
The ALIGN Open-Source Analog Layout Generator:
v1.0 and Beyond (Invited talk)

Tonmoy Dhar
University of Minnesota

Kishor Kunal
University of Minnesota

Yaguang Li
Texas A&M University

Yishuang Lin
Texas A&M University

Meghna Madhusudan
University of Minnesota

Jitesh Poojary
University of Minnesota

Arvind K. Sharma
University of Minnesota

Steven M. Burns
Intel Labs

Ramesh Harjani
University of Minnesota

Jiang Hu
Texas A&M University

Parijat Mukherjee
Intel Labs

Soner Yaldiz
Intel Labs

Sachin S. Sapatnekar
University of Minnesota

CCS CONCEPTS
•Hardware→Electronic design automation;Physical design
(EDA);Analog andmixed-signal circuit optimization; •Com-
putingmethodologies→Machine learning;Neural networks.

KEYWORDS
Analog layout automation, machine learning
ACM Reference Format:
Tonmoy Dhar, Kishor Kunal, Yaguang Li, Yishuang Lin, Meghna Madhusu-
dan, Jitesh Poojary, Arvind K. Sharma, Steven M. Burns, Ramesh Harjani,
Jiang Hu, Parijat Mukherjee, Soner Yaldiz, and Sachin S. Sapatnekar. 2020.
The ALIGN Open-Source Analog Layout Generator: v1.0 and Beyond (In-
vited talk). In IEEE/ACM International Conference on Computer-Aided Design
(ICCAD ’20), November 2–5, 2020, Virtual Event, USA. ACM, New York, NY,
USA, 2 pages. https://doi.org/10.1145/3400302.3415784

1 INTRODUCTION
Automating analog layout is a long-standing research problem, with
a history that goes back several decades. While digital design is
largely automated today, analog layout has been significantly more
resistant: automation has not made much headway in industry
settings. There are several reasons for this, including:
• The complexity of geometric constraints: Analog layouts
require precise matching and symmetry, and layout engi-
neers use clever techniques based on human intuition and
expertise. To match this, algorithmic methods must cover a
large search space, and this has been infeasible in the past.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICCAD ’20, November 2–5, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8026-3/20/11. . . $15.00
https://doi.org/10.1145/3400302.3415784

• The absence of unifying performance metrics: unlike digital
designs, which are characterized by power, performance, and
area (PPA), the performance specifications of analog circuits
are different for each class of circuits.
• The wide variety of circuit classes and topologies: there is no
equivalent for the relatively compact standard cell libraries
used for digital design, and even basic analog building blocks
can be constructed in a large variety of ways.

Previous attempts at research in automating analog design have
been successful in optimizing a set of fixed structures within a class,
e.g., operational transconductance amplifiers (OTAs), low-noise
amplifiers (LNAs), and voltage-controlled oscillators (VCOs), but a
general methodology for layout generation, broadly applicable to a
large class of analog circuits, has remained out of reach.

TheALIGN (Analog Layout, Intelligently Generated fromNetlists)
project attempts to remedy these limitations using a variety of
strategies: (a) it recognizes geometric constraints and subcircuits
through automated circuit recognition and annotation; (b) it trans-
lates performance specifications to layout constraints that can be
used to limit layout parasitics; (c) it creates a unifying methodology
that can be targeted to a wide range of analog circuits.

Specifically, the circuits targeted by ALIGN fall into four classes,
each of which consists of different types of subcircuits and empha-
sizes different sets of constraint classes:
• Low-frequency components, e.g., analog-to-digital convert-
ers (ADCs), amplifiers, and filters.
• Wireline components, e.g., equalizers, clock/data recovery
circuits, and phase interpolators.
• RF/Wireless components, e.g., components of RF transmit-
ters and receivers.
• Power delivery components, e.g., capacitor- and inductor-
based DC–DC converters and low dropout (LDO) regulators.

The ALIGN team brings together expertise from both academic
and industry researchers to create open-source software for analog
layout automation. ALIGN translates a SPICE-level netlist into a
physical layout, with 24-hour turnaround and no human in the

https://doi.org/10.1145/3400302.3415784
https://doi.org/10.1145/3400302.3415784

ICCAD ’20, November 2–5, 2020, Virtual Event, USA Dhar, Kunal, Li, Lin, Madhusudan, Poojary, Sharma, Burns, Harjani, Hu, Mukherjee, Yaldiz, and Sapatnekar

Netlist
auto-

annotation

Electrical
constraint
generation

Primitive
layout

generation

Block assembly
(placement,

floorplanning, routing)

D
esign
rules

Input:
Unannotated
netlist

Output:
GDSII

Input: PDK

ALIGN Layout Generator

Machine learning models

CORE LAYOUT GENERATION ENGINE

Figure 1: Overview of the ALIGN flow.

loop. The input consists of a netlist, specifications, and a process
design kit (PDK), and the output is GDSII. The project started in
2018, and has undergone Alpha, Beta, and V1.0 releases [1] over
this period. ALIGN has been used to create layouts of circuits in
both bulk and FinFET technologies.

The philosophy of ALIGN is to compositionally synthesize the
layout by first identifying layout hierarchies in the netlist, then
generating correct-by-construction layouts at the lowest level of
hierarchy, and finally assembling blocks at each level of hierarchy
during placement and routing. In doing so, ALIGN mimics the hu-
man designer, who identifies known blocks, lays them out, and
then builds the overall layout. The hierarchy goes from the lowest
level of an individual transistor or passive device, to larger struc-
tures (“primitives”) that are a collection of a regular connection
of these devices (e.g., differential pairs, current mirrors, resistor
arrays, capacitor arrays), up to the level of sub-blocks (e.g., OTAs,
LNAs, VCOs), and then to higher levels that recursively assemble
groups of sub-blocks.

The ALIGN flow (Fig. 1) consists of the following steps:
Auto-annotation and constraint generation: A key step in ALIGN
is to identify these hierarchies to recognize the building blocks
of the design using techniques such as those described in [2, 3],
which employ a mix of graph-based and machine-learning-based
methods. Within and across these building blocks, geometric con-
straints, including symmetries along multiple axes, are inferred.
Electrical constraints are generated by translating performance
specifications to layout constraints: techniques developed to date
include those in [4, 5], and further enhancements are currently
under investigation.
Design rule abstraction and parameterized primitive layout genera-
tion: ALIGN defines a systematic method for translating a complex
design rule manual into a simplified grid representation, appended
with Boolean constraints as needed. The approach has been shown
to be capable of capturing rules in both FinFET and bulk PDKs.

Based on these rules, a primitive generator builds the layout for
any primitive in a parameterized manner: for example, a differential
pair could be parameterized by the number of parallel transistors.
Setting up primitive generation requires the definition of a few tens
of primitive structures that cover a wide range of circuits. A user
may also define a primitive that is not provided in the ALIGN library.
Current efforts include the use of the primitive cell generation to a
wider set of structures, incorporating constraints such as cell height,

and exploring methods for circuit design using common-centroid
and interdigitated layouts.
Block-level assembly: This step uses the constituent hierarchical
structure of the design and performs placement and routing to as-
semble blocks in the design, while meeting geometric and electrical
constraints specified earlier. Ongoing efforts include methods for
automated reliable power distribution, and enhanced methods for
global and detailed routing.

To enable the application of ALIGN in practical settings, the flow
creates a separation between open-source code and proprietary
data. PDK models are translated into an abstraction that is used by
the layout generators. For parts of the flow driven by ML models,
we provide infrastructure for training models on user data.

In addition to full automation with no human in the loop, as
described above, we have tested multiple entry points into the
flow: user-defined annotation and constraint detection; user-defined
place-and-route constraints; and user-codified place-and-route di-
rectives that provide a user with much more stringent control over
the structure of the layout. These alternatives provide a user with
varying levels of control over the eventual result, and allow for a
range of user expertise.

A more detailed view of ALIGN is provided in an upcoming
article [6]. The project is in active development, with V2.0 expected
in 2021 andV3.0 in 2022.We have already successfully demonstrated
high-performance layouts for a variety of circuits from each of the
four classes, and continue to develop new methods that enhance
the performance and applicability of ALIGN.

ACKNOWLEDGMENTS
This work was supported in part by DARPA IDEA program under
SPAWAR contract N660011824048.

REFERENCES
[1] “ALIGN: Analog layout, intelligently generated from netlists,” Software repository,

accessed August 24, 2020. https://github.com/ALIGN-analoglayout/ALIGN-public.
[2] K. Kunal, et al., “GANA: Graph convolutional network based automated netlist

annotation for analog circuits,” in Proc. DATE, 2020.
[3] K. Kunal, et al., “A general approach for identifying hierarchical symmetry con-

straints for analog circuit layout,” in Proc. ICCAD, 2020.
[4] Y. Li, et al., “Exploring a machine learning approach to performance driven analog

IC placement,” in Proc. ISVLSI, 2020.
[5] Y. Li, et al., “A customized graph neural network model for guiding analog IC

placement,” in Proc. ICCAD, 2020.
[6] T. Dhar, et al., “ALIGN: A system for automating analog layout,” IEEE Design &

Test (to appear), 2020. Available at arXiv:2008.10682.

https://github.com/ALIGN-analoglayout/ALIGN-public

