i

)
(11)

where Dstr is the total gate delay due to STI stress, D0 is the nominal
delay of the gate without any electrical variations, and the partial
derivatives of delay with µi and Vth,i denote the delay sensitivity
of the gate to the mobility and threshold voltage, respectively, of
transistor i, computed at the nominal point.

The leakage power of a transistor exponentially increases (de-
creases) with its decreasing (increasing) threshold voltage. However,
for small changes in threshold voltage of a transistor, the gate-level
leakage power varies almost linearly. STI-induced threshold voltage
variations in transistors are typically few tens of millivolts, while the
nominal threshold voltage of a transistor is about 400 mV in this
work. Thus the leakage power of a gate under unequal changes in
threshold voltages of n transistors of a gate can also be computed
using a first order Taylor series expansion as:

Lstrgate = L0
gate +

n∑
i=1

∂Lgate

∂Vthi

∣∣∣∣
0

∆V strthi (12)

where Lstrgate is the leakage power of a gate under STI-induced stress
and L0

gate is the nominal leakage power of the gate under no stress.
The partial derivative of Lgate with Vthi represents the sensitivity of
the leakage current of the gate to changes in the threshold voltage
of transistor i, evaluated at the nominal point. Our relative error in
computing leakage power of standard cells in this work is under 1%.

For a given placement, we use the analytical framework developed
so far to compute the circuit performance as follows:
• From the layout information for a circuit, we recover the STI

configuration affecting the transistors within each standard cell.
We then compute the stress using the models in Section III.

• Based on the stress computations, we then proceed to compute
the changes in mobility and threshold voltage of each transistor
using Equations (1) and (3), respectively.

• Knowing the changes in electrical parameters of individual
transistors in a logic gate, we compute the delay and leakage
power using Equations (11) and (12), respectively.

• We then perform static timing analysis and leakage computation.

V. RESULTS

Shallow trench isolation effects are highly layout-dependent. The
magnitude of electrical variation in a standard cell depends on its
layout, and its relative position to its neighbours and their layouts.
We apply our methods on a set of IWLS benchmarks [19], listed in
Table VI, where H [W] represents the height [width] of the layouts,
#PO denotes the number of primary outputs, and D0 [L0] denote the
critical path delay [leakage power] without STI effects.

TABLE VI
IWLS 2005 [19] CIRCUITS

Ckt. Index # Gates H×W # POs D0 L0

(µm×µm) (ps) (µW)
ac97 ctrl C1 9047 92 × 171 4204 429 298
aes core C2 11346 64 × 259 12313 418 226

des C3 4443 50 × 178 332 870 177
ethernet C4 27060 184 × 242 32149 644 562

i2c C5 1110 23 × 76 204 389 35
mem ctrl C6 8860 78 × 201 2522 842 251

pci bridge32 C7 9988 92 × 200 9025 636 325
spi C8 3216 60 × 117 564 693 117

systemcdes C9 2600 48 × 119 549 694 118
usb funct C10 10667 79 × 201 3930 624 248

Our standard cell layouts are based on the 45nm Nangate standard
cell library [20]. The cells consist of gates with single-, two-,
and four-fingered layouts. The standard cells are characterised for
different load capacitances and input slopes at a supply voltage of
1.0V and a temperature of about 25oC. Since STI is manufactured
at 1000oC, it can be noted that the ∆T is almost the same over
the operating range of temperatures. We employ Capo [21] to obtain
legalized placements of the IWLS circuits. From the circuit placement
information and active layer information of the standard cell layouts,
STI information is extracted as a set of nonintersecting cuboids
around the active region. We then employ our analytical stress model
from Section III to compute the stress in the active transistor regions.

In the rest of the section, the STI along the active width [height]
direction is termed as longitudinal [transverse] STI. Tensile [com-
pressive] stress indicates stress is positive [negative] valued. Using
the techniques in Section IV, we perform static timing analysis and
leakage power analysis on the circuits under three conditions:
• Nominal: STI effects in the layout are ignored.
• 3D STI: Our 3D stress model, superposing effects from STI

rectangles in transverse and longitudinal directions, is used.
• 1D STI: Only the effects of STI rectangles in the longitudinal

direction are considered and transverse effects are ignored.
Note that our 1D approach is more accurate than conventional 1D
models which assume uniformity in the z direction, since it also
considers finite depth effects along the z axis.

TABLE VII
COMPARISON OF DELAY AND LEAKAGE POWER UNDER STI

Ckt. 3D STI 1D STI
∆D3D ∆L3D D+ ∆D+ D− ∆D− ∆D1D ∆L1D D− ∆D−

(%) (%) (ps) (%) (ps) (%) (%) (%) (ps) (%)
C1 -5.3% 24.7% 108 15.7% 381 -8.7% -8.3% 16.9% 370 -11.9%
C2 -3.9% 32.6% 173 2.9% 335 -9.6% -6.1% 26.5% 327 -12.5%
C3 -4.1% 23.2% 354 2.0% 568 -8.1% -5.7% 15.8% 541 -11.3%
C4 -2.2% 33.2% 434 1.6% 496 -8.9% -5.7% 26.6% 530 -12.3%
C5 -6.6% 26.5% 192 10.4% 356 -9.0% -9.1% 18.7% 345 -12.5%
C6 -5.2% 27.8% 473 1.3% 731 -8.1% -7.1% 20.6% 345 -12.5%
C7 -3.7% 26.8% 350 1.1% 538 -11.5% -6.1% 18.5% 521 -15.2%
C8 -2.2% 24.1% 476 2.7% 540 -8.1% -3.3% 17.0% 520 -12.5%
C9 -2.1% 21.4% 458 2.6% 622 -5.0% -4.1% 14.2% 607 -7.6%
C10 -4.3% 30.6% 289 1.7% 460 -8.3% -6.3% 23.4% 511 -10.4%

Table VII shows the results under the 3D and 1D STI cases. The
columns ∆D3D and ∆L3D [∆D1D and ∆L1D] provide the changes
in critical path delay and leakage power, respectively, in the 3D
STI [1D STI] case with respect to the nominal values, D0 and L0,
from Table VI. Note that the critical path may not be identical in
the nominal circuit and the stressed circuit. Here, positive [negative]
changes denote increases [reductions] in the delay or leakage.

The above numbers only capture the delay changes in the worst-
case path, where in all cases, the delay happens to reduce for our
benchmark set: between −2.1% and −6.6% for 3D and between
−3.3% and −9.1% for 1D. However, it is instructive to observe what
happens on noncritical paths by examining the largest delay shifts,
over all paths in a circuit, from the nominal to the stressed cases.
Let D+ and D−, respectively, represent the delays (under stress)
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of the paths in each circuit that show the largest delay increase
and reduction. The corresponding maximum delay increases and
reductions observed on these paths are denoted by ∆D+ and ∆D−.
Note that for the 1D STI case, we only show D− and ∆D− since
only path delay reductions are observed, and no increases are seen,
i.e., ∆D+ is uniformly zero in 1D. On the other hand, the value of
∆D+ varies from 1.1% to 15.7% for the 3D case. The values of
∆D− range from −5.0% to −11.5% for 3D, and are overestimated
in 1D where they lie in the range −7.6% to −15.2%.

To understand these results, we further analyze the 1D and 3D
stress cases to explain the observed trends in the data:
• When longitudinal STI is alone taken into account, as in

the 1D case, the σx′x′ stress component is provably always
compressive, while σy′y′ is tensile. Furthermore, the magnitude
of σy′y′ is typically smaller than σx′x′ . Consequently in the 1D
STI case, from Equation (1) and the signs of π′11 and π′12 in
Table I, PMOS [NMOS] mobility always improves [degrades].

• When transverse STI effects are also considered, as in the 3D
case, in the σx′x′ component could be tensile or compressive,
depending on the dimensions of the active region and the STI,
while σy′y′ is seen to be compressive in practice, as observed in
Fig. 4. Thus, for 3D STI, the PMOS mobilities may improve or
degrade, while NMOS mobilities always degrade. Furthermore,
the magnitudes of PMOS [NMOS] mobility variations in the 3D
STI case are smaller [greater] than the 1D STI case.

• In determining the impact of stress on circuit delay, STI-induced
threshold voltage reductions attenuate [fortify] increases [reduc-
tions] in the mobility. While PMOS and NMOS devices show
similar levels of mobility shifts, the threshold voltage reductions
for PMOS are much lower than for NMOS. Therefore, PMOS
devices are mostly mobility-dominated, while NMOS device
performance is determined by the balance between the shifts
in mobility and threshold voltage. This is reflected at the circuit
level in terms of the increase or reduction in path delays.

• Under STI effects, threshold voltages of both PMOS and NMOS
transistors are lowered, and the reduction depends on the amount
of surrounding STI (which is higher in the 3D case than the
1D case). It is observed that the magnitude of σy′y′ in the
3D STI case is significantly higher than the 1D STI for this
reason. Therefore, the leakage power is seen to increase from the
nominal case to either the 1D or 3D case. The shift the 3D STI
[1D STI] formulation, ∆L3D [∆L1D] can vary from 21.4% to
33.2% [14.2% to 26.6%]. Thus, when STI effects are neglected,
the leakage power can be significantly underestimated.

Layout guidelines: Based on the above analysis, for a given row-
based placement, the following guidelines are obtained:
• To optimize delay, gates on critical/near-critical paths should

have higher [smaller] longitudinal [transverse] spacing with
respect to their neighbours in the same row [adjacent rows].

• To optimize leakage, noncritical gates should have minimum
spacing with neighbours in the row (longitudinal STI). Spaces
in the rows above/below (transverse STI) should be avoided.

VI. CONCLUSION

We have developed an analytical framework to analyze the circuit
performance under both longitudinal and transverse STI-induced
stress variations. An accurate analytical stress model based on in-
clusion theory has been employed to find the stress state in silicon
by modeling STI as a cuboidal inclusion, and closed-form expressions
for stress are presented. Using the stress and strain tensor components
thus generated, layout-dependent electrical variations in individual

transistors are then computed. The gate delay and leakage power
are subsequently evaluated for unequal variations in the constituent
transistors, based on first-order Taylor series expansions. The circuit
level timing and leakage power analysis is performed on ten IWLS
layouts using our analytical models and is shown to be more accurate
than existing approaches. Finally, layout guidelines for delay and
leakage power optimization are provided.
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