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Abstract—Approximate computing has emerged as a circuit design
technique that can reduce system power without significantly sacrificing
the output quality in error-resilient applications. However, there are
few approaches for systematically and efficiently determining the error
introduced by approximate hardware units. This paper focuses on the
development of error analysis techniques for approximate multipliers,
which are a key hardware component used in error-resilient applications,
and presents a novel algorithm that efficiently determines the probability
distribution of the error introduced by the approximation. The accuracy
of the technique is demonstrated to be comparable to Monte Carlo
simulations, while being significantly less computationally intensive.

I. INTRODUCTION

Approximate computing [1] has emerged as a promising approach

that can potentially achieve large efficiencies in the design of error-

resilient systems, such as those that implement applications related to

multimedia (image/video processing and streaming), data mining, and

human auditory and visual perception. By deliberately introducing

approximations, this approach reduces hardware costs, in terms of

energy, power, and area, while ensuring that errors are limited to a

level that can be tolerated by the end-user.

A vital ingredient of any methodology based on approximate de-

sign is a fast and accurate procedure that can quantify the distribution

of error injected into a computation by an approximation scheme.

The most common building blocks that are used to build hardware for

error-resilient computations are adders and multipliers. While existing

methods have made some progress in analyzing errors in adders [2]–

[5], design of the approximate multipliers [6]–[9] still relies on error

metrics from Monte Carlo simulations for performance evaluation

since there are no known analytical methods that can scalably and

accurately analyze the error in multipliers.

In this work, we propose a novel algorithm, FEMTO: Fast Error

Analysis in Multipliers through TOpological Traversal, to efficiently

quantify the errors in the output of an approximate multiplier by

determining their probability of occurrence. The errors in approx-

imate circuits which follow discrete asymmetric distributions [10],

are propagated through networks using a topological traversal, and

FEMTO uses the frequency domain to reduce computation.

At the gate level of approximate circuit design, the error of a

logic function can be quantified by comparing the truth table of the

approximate and exact implementations. However, this is not scalable

beyond a small number of inputs because the size of the truth table

grows exponentially with the number of inputs. Prior approaches that

attempt to overcome the computational bottleneck of error estimation

can be classified into two categories:

1) Methods that estimate the range of error: These methods

capture the range of the error in approximate computation in terms

of its minimum and maximum value, and are primarily based on

interval and affine arithmetic [11], with modifications [3], [10], [12]

suitable for asymmetric distributions of errors in approximate circuits.

However, these approaches are computationally intensive, may lead

to storage explosion [10], and often overestimate errors [13].

2) Methods that capture the statistics of the error distribution:

These methods use the computationally intensive Monte Carlo simu-

lations using millions of random input vectors to obtain various error

metrics in an approximate computation such as the error rate, error

significance, average error, and mean square error to quantify the

error in approximate systems [2], [5], [6], [8], [14].

In several scenarios, it is essential to determine the entire probabil-

ity distribution of error, e.g. for hypothesis testing in stochastic sensor

circuits [15] and for accuracy evaluation [8], [9] of approximate

circuits (which is currently performed by exhaustive/Monte Carlo

simulations). FEMTO captures the entire probability distribution of

error, and is significantly faster than Monte Carlo simulations. The

advantage of obtaining an analytical expression for the error proba-

bility mass function (PMF) is that the error range, its statistics and

percentiles can be easily deduced from the cumulative distribution

function (CDF), and this method can be used in any framework

that relies on Monte Carlo simulations to evaluate performance of

approximate multipliers.
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Fig. 1. Schematic of the FEMTO algorithm on an unsigned multiplier.

Our algorithm is schematically represented in Fig. 1 on an N-bit

× N-bit unsigned multiplier. The statistics of the two N-bit operands

A and B (i.e., the probability that they take on values 1 and 0) are

provided as an input to our approach. The multiplication process

generates partial products (PP1, · · · , PPlast) as shown in the figure,

and the computation proceeds by successively adding each partial

product to the partial sum computed so far. Each such addition is

performed by an array, Σ, of approximate and/or exact full adders,

and is characterized by an error PMF for the adder array. Our

approach proceeds as follows:

1) We obtain the PMF of the error of each full adder (Section II).

2) We use these PMFs to compute the PMF of ∆Si, the error

introduced by the approximate adders at the ith level, over the

statistical distribution of inputs A and B.

3) The total error introduced by the multiplication is the sum of the



∆Si variables. We show that the PMF of the total error can be

expressed as a convolution of a weighted set of error PMFs for

individual full adders, and demonstrate how this convolution is

performed efficiently in the frequency domain in an intelligent

manner, avoiding an explosion in the number of terms in the

frequency-domain representation of the PMF (Section III).

4) We enhance the speed of our algorithm by partitioning the N-bit

operands into K-bit slices (Section IV).

We experimentally validate our results in Section V on a set of

approximate multiplier schemes and conclude the paper in Section VI.

II. CHARACTERIZING THE PMF OF FULL ADDERS

In principle, the PMF of any combinational structure can be

characterized through its truth table and the statistics of the inputs.

However, the size of the truth table increases exponentially with

the size of the input space, and such a direct characterization is

impractical for a multiplier. Hence, we work with a fundamental

unit that can reasonably be characterized – in this case, a full adder

(FA) – and develop the error PMF for the multiplier hierarchically.

Specifically, the error PMF of a single adder is used to obtain the error

PMF of each row of FAs that sums the partial products, and finally

the error distribution of the entire approximate multiplier. This section

explains how we use the input distribution and Boolean function of

an FA to obtain its output error distribution.

Let us explain our approach with the example of an approximate

FA, “appx1” from [16], shown in Fig. 2. The truth table of its output,

Sum, as compared against the exact output, Sum0, is also shown in

the figure. The inputs, a, b and c, are modeled as random variables

with a known distribution, and the error injected by the multiplier is

denoted as ∆Sum. Since the inputs are binary, we represent their

probability of being 1 as pa, pb and pc, respectively. Similarly, p′x =
1− px, (x = a, b, c), are the probabilities of a, b and c, respectively,

to be 0. The PMF of the resultant sum (Sum) combining both the

output bits, s and cout, and the PMF of the error (∆Sum) in the

resultant sum are defined by fSum(n) and f∆Sum(n), respectively.
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Fig. 2. Full adder (FA) with the associated truth table (“appx1" from [16]).
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Fig. 3. Output signal and error distribution for the “appx1" adder from [16].

If the inputs are independent, and represented by an identical uni-

form distribution (pa=pb=pc=0.5), then f∆Sum(n) and fSum(n)
can trivially be obtained from the truth table, and are depicted in the

two plots in Fig. 3. For example, the PMF of ∆Sum can be computed

by observing that it takes the value 0 in six of eight entries in the

truth table, and the values −1 and 1 in the remaining two entries.

When the inputs are equiprobable, this leads to the PMF shown here.

The PMFs in the figure can equivalently be represented as a weighted

sum of discrete Kronecker delta functions as:

f∆Sum(n) =
6

8
δ(n) +

1

8
δ(n− 1) +

1

8
δ(n+ 1) (1)

fSum(n) =
2

8
δ(n) +

1

8
δ(n− 1) +

4

8
δ(n− 2) +

1

8
δ(n− 3) (2)

The coefficients of the delta functions in (1) and (2) are the PMF

values of the associated random variable (∆Sum or Sum) and

are the length of the stems in Fig. 3. When the inputs are not

equiprobable, the coefficient of δ(n − k) in the PMF of a random

variable is the probability of the variable to be k; hence, assuming

the inputs to be independent, the coefficients can also be expressed

as functions of pa, pb and pc as shown in Table I and II.

TABLE I
PMF OF THE FA OUTPUT.

n fSum(n)

0 p0 = p′ap
′

bp
′

c + pap′bp
′

c

1 p1 = p′ap
′

bpc
2 p2 = p′apb + pap′bpc + papbp

′

c

3 p3 = papbpc

TABLE II
PMF OF THE ERRORS IN FA

OUTPUT.

n f∆Sum(n)

-1 e−1 = pap′bp
′

c

0 e0 = 1− pap′bp
′

c − p′apbp
′

c

1 e1 = p′apbp
′

c

For a general approximate FA, ∆Sum can range from −3 to 3,

as the two output bits may have error of any of −1, 0 or 1 (although

for the “appx1" adder shown in Fig. 2, it only ranges from −1 to 1).

Hence, the PMF of ∆Sum and Sum can, in general, be expressed

as a sum of Kronecker delta functions as:

f∆Sum(n) =
∑3

i=−3
eiδ(n− i) (3)

fSum(n) =
∑3

i=0
piδ(n− i) (4)

where the pis and eis are expressed as functions of pa, pb and

pc similar to Table I and II, respectively, and can be computed by

substituting the values from the knowledge of the input distribution.

III. OVERVIEW OF THE FEMTO ALGORITHM

Consider a 4-bit × 4-bit array multiplier with operands,

A (a3a2a1a0) and B (b3b2b1b0), as shown in Fig. 4. The full adders

in the array are each indexed as FAij , where i corresponds to the row

number, starting from the top, and j to the position of the FA in the

row, starting from the least significant bit, as shown in Fig. 4. The

output of a single adder, FAij , is modeled as the random variable,

Sumij = Sumij,0 + ∆Sumij , where Sumij,0 is the true sum

(corresponding to an exact FA), and ∆Sumij is the error due to

the approximate addition, similar to the example of the FA in Fig. 2.

Before proceeding further, let us comment on the input data

distribution, and our assumptions regarding the correlation between

the various Sumij random variables. Although we assume the inputs,

A and B, to be independent random variables, their distribution

is a user-input (and can be any arbitrary distribution) from which

the signal probability, pai
and pbi , of each input bit, ai and bi,

respectively, can be inferred. In addition to the error PMF, FEMTO

has the capability to produce the output PMF (signal probability

of the output bits of the multiplier), which can be used as input

signal probability in subsequent multipliers within a data flow graph.

Thus FEMTO can propagate the probability distribution of the data

from input to the output of the multiplier. Additionally, within the

multiplier, we consider the correlation between the s and cout bits of

any adder by combining them into a two-bit output, Sum, and the

corresponding error, ∆Sum, both expressed in decimal, with their

PMF characterized by similar methods as Tables I and II, respectively.

This technique captures the most important correlation which is the

interdependence of the two output bits of any adder within the
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multiplier array. Although we ignore the correlations between the

outputs of different adders by considering Sumijs to be independent

random variables, this assumption does not affect the quality of our

results since correlations due to reconvergent fanout tend to be diluted

as the logic depth of the reconvergent fanout paths increases.

Finding the error PMF for the multiplier array involves three steps:

1) determining the input probabilities for all inputs of each indi-

vidual FAij , and using the approach in Section II to compute

the PMF of ∆Sumij ,

2) finding the PMF of the error, ∆Si, introduced by the ith row

of the multiplier array, and

3) finding the PMF of the entire multiplier, i.e., the PMF of the

sum of the ∆Si variables over all rows, i.

Step 1: The first step simply involves probability propagation within

a Boolean network, and we use established techniques for this

purpose [17]. Based on this, we obtain the PMF of ∆Sumij , denoted

by f∆Sumij
(n), as a sum of delta functions similar to (3).
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Fig. 4. Structure of a 4-bit × 4-bit array multiplier.

Step 2: Next, we determine the error in the partial product accumu-

lation, ∆Si, in the ith row, which is the total error resulting from an

array of N − 1 approximate FAs, as depicted in Fig. 4 for N = 4.

For each row, i ∈ {1, · · · , N}, a simple analysis yields:

∆Si =

N−1
∑

j=1

2i+j−1∆Sumij (5)

Since we consider the ∆Sumij random variables to be independent1,

we can utilize the fact that the PMF of sum of independent random

variables equals the convolution of the PMF of those random vari-

ables. Hence the PMF of ∆Si can be expressed as:

f∆Si
(n) =

N−1
⊗

j=1

f2i+j−1∆Sumij
(n) (6)

where
⊗

is the convolution operator, applied here to convolve N−1
operands, and f2i+j−1∆Sumij

(n) is the PMF of the random variable,

2i+j−1∆Sumij .

If the absolute value of the largest output error of FAij is M (e.g.,

M = 1 for the “appx1" FA in Section II), then using (3),

f2i+j−1∆Sumij
(n) =

M
∑

k=−M

ekδ(n− 2i+j−1k) (7)

1The assumptions are also borne out by results.

Step 3: The error, ∆R, in the multiplier output is simply the sum

of the errors, ∆Si, over all N rows. Assuming the ∆Si random

variables to be independent, we obtain the error PMF of the multiplier

result, f∆R(n), by convolving the f∆Si
(n) PMFs:

f∆R(n) =
N
⊗

i=1

f∆Si
(n) =

N
⊗

i=1

N−1
⊗

j=1

f2i+j−1∆Sumij
(n) (8)

We implement the following techniques to solve the above convo-

lution problem to obtain the PMF of error in the final product:

A. Use the Z-Transform [18] to convert the convolution into a

friendlier multiplication in the frequency domain, yielding a

polynomial in z. This polynomial can have exponential number

of terms, and special techniques are required to manage the cost

of working in the transform domain.

B. Use the Inverse Fast Fourier Transform (IFFT) [18] to infer the

PMF of ∆R from the polynomial obtained in the previous step.

Next, we explain each of these techniques in detail.

A. Representing the convolution using the Z-Transform

According to the principles of transform calculus, the Z-Transform

of a convolution of multiple functions in the original domain is

equivalent to the product of the Z-Transforms of those individual

functions in the transform domain. Hence we can represent F∆R(z),
the Z-Transform of f∆R(n) in (8), as:

F∆R(z) =
N
∏

i=1

N−1
∏

j=1

F2i+j−1∆Sumij
(z) (9)

where F2i+j−1∆Sumij
(z), is the Z-Transform of the PMF,

f2i+j−1∆Sumij
(n). Applying the Z-Transform to both sides of (7),

F2i+j−1∆Sumij
(z) =

M
∑

k=−M

ekz
−2i+j−1k

(10)

Substituting (10) in (9), we can rewrite F∆R(z) as:

F∆R(z) =

N
∏

i=1

N−1
∏

j=1

(

M
∑

k=−M

ekz
−2i+j−1k

)

(11)

= z−E
2E
∑

i=0

aiz
i

(12)

= z−Eφ(z) (13)

where ∆R ranges from −E to E, with E = (22N−1 − 2)M
(derivation of E is omitted due to space limitations), and the ais

are the coefficients of the polynomial in z, denoted by φ(z) in (13).

Performing the Inverse Z-Transform of (12),

f∆R(n) =
2E
∑

i=0

aiδ(n+ i− E) (14)

Hence ai is the probability of the error, ∆R, to be −(i− E). Thus

finding the PMF of the error reduces to the problem of finding the

coefficients, ai, in φ(z)
(

=
∑2E

i=0
aizi

)

, which is a polynomial of

degree 2E with non-negative coefficients.

While this scheme presents a clear picture of our computation

scheme, the cost of a direct implementation of this idea is prohibitive.

The most expensive step is the determination of the coefficients, ai,

by multiplying the terms in (11). Therefore, we develop an efficient

scheme for finding the coefficients, ai.
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B. Using the IFFT to infer f∆R(n) from φ(z) and F∆R(z)

In this subsection, we present a method for efficiently computing

the ai coefficients in (14).

So far we have worked in the Z-Transform domain to formulate the

error PMF equation, F∆R(z). Let us now consider discrete Fourier

domain to determine the coefficients, ai, in φ(z) from (13), by using

their Fourier-Transformed values followed by performing Inverse Fast

Fourier Transform (IFFT). This interchange of domains is possible

since, by definition, Z-Transform is equivalent to Discrete Time

Fourier Transform (DTFT) when the magnitude of |z| = 1 [18].

We begin by observing that the DTFT of the sequence,

{a0, a1, · · · , a2E}, is given by the Fourier coefficients,

Ak =

2E
∑

i=0

ai exp

(

−j
2πik

2E + 1

)

=

2E
∑

i=0

aiz
i
k (15)

where zk = exp
(

−j 2πk
2E+1

)

. It is interesting to note that the values

of zk are the reciprocal of the (2E + 1)th complex roots of unity.

Therefore, if we take φ(z) in (13) and substitute z = zk, for the

reciprocal of each of the (2E + 1)th complex roots of unity, we

obtain the Fourier coefficient, Ak. In other words,

Ak = φ(zk) = zEk

N
∏

i=1

N−1
∏

j=1

(

M
∑

k=−M

ekz
−2i+j−1k
k

)

(16)

This provides us with the discrete Fourier coefficients of the sequence

of ais, which are then obtained by performing Inverse Discrete Time

Fourier Transform (IDFT) of the Ak values as:

ai =
1

2E + 1

2E
∑

k=0

Akexp

(

j
2πik

2E + 1

)

(17)

To compute the IDFT in (17) efficiently, we use the Inverse Fast

Fourier Transform (IFFT) to obtain the values of the ais. As explained

in the previous subsection, obtaining the ais directly provides the

PMF of the error, ∆R, in the multiplier output.

IV. ENHANCING EFFICIENCY OF FEMTO

The error PMF obtained by the FEMTO algorithm provides proba-

bility of occurrence of errors with unit-granularity. In other words,

we obtain f∆R(n) in (14), for each integer value of n within the

error range, i.e., with unit spacing between successive values of n.

To enhance efficiency, we propose to process the multiplication

by partitioning each of the N -bit operands, A and B, in an N -bit

× N -bit multiplier, into K-bit slices. The product of A and B is

obtained using the results of K2 N/K-bit × N/K-bit multipliers as

shown in Fig. 5. We call this the partitioned-granularity approach

of obtaining the PMFs.
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Fig. 5. N -bit × N -bit multiplier from N/K-bit × N/K-bit multipliers.

We then process the computation hierarchically. Instead of an FA,

as in the previous section, we now use an N/K-bit × N/K-bit

multiplier as the fundamental unit. However, while the PMF of an

FA can be exactly characterized through the truth table, this is not

the case for the N/K-bit × N/K-bit multiplier; instead, we use the

approach in Section III to obtain this PMF. Characterizing the PMF of

the N/K-bit × N/K-bit multiplier requires two types of input data:

the error distribution of the FAs, which is provided in Section II, and

the PMFs of the inputs to the multiplier, which is computed using the

probability propagation algorithm in Step 1 of Section III (note that

these probabilities are cheap to compute, and do not change whether

we use this hierarchical scheme or the previous “flat” scheme).

Given the PMF of the N/K-bit × N/K-bit multiplier as the

fundamental block, the scheme in Section III can now be used to

find the PMF of the multiplier error.

Practical runtime enhancement of FEMTO: The error range,

−EK to EK (EK∼22N/K ), of the N/K-bit × N/K-bit multiplier,

can be grouped or “binned" into P windows for further runtime

enhancement of FEMTO, where P is chosen empirically. This idea

is best explained with an example in Fig. 6. If the output error in

the N/K-bit × N/K-bit multiplier is represented by the random

variable, ∆R, with EK = 15, and the PMF of ∆R is f∆R(n), then

we can group ∆R into P = 5 windows to obtain the binned version

of the PMF, f∆R,bin(n) with fewer data points.

Binned into 

five windows

            -15  -12  -9  -6  -3  0    3   6   9   12  15

f∆R,bin(n)

n

64

13

64

12

64

12
64

1364

14

      -15  -14    -2  -1   0    1   2       14   15
n

f∆R(n)

......
32

1
32

2

Fig. 6. An error PMF (not to scale) with unit-granularity (left) and its binned
version into five windows (right).

There is a trade-off between the computational effort, and the

accuracy of the PMF obtained by this approach. While the algorithm

speeds up by
(

2EK

P

)

X, inaccuracy is introduced due to the repre-

sentation of
2EK

P
error values by a single value. Therefore, P should

be chosen depending on the value of EK to maintain an acceptable

runtime-accuracy trade-off.

V. RESULTS

We implement FEMTO in MATLAB R2010b in a 2.53 GHz

Intel Core i3 CPU with 4Gb RAM and 64-bit Windows 7 OS, and

present the results relating to approximate unsigned multipliers. The

approximate adders that constitute the multipliers are the various

transistor level approximations of the mirror adders [16], the Boolean

expressions of which are mentioned in Table III for the two outputs,

s and cout, and inputs, a, b and c.

TABLE III
FIVE VERSIONS OF APPROXIMATE ADDERS FROM [16].

Approximate version s cout
appx1 āb̄c+ abc abc+ abc̄+ ab̄c+ ābc+ ābc̄

appx2 cout ab+ ābc+ ab̄c

appx3 cout abc+ abc̄+ ab̄c+ ābc+ ābc̄

appx4 āb̄c+ ābc+ abc a

appx5 b a

Since in practice, no more than ∼50% of the resultant bits are

usually approximated to maintain accuracy [8], [16], we use a similar

strategy to approximate different number adders to implement the

4



multipliers. We obtain the PMF of the errors normalized to the

dynamic range of the output of the approximate multiplier. The nor-

malization factor, R, is the total range (difference of maximum and

minimum values) of the output when the multiplier is implemented

using different combinations of approximate and accurate adders.

The outputs are obtained by performing 2000 Monte Carlo logic

simulations on the approximate multiplier. Such a normalization step

is necessary since the same magnitude of error may have different

levels of severity depending on the magnitude of the product.

First, we present the results for the combination of approximate

and accurate adders to construct the multipliers, such that exactly

50% of the product bits from the second-least significant bit position

are approximate. Referring to Fig. 4, this means that for the 4×4

multiplier, the resultant bits, R1, · · · , R4, are approximate and the

rest are exact. The least significant bit (LSB), R0, is exact since it is

not produced by any adder and is simply the output of an AND gate.

In general, for an N×N multiplier, to approximate 50% of the LSBs

in the product, N− i LSB adders in the ith row of the adder array in

each partial product accumulation level should be approximate, with

the rest being accurate, for i = 1, · · · , N .

We implement FEMTO on 6×6, 8×8, and 16×16 approximate

multipliers. While the error PMFs for 6×6 and 8×8 are obtained by

the unit-granularity approach, the error PMF for 16×16 multiplier is

obtained by the partitioned-granularity approach using K = 2, i.e.,

using the results of the 8×8 multiplier, and P = 32 windows to

enhance the practical runtime, as explained in Section IV.

We compare the mean and standard deviation of the error PMFs

obtained by FEMTO and Monte Carlo simulations using the absolute

value of the normalized percentage error in mean and standard

deviation, ∆µnorm and ∆σnorm, respectively, defined as:

∆µnorm = 100× |µFEMTO − µMC |
R (18)

∆σnorm = 100× |σFEMTO − σMC |
R (19)

where µFEMTO (µMC ) and σFEMTO (σMC ) are the mean and

standard deviation of the error PMF of each multiplier obtained

by FEMTO (Monte Carlo simulation), respectively, and R is the

normalizing factor defined earlier. We summarize the ∆µnorm and

∆σnorm values, respectively, in Tables IV and V, corresponding to

the error PMFs of the 6×6, 8×8, and 16×16 approximate multipliers

(with 50% of the product bits approximated).

Clearly, the error is less than 1% as observed by the ∆µnorm and

∆σnorm values for all the approximate multipliers (with different

versions of the approximate adders) considered here. This indicates

that the error statistics obtained by FEMTO are very similar to those

obtained by the Monte Carlo simulations.

TABLE IV
NORMALIZED PERCENTAGE ERROR IN ESTIMATED MEAN (∆µnorm) OF

PMF OBTAINED BY FEMTO COMPARED AGAINST MONTE CARLO

SIMULATION.

Multiplier →
6×6 8×8 16×16

Adder ↓

appx1 0.23 0.12 0.12

appx2 0.09 0.06 0.41

appx3 0.14 0.13 0.67

appx4 0.01 0.01 0.02

appx5 0.02 0.02 0.26

TABLE V
NORMALIZED PERCENTAGE ERROR IN ESTIMATED STANDARD DEVIATION

(∆σnorm) OF PMF OBTAINED BY FEMTO COMPARED AGAINST MONTE

CARLO SIMULATION.

Multiplier →
6×6 8×8 16×16

Adder ↓

appx1 0.10 0.06 0.26

appx2 0.00 0.01 0.26

appx3 0.01 0.04 0.03

appx4 0.38 0.11 0.03

appx5 0.44 0.18 0.31
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Fig. 7. CDF of normalized error for 8×8 multipliers with different percent-
ages (45%, 50% and 55%) of LSBs in the product being approximate. The
adders in (a)-(e) are the ones from Table III, with seven, eight and nine bits
(45%, 50% and 55% of 16 bits) being approximated in the product.

Next, we consider cases when different percentages (45%, 50% and

55%) of LSBs are approximate in the product. Due to limited space,

we only present the error CDFs of the 8×8 multipliers as an example.

Each column of subplots in Fig. 7 corresponds to a specific number

of approximate bits in the 16-bit product of the 8×8 multiplier. The

numbers, 7, 8 and 9 bits, respectively, correspond to 45%, 50% and

55% of the 16-bits being approximated. Each row of subplots in Fig. 7

corresponds to the type of adders from Table III used to implement

the approximate multiplier. The blue plot labeled “True" represents

the CDF obtained by 2000 Monte Carlo simulations, and is assumed

to be the reference or golden CDF. The red plot labeled “Estimated"

is the CDF obtained by FEMTO.

As expected, the errors are reduced with fewer approximate bits

in the product. Additionally, we observe that the PMFs obtained by

FEMTO are very close to those obtained by Monte Carlo simulation

for different levels of approximation in the multiplier (as seen across

each row of subplots in Fig. 7). Hence, for the various approximate

multipliers considered here, FEMTO can predict the error distribution

with accuracy comparable to Monte Carlo simulations.

To compare with one of the existing approaches of obtaining error

5



PMF in approximate circuits, we also generate the error PMF of

the multipliers using the modified interval arithmetic (MIA) based

approach [10]. The authors of [10] had reported MIA to be very

efficient in terms of runtime and storage complexity. Hence we

compare our approach with the MIA-based one to obtain the error

PMF. The multipliers are approximated such that 50% of the product

LSBs are approximate, and the rest are accurate. We compare the

accuracy of the PMFs obtained by both FEMTO and MIA (imple-

mented based on [10]), by observing the Hellinger distance [19] from

the corresponding PMFs obtained from Monte Carlo simulations.

Hellinger distance is a well-known metric to compare probability

distributions, and is defined as:

Hellinger distance =
1√
2

√

∑

all n

(

f̂(n)− f(n)
)2

(20)

where f̂(n) and f(n) are the estimated and the true (Monte Carlo)

PMFs, respectively. The factor,
√
2, ensures that this distance ranges

from 0 to 1. We plot the Hellinger distances of the error PMFs

obtained by FEMTO and MIA for the 6×6 and 8×8 multipliers in

Fig. 8, from the PMFs obtained by Monte Carlo simulations. The

smaller the distance, the closer is the estimate to the true PMF; thus

clearly our approach yields more accurate PMFs compared to the

MIA-based ones as seen by the lower values of the Hellinger distance

for the approximate multipliers considered here.
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Fig. 8. Hellinger distance between Monte Carlo-generated PMF, and PMFs
obtained by FEMTO and our implementation of MIA.

The runtime to obtain the PMFs are summarized in Table VI. The

16×16 multiplier did not finish computation within 3600 seconds

which was set as the maximum observation time using the MIA-

based approach, hence its runtime is labeled “timed out" in the table

for all approximate versions of the adders.

TABLE VI
RUNTIME COMPARISON TO OBTAIN THE ERROR PMFS.

Multiplier → 6×6 8×8 16×16

Adder ↓ FEMTO MIA FEMTO MIA FEMTO MIA

appx1 0.8s 6.6s 14.5s 174.2s 363.8s timed out

appx2 0.7s 9.3s 14.0s 265.1s 364.6s timed out

appx3 0.8s 9.7s 13.9s 257.5s 365.3s timed out

appx4 0.8s 9.6s 14.4s 263.3s 369.9s timed out

appx5 0.6s 10.1s 8.9s 293.5s 362.5s timed out

Clearly, not only is the accuracy of our method higher than MIA,

but also the runtime shows excellent improvements. In conclusion,

although MIA can quantify the error PMFs, due to the above reasons

of inaccuracy and poor runtime, it has not been implemented yet in

any multiplier design.

Our approach is thus superior to the existing approaches to quantify

the error PMF, and can be incorporated into the multiplier design

framework to speed up the performance evaluation process.

VI. CONCLUSION

We have proposed a fast algorithm to analytically obtain the error

PMF in an unsigned multiplier. The algorithm has been implemented

to obtain error PMFs in different types and sizes of approximate

multipliers comprising of transistor-level approximate adders. We

have validated the results of our algorithm against Monte Carlo

simulations, in terms of the various statistics and the error CDFs.

The ease with which the PMF can be obtained will help approximate

circuit designers to use FEMTO in an optimization framework to

evaluate the circuit performance, and design low power approximate

systems within a specified error tolerance.
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