
A Customized Graph Neural Network Model for Guiding Analog
IC Placement

Yaguang Li1, Yishuang Lin2, Meghna Madhusudan3, Arvind Sharma3, Wenbin Xu1,
Sachin S. Sapatnekar3, Ramesh Harjani3, Jiang Hu1,2

1Dept. of Electrical and Computer Engineering, Texas A&M University
2Dept. of Computer Science and Engineering, Texas A&M University

3Dept. of Electrical and Computer Engineering, University of Minnesota
{liyg, lionlin, wbxu, jianghu}@tamu.edu; {madhu028, aksharma, sachin, harjani}@umn.edu

ABSTRACT
Analog IC placement is typically a manual process that requires
strong experience and trial-and-error iterations as it produces a
large impact to circuit performance in a complicated manner. Al-
though automatic analog placement has been studied for decades,
existing methods are inadequate for achieving performance com-
parable with manual designs. In this work, a customized graph
neural network model is developed for predicting the impact of
placement on circuit performance. Knowledge obtained by such a
model can be transferred among different topologies of the same
circuit type. Simulation results show that the proposed model is
superior to a recent CNN-based work in terms of both accuracy
and knowledge transfer. It also outperforms a plug-in use of graph
attention network. The proposed model is further applied in analog
IC placement and achieves performance similar to manual designs.

1 INTRODUCTION
Analog IC performance highly depends on RC parasitics that are
largely decided by circuit layout. The dependence can be very com-
plicated as multiple competing performance characteristics are
affected by numerous RC elements (wire segments) in an inter-
twined manner. As a result, analog IC layout design is still by and
large a manual art. Obtaining a good analog circuit layout often
requires multiple design iterations by experienced designers.

Automatic analog IC placement has been studied for decades [1–
14]. One focus of analog placement is the enforcement of certain
geometric constraints [3, 5, 7], such as symmetry and common
centroid. Although such constraints help improve tolerance to vari-
ations, they do not directly address nominal performance. In [1], per-
formance specifications are transformed to geometric constraints,
such as the maximum length for a wire segment. However, the
complicated dependence of performance on layout is overly sim-
plified in the transformation and therefore the obtained geometric
constraints are either unnecessarily tight or insufficient for per-
formance guarantee. Performance is directly optimized in analog
placement of [2]. However, its performance models are linear ap-
proximation and thus cannot handle many nonlinear behaviors of
analog circuits. Some geometric constraints that are directly asso-
ciated with certain performance characteristics are considered in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICCAD ’20, November 2–5, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8026-3/20/11. . . $15.00
https://doi.org/10.1145/3400302.3415624

[6, 8], but they are difficult to be extended to general performance
metrics. Design knowledge reuse is achieved by retaining legacy
design patterns [10] without directly considering performance. Till
nowadays, adoption of automatic analog placement in industry has
been rare as its promise on performance is still quite weak.

Recently, various machine learning techniques have been ex-
plored for analog circuit synthesis [15–20]. In [15], GNN (Graph
Neural Network) is applied to produce layout templates for passive
elements in RF circuits. A GAN (Generative Adversarial Network)-
based well generation technique is proposed for analog circuit
designs [16]. Variational auto-encoder is employed in [17] to learn
frommanual layout and provide routing guidance. The work of [18]
makes use of GCN (Graph Convolutional Network) to recognize
analog sub-circuits. A CNN (Convolutional Neural Network)-based
analog circuit performance model is introduced in [19]. Analog
transistor sizing is automated by GCN and reinforcement learn-
ing [20].

In this work, we attempt to make progress toward performance
driven analog IC placement. A machine learning model, called
PEA (Pooling with Edge Attention) network, is developed for pre-
dicting circuit performance from a placement solution. Instead
of plug-in use of existing machine learning techniques, PEA net-
work is a customized graph neural network that incorporates GAT
(Graph Attention Network) [21] and DiffPool [22] as key ingredi-
ents. Knowledge obtained by a PEA network can be transferred
among different topologies of the same circuit type. Simulation
results show that PEA significantly outperforms the recent CNN
(Convolutional Neural Network)-based model [19]. It is applied to
guide analog placement and achieves performance similar to man-
ual designs. The contributions of this work include the following.

• A GNN (Graph Neural Network) model is developed for
predicting analog circuit performance for a given placement
solution.

• This is a remarkably customized model instead of plug-in
use of existing machine learning techniques.

• The proposed model allows knowledge transfer among dif-
ferent topologies of a type of analog circuits.

• The proposed model significantly outperforms the latest pre-
vious work [19] on prediction accuracy, knowledge transfer
and training time. It is also more accurate than a plug-in use
of GAT, which is one of the most influential GNN techniques.

• The model is applied in a performance driven analog place-
ment and achieves performance similar to manual designs,
but is orders of magnitude faster.

The rest of this paper is organized as follows. Background of
GNN is briefly introduced in Section 2. The proposed machine
learning model for circuit performance prediction is described in
Section 3. Section 4 is focused on analog placement guided by

machine learning. Experimental results are shown in Section 5.
Conclusions are provided in Section 6.

2 BACKGROUND ON GRAPH NEURAL
NETWORKS

Due to the prevalent use of graph model in many computing ap-
plications, people strive to extend the success of CNN into graph
domain. Many Graph Neural Network (GNN) techniques have been
developed and a survey is provided in [23].

A graph G(V, E) consists of a set of nodesV and a set of edges
E. The number of nodes is denoted by 𝑛 = |V|. The edges can
be represented by an adjacency matrix 𝐴 ∈ {0, 1}𝑛×𝑛 . Each node
𝑣𝑖 ∈ 𝑉 is associated with a vector of features (𝑥1, 𝑥2, ..., 𝑥𝑑). The
features for all nodes form a matrix 𝑋 ∈ R𝑛×𝑑 . A trained GNN
takes 𝑋 as input and decides the class of the entire graph or the
class of every node in the graph. Next, we introduce two important
techniques, attention-based graph convolution and graph pooling,
both of which are employed in our customized GNN.

2.1 Attention-Based Graph Convolution
Graph convolution is an extension to the spatial convolution in
CNNs. Its key concept is aggregation. That is, a node 𝑣𝑖 ∈ V
collects feature information of its neighboring nodes. Before ag-
gregation, usually a transformation is performed as 𝑋𝑊 , where
𝑊 ∈ R𝑑×𝑑 is a trainable weight matrix. Then, the framework of
aggregation is Φ𝐴𝑋𝑊 , where Φ𝐴 ∈ R𝑛×𝑛 is a matrix depending
on 𝐴 or edge connections. The form of Φ𝐴 varies among different
GNN techniques. A node embedding is obtained as

𝑍 (1) = 𝜎 (Φ𝐴𝑋𝑊)
where 𝜎 (·) is an activation function, such as sigmoid function.
Usually, this procedure is repeated with multiple iterations and
generates multiple layers of embedding 𝑍 (0) = 𝑋 (1) = 𝑋,𝑍 (1) =
𝑋 (2) , 𝑍 (2) = 𝑋 (3) A generic graph convolution operation is de-
scribed as

𝑍 (𝑙) = 𝜎 (Φ(𝑙)
𝐴

𝑋 (𝑙)𝑊 (𝑙)) (1)
where 𝑙 is layer index. Please note𝑊 (𝑙) ∈ R𝑑𝑙×𝑑𝑙+1 , which implies
that feature dimension 𝑑 can change from layer to layer according
to different configurations.

The form ofΦ𝐴 is elaborated through the recently popular Graph
Attention Network (GAT) [21]. The attention coefficient 𝛼𝑖 𝑗 from
node 𝑣 𝑗 to 𝑣𝑖 is defined by

𝛼𝑖 𝑗 = softmax𝑟𝑜𝑤 (𝜏𝑖 𝑗) =
𝑒𝜏𝑖 𝑗∑

𝑘∈N𝑖
𝑒𝜏𝑖𝑘

𝜏𝑖 𝑗 = LeakyReLU(𝑎 (𝑙) · [(𝑊 (𝑙)T𝑋 (𝑙)
𝑖

) | | (𝑊 (𝑙)T𝑋 (𝑙)
𝑗

)])
(2)

where 𝑎 (𝑙) ∈ R2𝑑𝑙+1 is a trainable weight vector, 𝑋 (𝑙)
𝑖

is a vector
corresponding to node 𝑣𝑖 , N𝑖 is the neighborhood of node 𝑣𝑖 , · is
vector inner product operation, 𝑇 means vector transposition and
| | is vector concatenation operation. Please note the softmax here
is row-wise as the 𝑘 in the denominator enumerates columns for
row 𝑖 . LeakyReLU is a nonlinear function defined by

LeakyReLU(𝑥) =
{
𝑥 𝑥 ≥ 0
𝑐𝑥 𝑥 < 0 (3)

where 𝑐 ∈ [0, 1) is a parameter. The attention-based graph convo-
lution is described by

𝑍 (𝑙) = 𝜎 (𝛼𝑋 (𝑙)𝑊 (𝑙)) (4)

where 𝛼 ∈ R𝑛×𝑛 is a matrix with 𝛼𝑖 𝑗 , 𝑖, 𝑗 = 1, 2, ..., 𝑛 as its entries.

2.2 Graph Pooling
This is a migration of the pooling operation in CNN into graph
domain and a well-known approach is called DiffPool [22]. The
pooling here is similar to graph clustering and a cluster forms a
new node for the next iteration/layer. At iteration 𝑙 , the number of
nodes is changed from 𝑛𝑙 to 𝑛𝑙+1, where 𝑛𝑙+1 < 𝑛𝑙 and 𝑛0 = 𝑛. The
clustering is realized through an assignment matrix 𝑆 (𝑙) ∈ R𝑛𝑙×𝑛𝑙+1 ,
where each row corresponds to a node at layer 𝑙 and each column
indicates a cluster (new node) for layer 𝑙 + 1. Therefore, the entry
in row 𝑖 and column 𝑗 of 𝑆 (𝑙) is the probability of assigning node
𝑣
(𝑙)
𝑖

into cluster 𝑣 (𝑙+1)
𝑗

, i.e., this is soft clustering. The assignment
matrix of layer 𝑙 is defined as

𝑆 (𝑙) = softmax𝑟𝑜𝑤 [𝜎 (𝐷̃ (𝑙)−
1
2
𝐴̃(𝑙) 𝐷̃ (𝑙)−

1
2
𝑋 (𝑙)𝑊 (𝑙)

𝑝𝑜𝑜𝑙
)] (5)

where𝑊 (𝑙)
𝑝𝑜𝑜𝑙

∈ R𝑑𝑙×𝑛𝑙+1 is a trainable weight matrix. In addition,
𝐴̃(𝑙) = 𝐴(𝑙) +I, where I indicates identity matrix, and 𝐷̃ (𝑙) ∈ R𝑛𝑙×𝑛𝑙

is a diagonal matrix, where 𝐷̃ (𝑙)
𝑖𝑖

=
∑𝑛𝑙

𝑗=1 𝐴̃
(𝑙)
𝑖 𝑗

. Each element on the
diagonal of 𝐷̃ (𝑙) represents the indegree of corresponding node. The
row-wise softmax operation for all entries in the matrix guarantees
that each node in layer 𝑙 is assigned to clusters in layer 𝑙 + 1 with
probabilities sum up to one.

Pooling operation is to aggregate embedding 𝑍 (𝑙) into next
layer by

𝑋 (𝑙+1) = 𝑆 (𝑙)
T
𝑍 (𝑙) (6)

and then perform soft clustering by

𝐴(𝑙+1) = 𝑆 (𝑙)
T
𝐴(𝑙)𝑆 (𝑙) (7)

The pooling operation is often applied alongwith graph convolution
at each layer.

3 PEA: A CUSTOMIZED GNN MODEL
We describe a customized GNN (Graph Neural Network) model,
called PEA, which is the acronym for Pooling with Edge Attention.
It takes an analog placement solution as input and predicts if its
post-routing performance is satisfactory. Examples of performance
characteristics include the gain and phase margin of an OTA (Op-
erational Transconductance Amplifier). The performance labels
in training data are obtained from post-layout circuit simulation
results.
GNN versus CNN? In [19], a model of similar purpose employs
CNN (Convolutional Neural Network) and takes placement images
as its features. Arguably, GNN is superior in capturing the netlist
topology, which is a graph. Moreover, GNN is more efficient in
feature encoding. For instance, the shape of a transistor can be
represented by two real numbers (width and height) in GNN while
it requires an array of pixels for CNN. The spatial features can
be easily embraced in GNN by taking the location coordinates as
features. These observations motivate us to take a GNN approach.

3.1 Circuit Graph and Features
A netlist of circuit could be naturally encoded into a directed graph
G(V, E), in which devices and IO pins are the graph nodes V
and the connections between devices are the graph edges E. Fig. 2
shows an example of encoding a netlist of 5T OTA (5-transistor
Operational Transconductance Amplifier) into a circuit graph.

Figure 1: Overview of PEA network. MLP: multi-layer perceptron.
The graph is represented in the form of an adjacency matrix

𝐴 ∈ [0, 1]𝑛×𝑛 , a node feature matrix 𝑋 ∈ R𝑛×𝑑 and an edge feature
matrix 𝐸 ∈ R𝑛×𝑛×𝑝 , where 𝑛 = |V| is the number of nodes, 𝑑 is the
number of features for each node and 𝑝 is the number of features
for each edge. Please note that each entry in an adjacency matrix
is conventionally 0 or 1. In PEA, soft clustering is performed and
the adjacency between two nodes can be a probability.

Figure 2: 5-transistor OTA and its graph encoding.

In the node feature matrix, 𝑋𝑖 ∈ R𝑑 , 𝑖 = 1, 2, ..., 𝑛, represents the
feature vector of the 𝑖-th node. The 𝑑 features include the following.

• Device type: PMOS, NMOS, capacitor, current source, GND,
etc;

• Functional module where the device belongs to, such as bias
current mirror, differential pair and active load;

• Device dimension;
• Device location.

In the edge feature matrix, 𝐸𝑖 𝑗 ∈ R𝑝 , 𝑖, 𝑗 = 1, 2, ..., 𝑛, represents
the features of the edge from node 𝑗 to node 𝑖 . A node (device)
often has multiple pins. We use 𝑝𝑖𝑛ℎ

𝑖
and 𝑝𝑖𝑛𝑢

𝑗
to indicate the pin

of device 𝑣𝑖 ∈ V and the pin of device 𝑣 𝑗 ∈ V that are connected.
The 𝑝 features include the following.

• Horizontal and vertical distance between 𝑝𝑖𝑛ℎ
𝑖
and 𝑝𝑖𝑛𝑢

𝑗
;

• Metal layer of 𝑝𝑖𝑛ℎ
𝑖
and 𝑝𝑖𝑛𝑢

𝑗
;

• Length of 𝑝𝑖𝑛ℎ
𝑖
and 𝑝𝑖𝑛𝑢

𝑗
;

• Type of 𝑝𝑖𝑛ℎ
𝑖
and 𝑝𝑖𝑛𝑢

𝑗
, such as transistor source, drain, gate,

etc.
Intuitively, as circuit performance is affected by both node fea-

tures (transistor’s size/dimension, etc.) and edge features (distance
between two transistors’ pins, etc.), we apply both of them into our
PEA network’s attention mechanism. In this way, informations of
neighbouring nodes are aggregated according to their node features
and connection relationships.

3.2 PEA (Pooling with Edge Attention)
Network

The proposed PEA network is composed by two stages: feature
extractor and predictor as shown in Figure 1. The extractor consists
of multiple PEA layers, each of which includes graph convolution
and graph pooling. The predictor is a fully-connected neural net-
work, a.k.a. multi-layer perceptron (MLP). Since MLP is relatively
well-known, the description will be focused on the extractor.

The key ingredient of PEA network is the integration between
edge feature/attention and graph pooling. The pooling, which is
briefly introduced in Section 2.2, is to comprehend circuit hierarchy.
The edge feature/attention is to capture connections among devices.
Edge feature/attention [24] is not simple extension from those of
nodes. Moreover, it has not been integrated with graph pooling [22],
which is restricted to node features. A main contribution of PEA
network is to enable pooling for edge feature/attention. A PEA
network is composed by four phases:

(1) Edge-aware attention construction and compression.
(2) Graph convolution.
(3) Node pooling.
(4) Edge pooling.

Our customization is mainly at phases 1 and 4, while phases 2 and
3 are briefly described here for completeness. An overview of one
PEA layer is summarized in Algorithm 1.

3.2.1 Edge-Aware Attention Construction and Compression. Edge
attention is proposed in [24] by expanding attention matrix from
2D (see Section 2.1) to 3D so that 𝛼 (𝑙) ∈ R𝑛𝑙×𝑛𝑙×𝑝𝑙 , where the
3rd dimension corresponding to 𝑝𝑙 is for edge features and called
channel. While this approach has its merit, it is quite expensive in
terms of both runtime and memory use. In order to overcome this

Algorithm 1 Pooling with Edge Attention (PEA) Layer

Inputs: 𝐴(𝑙) ∈ R𝑛𝑙×𝑛𝑙 , 𝑋 (𝑙) ∈ R𝑛𝑙×𝑑𝑙 , 𝐸 (𝑙) ∈ R𝑛𝑙×𝑛𝑙×𝑝𝑙 , 𝑛𝑙+1, 𝑑𝑙+1,
𝑝𝑙+1

Outputs: 𝐴(𝑙+1) ∈ R𝑛𝑙+1×𝑛𝑙+1 , 𝑋 (𝑙+1) ∈ R𝑛𝑙+1×𝑑𝑙+1 , 𝐸 (𝑙+1) ∈
R𝑛𝑙+1×𝑛𝑙+1×𝑝𝑙+1

1: Initialize𝑊 (𝑙) ∈ R𝑑𝑙×𝑑𝑙+1 ,𝑊 (𝑙)
𝑝𝑜𝑜𝑙

∈ R𝑑𝑙×𝑛𝑙+1 ,

𝑊
(𝑙)
𝑒𝑑𝑔𝑒

∈ R𝑝𝑙×𝑝𝑙+1 , 𝑎 (𝑙) ∈ R2𝑑𝑙+1 , 𝑏 (𝑙) ∈ R𝑝𝑙

2: Edge-aware attention: calculating attention coefficients
𝛼
(𝑙)
𝑖 𝑗𝑘

=LeakyReLU(𝑎 (𝑙) · [𝑊 (𝑙)T𝑋 (𝑙)
𝑖

| |𝑊 (𝑙)T𝑋 (𝑙)
𝑗

])𝐸 (𝑙)
𝑖 𝑗𝑘

3: Row-wise normalization 𝛼
(𝑙)
𝑖 𝑗𝑘

= softmax𝑟𝑜𝑤 (𝛼 (𝑙)
𝑖 𝑗𝑘

)

4: Col-wise normalization 𝛼
(𝑙)
𝑖 𝑗𝑘

=
∑𝑛𝑙
𝑚=1

𝛼̃
(𝑙)
𝑖𝑚𝑘

𝛼̃
(𝑙)
𝑗𝑚𝑘∑𝑛𝑙

𝑢=1 𝛼̃
(𝑙)
𝑢𝑚𝑘

5: Graph convolution: node embedding
𝑍 (𝑙)=𝜎 (𝑔(𝛼 (𝑙) ;𝑏 (𝑙))𝑋 (𝑙)𝑊 (𝑙)) ∈ R𝑛𝑙×𝑑𝑙+1

6: 𝐴̃(𝑙) = 𝐴(𝑙) + I
7: 𝐷̃ (𝑙)

𝑖𝑖
=
∑𝑛𝑙

𝑗=1 𝐴̃
(𝑙)
𝑖 𝑗

, 𝐷̃ (𝑙) ∈ R𝑛𝑙×𝑛𝑙

8: Assignment matrix 𝑆 (𝑙)=
softmax𝑟𝑜𝑤 [𝜎 (𝐷̃ (𝑙)−

1
2
𝐴̃(𝑙) 𝐷̃ (𝑙)−

1
2
𝑋 (𝑙)𝑊 (𝑙)

𝑝𝑜𝑜𝑙
)] ∈ R𝑛𝑙×𝑛𝑙+1

9: Node pooling: generating new adjacency matrix
𝐴(𝑙+1) = 𝑆 (𝑙)

T
𝐴(𝑙)𝑆 (𝑙) ∈ R𝑛𝑙+1×𝑛𝑙+1

10: Node pooling: generating new node feature matrix
𝑋 (𝑙+1) = 𝑆 (𝑙)

T
𝑍 (𝑙) ∈ R𝑛𝑙+1×𝑑𝑙+1

11: Edge pooling: edge-feature-encoded attention
𝑄

(𝑙)
𝑖 𝑗𝑘

=
∑𝑝𝑙
𝑚=1 𝛼

(𝑙)
𝑖 𝑗𝑚

𝑊𝑒𝑑𝑔𝑒
(𝑙)
𝑚𝑘

, 𝑄 (𝑙) ∈ R𝑛𝑙×𝑛𝑙×𝑝𝑙+1

12: Edge pooling: generating new edge feature matrix
𝐸 (𝑙+1) = | |𝑝𝑙+1

𝑘=1 (𝑆
(𝑙)T𝑄 (𝑙)

··𝑘𝑆
(𝑙)) ∈ R𝑛𝑙+1×𝑛𝑙+1×𝑝𝑙+1

drawback, we suggest a new edge-aware attention model, where
the raw attention is defined as

𝛼
(𝑙)
𝑖 𝑗𝑘

= 𝑓 (𝑙) (𝑋 (𝑙)
𝑖

, 𝑋
(𝑙)
𝑗

, 𝐸
(𝑙)
𝑖 𝑗𝑘

) = 𝜏𝑖 𝑗𝐸
(𝑙)
𝑖 𝑗𝑘

(8)

and 𝜏𝑖 𝑗 is given by Equation (2). This is step 2 of Algorithm 1. Then,
attention matrix is obtained through bidirectional normalization
(BN) as

𝛼 (𝑙) = 𝐵𝑁 (𝛼 (𝑙)) =


𝛼
(𝑙)
𝑖 𝑗𝑘

= softmax𝑟𝑜𝑤 (𝛼 (𝑙)
𝑖 𝑗𝑘

)

𝛼
(𝑙)
𝑖 𝑗𝑘

=

𝑛𝑙∑
𝑚=1

𝛼
(𝑙)
𝑖𝑚𝑘

𝛼
(𝑙)
𝑗𝑚𝑘∑𝑛𝑙

𝑢=1 𝛼
(𝑙)
𝑢𝑚𝑘

(9)

The normalization corresponds to steps 3 and 4 in Algorithm 1.
It avoids computing overflow from multiplication and guarantees
that in each channel 𝑘 , the sum in each row and each column of
𝛼 (𝑙) is 1.

We further compress the 3D attention matrix into 2D by a com-
pression operator 𝑔 : R𝑝𝑙 → R defined as

𝑒𝑖 𝑗 = 𝑔(𝛼 (𝑙)
𝑖 𝑗

;𝑏 (𝑙)) =
𝑝𝑙∑
𝑘=1

𝛼
(𝑙)
𝑖 𝑗𝑘

𝑏
(𝑙)
𝑘

(10)

where 𝑏 (𝑙) ∈ R𝑝𝑙 is a trainable weight vector.

3.2.2 Graph Convolution. After the attention compression, graph
convolution is perform in the same way as conventional approach

(Section 2.1) except that the attention is replaced by the compressed
one 𝑔(𝛼 (𝑙) ;𝑏 (𝑙)) so that

𝑍 (𝑙) = 𝜎 (𝑔(𝛼 (𝑙) ;𝑏 (𝑙))𝑋 (𝑙)𝑊 (𝑙)) (11)
Step 5 of Algorithm 1 covers this convolution operation as well as
the compression by Equation (10).

3.2.3 Node Pooling. This phase is the same as DiffPool [22], which
is summarized by steps 6-10 in Algorithm 1. First, the assignment
matrix 𝑆 (𝑙) ∈ R𝑛𝑙×𝑛𝑙+1 is obtained according to Equation (5). Then, a
new node feature matrix 𝑋 (𝑙+1) and a new adjacency matrix 𝐴(𝑙+1)

are computed by Equations (6) and (7), respectively.

3.2.4 Edge Pooling. Edge pooling is a new technique that has not
been seen in previous work, to the best of our knowledge. We
developed an edge pooling technique, which can be decomposed to
two sub-steps: channel pooling and node-space pooling. Please note
the node-space here is for edge features and hence the node-space
pooling for edge features is different from node pooling described
by Equation (6).

The channel pooling is designed to be ℎ : R𝑝𝑙 → R𝑝𝑙+1

𝑄
(𝑙)
𝑖 𝑗

= ℎ(𝛼 (𝑙)
𝑖 𝑗

;𝑊 (𝑙)
𝑒𝑑𝑔𝑒

)

𝑄
(𝑙)
𝑖 𝑗𝑘

=

𝑝𝑙∑
𝑚=1

𝛼
(𝑙)
𝑖 𝑗𝑚

𝑊𝑒𝑑𝑔𝑒
(𝑙)
𝑚𝑘

(12)

where 𝑄 (𝑙) ∈ R𝑛𝑙×𝑛𝑙×𝑝𝑙+1 is edge-feature-encoded attention and
𝑊

(𝑙)
𝑒𝑑𝑔𝑒

∈ R𝑝𝑙×𝑝𝑙+1 is a trainable weight matrix. This transformation
(step 11 in Algorithm 1) changes the channel dimension from 𝑝𝑙 for
attention 𝛼 (𝑙) to 𝑝𝑙+1 for 𝑄 (𝑙) . Since attention 𝛼 incorporates edge
feature information in Equation (8), so does 𝑄 .

Based on the edge-feature-encoded attention 𝑄 (𝑙) , the node-
space pooling for edge features is designed to be 𝑡 : R𝑛𝑙+1×𝑛𝑙 ×
R𝑛𝑙×𝑛𝑙×𝑝𝑙+1 × R𝑛𝑙×𝑛𝑙+1 → R𝑛𝑙+1×𝑛𝑙+1×𝑝𝑙+1 :

𝐸 (𝑙+1) = 𝑡 (𝑆 (𝑙)T, 𝑄 (𝑙) , 𝑆 (𝑙))

= | |𝑝𝑙+1
𝑘=1 (𝑆

(𝑙)T𝑄 (𝑙)
··𝑘𝑆

(𝑙))
(13)

where 𝐸 (𝑙+1) ∈ R𝑛𝑙+1×𝑛𝑙+1×𝑝𝑙+1 is the edge feature matrix after the
complete pooling. In the pooling (step 12 of Algorithm 1), “· · 𝑘” is
a slicing operation defined by

(𝑄 (𝑙)
··𝑘)𝑖 𝑗 = 𝑄

(𝑙)
𝑖 𝑗𝑘

𝑖, 𝑗 ∈ 1, 2, ..., 𝑛𝑙 (14)

where 𝑄 (𝑙)
··𝑘 is a 2D matrix for channel 𝑘 , and all channels are con-

catenated by | | : R𝑛𝑙+1×𝑛𝑙+1 → R𝑛𝑙+1×𝑛𝑙+1×𝑝𝑙+1 , which is defined
as

𝑈 = | |𝑝𝑙+1
𝑘=1𝑉𝑘

𝑈𝑖 𝑗𝑘 = (𝑉𝑘)𝑖 𝑗
(15)

where 𝑉𝑘 ∈ R𝑛𝑙+1×𝑛𝑙+1 , 𝑘 ∈ 1, 2, ..., 𝑝𝑙+1. The edge pooling here is
designed to be consistent with the node pooling by Equation (6).
The edge pooling process is illustrated in Figure 3.

3.2.5 Predictor. Suppose there are 𝐿 PEA layers. The outputs of
the last layer including adjacency matrix 𝐴(𝐿) , node feature matrix
𝑋 (𝐿) and edge feature matrix 𝐸 (𝐿) are all flattened and then con-
catenated into a 1D vector, which is fed to an MLP (Multi-Layer
Perceptrons). The MLP output is the classification/regression of
analog performance defined by users.

Figure 3: Edge pooling.

3.3 Knowledge Transfer among Different
Topologies

An analog circuit of the same functionality can be realized in dif-
ferent designs or topologies. For instance, OTA can have different
topologies such as Cascode OTA and Current Mirror OTA. Usu-
ally, the graph sizes and structures are different among different
topologies. The knowledge obtained by training a PEA network
on one topology can be transferred to a different topology with a
fine tuning by a small amount of additional training data from the
target topology.

According to Algorithm 1, PEA layers of a trained PEA network
are specified by𝑊 (𝑙) ,𝑊 (𝑙)

𝑝𝑜𝑜𝑙
,𝑊 (𝑙)

𝑒𝑑𝑔𝑒
, 𝑎 (𝑙) and 𝑏 (𝑙) , 𝑙 = 1, 2, ..., 𝐿, if

there are 𝐿 PEA layers. The sizes of these matrices and vectors
are decided by the number of features and the number of nodes
starting from layer 1, 𝑛 (𝑙) , 𝑙 = 1, 2, ..., 𝐿. Therefore, their sizes are in-
dependent of data sample size 𝑛 = 𝑛 (0) as long as 𝑛 ⩾ 𝑛 (1) . In other
words, the same model can be applied with different topologies
with 𝑛 ⩾ 𝑛 (1) . The pooling in the first PEA layer can transform a
graph of many different sizes to 𝑛 (1) . This is another reason why
we incorporate graph pooling in our customization.

4 PERFORMANCE DRIVEN PLACEMENT
GUIDED BY PEA

Like many existing approaches [5, 7], the simulated annealing
framework is adopted for the performance driven analog IC place-
ment. The cost function to be minimized is

𝛼 · 𝐴 + 𝛽 ·𝑊 + 𝛾 ·𝑄 (16)

where 𝐴 is normalized total area,𝑊 is normalized total wirelength
estimated according to HPWL (Half Perimeter Wirelength), 𝑄 is a
performance cost estimated by machine learning model, and 𝛼 , 𝛽
and 𝛾 are weighting factors that sum to 1. Besides minimizing the
cost function, our placement enforces geometric constraints, such
as symmetry and common centroid, like in [7].

The performance of an analog circuit is usually evaluated by
multiple metrics. For instance, important performance metrics for
OTA circuits include gain, bandwidth and phase margin. Suppose
there are𝑚 metrics 𝑦1, 𝑦2, ..., 𝑦𝑚 , and each 𝑦𝑖 , 𝑖 = 1, 2, ...,𝑚 has a de-
sign specification or threshold 𝜙𝑖 , which is usually defined by users.
The PEA network can be applied to classify if 𝑦𝑖 ⩾ 𝜙𝑖 , 𝑖 = 1, 2, ...,𝑚,
i.e., if design specifications are satisfied. The overall performance
cost can be defined as

𝑄𝐼 =

𝑚∑
𝑖=1

𝑤𝑖 · 𝑃 (𝑦𝑖 < 𝜙𝑖) (17)

where 𝑃 (𝑦𝑖 < 𝜙𝑖) is the probability of violating design specification
and can be obtained by the softmax output at PEA network. The
weighting factors𝑤𝑖 , 𝑖 = 1, 2, ...,𝑚 are decided by users and satisfy∑𝑚

𝑖=1𝑤𝑖 = 1.
Alternatively, the performance cost can be defined by

𝑄𝐼 𝐼 = 𝑃 (
𝑚∑
𝑖=1

𝑤𝑖 ·min(𝑦𝑖
𝜙𝑖

, 1) < 𝑇) (18)

where 𝑇 is the specification of overall performance and can be
obtained according to legacy designs. The classification on whether
or not

∑𝑚
𝑖=1𝑤𝑖 · min(𝑦𝑖

𝜙𝑖
, 1) < 𝑇 can be obtained through PEA

network. Cost 𝑄𝐼 𝐼 relies on an additional threshold 𝑇 compared to
𝑄𝐼 . However, it requires only one output from PEA while 𝑄𝐼 needs
𝑚 outputs from PEA.

5 EXPERIMENT
5.1 Experiment Setup
The experiments are conducted on a Linux machine using Xeon (R)
E5-2680 V2 processor with 2.8GHz frequency and 256G memory.
5.1.1 Model and Placement Implementation. The machine learning
models are implemented in Python. Our analog IC placer, which
is described in Section 4, and router are programmed in C++. Ta-
ble 1 summarizes the configuration of the PEA network used in
the experiment, which contains 4 PEA layers and 5 MLP layers.
Our work is mainly compared with the recent CNN-based analog
performance model [19]. The source code of [19] is obtained and
modified to accommodate our testcases in the experiment.

Layer Configuration
#trainable
parameters

Feature
#nodes

#node #edge
Extractor features features

PEA layers

12 15 24 1191
12 15 24 1191
6 10 12 728
6 10 12 424

Predictor #neurons

MLP layers

32 16928
16 528
8 136
4 36
1 5

Total 21167
Table 1: PEA network configuration.

5.1.2 Testcase and Training Data. The testcases are OTA (Oper-
ational Transconductance Amplifier) designs of three different
topologies: 5T OTA, Cascode OTA and Current Mirror OTA. These
designs employ the ASAP 7nm process technology [25]. 8108, 7758
and 9858 placement solutions are generated for the 5T, Cascode
and Current Mirror OTAs, respectively. Every placement solution
is routed and the performance of each layout is evaluated by gain,
bandwidth, unity gain frequency and phase margin, which are ob-
tained through parasitic extraction and SPICE simulation. For each
topology, 80% and 20% of the data samples are used for training and
testing, respectively. None of the testing data can be seen during
training. On average, each data sample feature for PEA network

Circuit
Accuracy Precision Recall FPR AUROC

PEA GAT CNN PEA GAT CNN PEA GAT CNN PEA GAT CNN PEA GAT CNN

𝑄̂𝐼

Cascode 84.4% 83.8% 78.7% 75.6% 73.4% 56.8% 51.2% 49.5% 27.0% 5.1% 5.3% 4.9% 0.863 0.858 0.706
CM 89.3% 84.7% 77.5% 83.0% 78.3% 54.6% 71.5% 52.9% 24.8% 4.7% 4.7% 4.9% 0.933 0.897 0.802
5T 93.7% 92.6% 85.1% 85.8% 86.4% 80.1% 89.7% 83.5% 53.5% 5.0% 4.4% 4.7% 0.982 0.971 0.880
Avg. 89.1% 87.0% 80.4% 81.5% 79.4% 63.8% 70.8% 62.0% 35.1% 5.0% 4.8% 4.8% 0.926 0.909 0.796

𝑄̂𝐼 𝐼

Cascode 86.6% 85.2% 81.8% 82.1% 78.3% 73.7% 59.3% 55.9% 41.0% 4.3% 5.1% 4.8% 0.896 0.879 0.748
CM 88.2% 87.5% 80.0% 81.8% 80.6% 68.7% 66.9% 64.4% 40.0% 4.8% 5.0% 4.9% 0.950 0.932 0.853
5T 94.5% 92.8% 89.8% 86.5% 85.1% 83.9% 93.3% 87.3% 74.9% 5.1% 5.3% 5.0% 0.981 0.973 0.890
Avg. 89.8% 88.5% 83.9% 83.5% 81.3% 75.4% 73.2% 69.2% 52.0% 4.7% 5.2% 4.9% 0.942 0.928 0.830

Table 2: Self-sustained learning results from our PEA model, GAT and CNN [19]. CM indicates Current-Mirror. Results of
𝑄̂𝐼 are the average among classifications of Gain, BW, UFG and PM. Results of 𝑄̂𝐼 𝐼 are from binary classification version of
Equation (18).

contains 5178 floating point numbers. Same as [19], the size of each
input image to the CNN model is 64 × 64 × 5. Placement images
of one data sample for the CNN model [19] uses about 4× data or
more than input features for our PEA network.

5.2 Results on Analog Performance Prediction
The classification performance by a machine learning model is
evaluated by the following metrics based on TP (True Positive), TN
(True Negative), FP (False Positive) and FN (False Negative).

• Recall, a.k.a. TPR (True Positive Rate): 𝑇𝑃
𝑇𝑃+𝐹𝑁 .

• FPR (False Positive Rate): 𝐹𝑃
𝐹𝑃+𝑇𝑁 .

• Accuracy: 𝑇𝑃+𝑇𝑁
𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁 .

• Precision: 𝑇𝑃
𝑇𝑃+𝐹𝑃 .

There is a tradeoff between TPR (Recall) and FPR by varying certain
threshold in the classification. The TPR-FPR tradeoff curve is usually
called ROC (Receiver Operating Characteristic) curve. The area
under ROC curve (AUROC) is a metric for assessing the overall
performance of entire tradeoff. AUROC is equal to 1 for a perfect
model and equals 0.5 for random guesses.

5.2.1 Results on Self-Sustained Learning. The self-sustained learn-
ing here means the model is trained and applied on the same topol-
ogy and 80% of the total data is employed for the training. The
testing data are the remaining 20% of the entire data. Our proposed
PEA network is compared with a plug-in use of GAT [21], which
is one of the most popular graph neural networks, and CNN [19],
which is a recent work on analog performance prediction for place-
ment solutions. The model evaluation is performed for two different
classification formulations.

(1) 𝑄̂𝐼 : Four performance metrics, Gain, UGF (Unity Gain Fre-
quency), BW (Bandwidth) and PM (Phase Margin), are classi-
fied separately by four differently trained models. The results
are the average from these four metrics.

(2) 𝑄̂𝐼 𝐼 : This is to classify if 1
4
∑4
𝑖=1min(𝑦𝑖

𝜙𝑖
, 1) < 𝑇 , where 𝑦𝑖

corresponds to Gain, UGF, BW and PM, 𝜙𝑖 are their specifi-
cations and 𝑇 is a threshold. This is the binary classification
version of Equation (18).

The main results of self-sustained learning are shown in Table 2.
Our PEA network is superior to the previous work [19] on all of
accuracy, precision and AUROC. On average, it improves AUROC
by 16% and 13% on 𝑄̂𝐼 and 𝑄̂𝐼 𝐼 , respectively, compared to [19]. For
the similar FPR, our PEA network achieves much better recall (TPR)
than [19]. Such results indicate that it is important to consider graph

structure as in PEA and only considering layout images like [19] is
insufficient. Our PEA network also outperforms the plug-in use of
GAT in most of the metrics except a few cases where the results
are similar. This is an evidence for confirming the effectiveness of
our customization on GNN techniques.

Figure 4: AUROC results on classifying the four perfor-
mance metrics, averaged among the three topologies.

The separated AUROC results for the four different performance
metrics are plotted in Figure 4. Our PEA network significantly out-
performs CNN [19] on every performance metric. BW (bandwidth)
is the most difficult to classify among the four as its dependence
on placement is quite complex. The advantage of our PEA network
versus the previous work [19] is the largest on this difficult case.

5.2.2 Results on Transfer Learning. In Table 3, we compare the
results between learning with transfer and without transfer for
the classification formulation of 𝑄̂𝐼 𝐼 . Transfer means knowledge
obtained from training in one topology, called source topology, can
be reused and helpful in another topology, called target topology.
Columns 2 and 3 list the source and target topologies for the transfer.
The “Transfer" results are obtained by a major training with 80%
of data on S (source) and minor fine tuning with 10% of data on
T (target), and predicting on T. Please note that the data amount
for all these three circuit topologies are similar. In “No Trnsf", the
training from 80% of S topology data is skipped. Therefore, the
comparison would show if the knowledge learned from S is carried
to T.

The results in Table 3 indicate that the transfer with PEA network
almost always improves classification quality compared with no
transfer. This confirms that our PEA network can generally achieves
knowledge transfer. The only minor exception is that FPR and

Model
Circuit Accuracy Precision Recall FPR AUROC

S T Transfer No Trnsf Transfer No Trnsf Transfer No Trnsf Transfer No Trnsf Transfer No Trnsf

PEA

Cascode CM 79.5% 76.8% 69.5% 58.1% 28.8% 18.6% 4.1% 4.4% 0.872 0.840
CM Cascode 83.5% 80.6% 77.2% 70.3% 47.9% 38.4% 4.7% 5.4% 0.852 0.805
CM 5T 92.2% 92.2% 83.5% 85.4% 87.1% 84.0% 6.0% 5.0% 0.950 0.941

Avg. 85.1% 83.2% 76.7% 71.2% 54.6% 47.0% 4.9% 4.9% 0.891 0.862

CNN

Cascode CM 77.4% 75.9% 60.1% 52.3% 22.8% 16.6% 4.9% 4.9% 0.822 0.797
CM Cascode 73.8% 79.5% 37.4% 69.5% 8.9% 28.1% 5.0% 4.5% 0.613 0.740
CM 5T 76.8% 74.6% 62.1% 52.5% 25.8% 15.1% 5.5% 4.7% 0.856 0.849

Avg. 76.0% 76.6% 53.2% 58.1% 19.1% 19.9% 5.1% 4.6% 0.764 0.795
Table 3: Transfer learning results from source circuit S to target circuit T. Transfer: training with 80% data from S and 10% data
from T, and predicting on T. No Trnsf: training with 10% data from T and predicting on T. CM: Current Mirror.

precision are slightly degraded for the transfer from Current Mirror
OTA to 5T OTA. For the CNN-based work [19], the transfer from
Current Mirror OTA to Cascode OTA causes significant degradation
on all metrics.

Figure 5: Effect of transfer from Cascode OTA to Current
Mirror OTA. 𝜌 of Current Mirror OTA data is used in train-
ing for all methods.

In Figure 5, we show the effect of 𝜌 , which is the ratio of target
topology (Current Mirror) data used in training for both “Trans-
fer” from Cascode to Current Mirror and “No Trnsf" at Current
Mirror OTA. When 𝜌 is low, the effect of transfer is evident for
both our PEA network and the previous CNN approach [19]. The
classification accuracy increases with 𝜌 . When 𝜌 is large, the effect
of transfer diminishes.

In Figure 6, ROC curves for classifying 𝑄̂𝐼 𝐼 on Current Mirror
OTA are plotted for different methods. It shows that self-sustained
learning is better and transfer learning still has room for improve-
ment. Almost all PEA solutions dominate the CNN-based previous
work [19].
5.2.3 Model Training Time. In self-sustained learning, training one
PEA network takes about 728 seconds while training one CNN
model [19] costs about 7263 seconds. Thus, our training is approxi-
mately 10× faster than the previous work [19].

5.3 Results on Analog Placement
The results of performance driven placement guided by machine
learning model are compared with manual layout and a conven-
tional automatic method [7], which does not include performance in
its objectives. Five variants of performance driven placement based
on Section 4 are tested. They are guided by combinations of PEA

Figure 6: ROC curves for classifying 𝑄̂𝐼 𝐼 on Current Mirror
OTA. Knowledge is transferred from Cascode OTA in the
transfer learning.

vs. CNN [19], SS (Self-sustained learning) vs. transfer learning, and
performance cost 𝑄𝐼 defined by Equation (17) and 𝑄𝐼 𝐼 defined by
Equation (18). To capture the overall circuit performance, a Figure
of Merit (FOM) is defined as

𝐹𝑂𝑀 =

4∑
𝑖=1

𝑤𝑖 ·min(𝑦𝑖
𝜙𝑖

, 1) (19)

where𝑤𝑖 denotes weights, 𝑦𝑖 corresponds to Gain, UFG, BW and
PM, and 𝜙𝑖 indicates their specifications. The value of FOM is in
[0, 1] and ideally 1. This definition is consistent with the perfor-
mance cost defined in Equations (17) and (18).

The results from the three circuits are shown in Tables 4, 5 and
6. For both the Cascode OTA and 5T OTA, all the three PEA-guided
results are significantly closer to manual layout than both the previ-
ous work [7] and placement guided by the CNN-based model [19].
For Current Mirror OTA, the best automatic results are from all of
our models and CNN self-sustained learning. The overall advan-
tage of placement guided by PEA versus the previous work [19] is
evident. Examples of layout generated by manual design and PEA
network are demonstrated in Figure 7. The symmetry constraints
for 3 pairs of transistors are enforced in both the manual layout and
the placement guided by PEA. There are 4 stand alone transistors
without symmetry constraints. PEA guides the placement of these
4 transistors for improving performance while the manual design
places them symmetrically.

Total placement and routing runtime estimation is provided in
Table 7. Approximately, the automatic layout, where placement is

Schematic Manual
Conventional CNN PEA
Automatic SS 𝑄𝐼 𝐼 Transfer 𝑄𝐼 𝐼 SS 𝑄𝐼 𝐼 Transfer 𝑄𝐼 𝐼 Transfer 𝑄𝐼

Gain (dB) 37.0 33.0 23.7 27.7 30.1 32.2 32.5 33.1
UGF (MHz) 1522.9 1167.0 947.6 1003.0 617.1 1072.0 948.9 1042.0
BW (MHz) 21.8 26.8 56.0 33.8 17.5 26.9 22.4 24.8
PM (degree) 82.1 80.7 108.5 113.7 104.7 90.8 93.0 85.5

FOM 1.00 0.85 0.71 0.75 0.66 0.82 0.80 0.83
Area (𝜇𝑚2) - 26.5 24.1 40.4 37.1 34.0 34.4 32.4

Table 4: Results of Cascode OTA. SS: Self-Sustained Learning.

Schematic Manual
Conventional CNN PEA
Automatic SS 𝑄𝐼 𝐼 Transfer 𝑄𝐼 𝐼 SS 𝑄𝐼 𝐼 Transfer 𝑄𝐼 𝐼 Transfer 𝑄𝐼

Gain (dB) 32.6 32.5 33.1 33.0 28.7 32.7 33.1 33.0
UGF (MHz) 531.0 530.0 451.0 484.0 424.3 502.9 495.1 481.6
BW (MHz) 12.5 12.3 10.2 11.0 15.8 11.9 11.2 11.0
PM (degree) 82.8 80.1 78.5 78.0 80.3 76.9 77.4 77.6

FOM 1.00 0.99 0.90 0.93 0.85 0.95 0.94 0.93
Area (𝜇𝑚2) - 15.8 14.5 17.1 25.9 17.6 25.9 21.5

Table 5: Results of Current Mirror OTA.

Schematic Manual
Conventional CNN PEA
Automatic SS 𝑄𝐼 𝐼 Transfer 𝑄𝐼 𝐼 SS 𝑄𝐼 𝐼 Transfer 𝑄𝐼 𝐼 Transfer 𝑄𝐼

Gain (dB) 32.4 32.4 26.5 32.0 24.7 31.4 31.8 32.8
UGF (MHz) 1105.0 870.4 656.9 671.1 667.9 799.5 771.0 744.9
BW (MHz) 26.5 21.0 34.2 16.8 38.6 21.2 19.7 16.9
PM (degree) 86.5 85.1 85.5 94.1 95.1 94.2 93.8 94.1

FOM 1.00 0.89 0.77 0.80 0.75 0.85 0.84 0.83
Area (𝜇𝑚2) - 18.7 16.4 26.1 22.0 18.0 22.0 26.1

Table 6: Results of 5T OTA.

Manual (min) Conven Auto [7] (s) PEA (s) CNN [19] (s)
Cascode 110 2.27 52.4 50.0
CM 160 1.38 42.7 45.9
5T 90 1.26 67.3 52.9
Avg. 120 1.63 54.1 49.6

Table 7: Total place and route runtime.

guided by machine learning (PEA or CNN), is about 133× faster
than manual design.

6 CONCLUSIONS AND FUTURE RESEARCH
This work proposes a customized GNN approach, called PEA net-
work, for predicting analog circuit performance of a placement
solution. It is superior to the recent CNN-based work on accuracy,
knowledge transfer and training time. It also outperforms a plug-in
use of GAT, which is one of the most influential GNN techniques.
The post-layout circuit performance from PEA-guided placement is
better than placement guided by CNN. Our placement achieves per-
formance similar to manual design but is two orders of magnitude

(a) Manual design (b) Guided by PEA

Figure 7: Layout of Current Mirror OTA.

faster. In future research, we will further improve the knowledge
transfer capability and explore transfer among different types of
circuits beyond OTA.

ACKNOWLEDGEMENT
This work is supported by the DARPA ERI IDEA program.We thank
Prof. Shuiwang Ji of Texas A&M University for helpful discussions.

REFERENCES
[1] U. Choudhury and A. Sangiovanni-Vincentelli, “Automatic generation of parasitic

constraints for performance-constrained physical design of analog circuits,” IEEE
TCAD, vol. 12, no. 2, pp. 208–224, 1993.

[2] K. Lampaert, G. Gielen, and W. M. Sansen, “A performance-driven placement
tool for analog integrated circuits,” IEEE JSSC, vol. 30, no. 7, pp. 773–780, 1995.

[3] F. Balasa and K. Lampaert, “Symmetry within the sequence-pair representation
in the context of placement for analog design,” IEEE TCAD, vol. 19, no. 7, pp.
721–731, 2000.

[4] M. Strasser, M. Eick, H. Grab, U. Schlichtmann, and F. M. Johannes, “Determin-
istic analog circuit placement using hierarchically bounded enumeration and
enhanced shape functions,” in Proc. ICCAD, 2008.

[5] P.-H. Lin, Y.-W. Chang, and S.-C. Lin, “Analog placement based on symmetry-
island formulation,” IEEE TCAD, vol. 28, no. 6, pp. 791–804, 2009.

[6] C.-W. Lin, J.-M. Lin, C.-P. Huang, and S.-J. Chang, “Performance-driven analog
placement considering boundary constraint,” in Proc. DAC, 2010, pp. 292–297.

[7] Q. Ma, L. Xiao, Y.-C. Tam, and E. F. Young, “Simultaneous handling of symmetry,
common centroid, and general placement constraints,” IEEE TCAD, vol. 30, no. 1,
pp. 85–95, 2010.

[8] P.-H. Wu, M. P.-H. Lin, Y.-R. Chen, B.-S. Chou, T.-C. Chen, T.-Y. Ho, and B.-D. Liu,
“Performance-driven analog placement considering monotonic current paths,” in
Proc. ICCAD, 2012, pp. 613–619.

[9] H. C. Ou, K. H. Tseng, J. Y. Liu, I. P. Wu, and Y. W. Chang, “Layout-dependent-
effects-aware analytical analog placement,” in Proc. DAC, 2015, pp. 1–6.

[10] P.-H. Wu, P. H. Lin, and T. Y. Ho, “Analog layout synthesis with knowledge
mining,” in European Conference on Circuit Theory and Design (ECCTD), 2015, pp.
1–4.

[11] P. H. Lin, Y. W. Chang, and C. M. Hung, “Recent research development and new
challenges in analog layout synthesis,” in Proc. ASPDAC, 2016, pp. 617–622.

[12] B. Xu, S. Li, X. Xu, N. Sun, and D. Z. Pan, “Hierarchical and analytical placement
techniques for high-performance analog circuits,” in Proc. ISPD, 2017, pp. 55–62.

[13] B. Xu, S. Li, C.-W. Pui, D. Liu, L. Shen, Y. Lin, N. Sun, and D. Z. Pan, “Device
layer-aware analytical placement for analog circuits,” in Proc. ISPD, 2019, pp.

19–26.
[14] Z. Liu and L. Zhang, “A performance-constrained template-based layout retarget-

ing algorithm for analog integrated circuits,” in Proc. ASPDAC, 2010, pp. 293–298.
[15] G. Zhang, H. He, and D. Katabi, “Circuit-GNN: Graph neural networks for dis-

tributed circuit design,” in Proc. ICML, 2019, pp. 7364–7373.
[16] B. Xu, Y. Lin, X. Tang, S. Li, L. Shen, N. Sun, and D. Z. Pan, “Wellgan: Generative-

adversarial-network-guided well generation for analog/mixed-signal circuit lay-
out,” in Proc. DAC, 2019, pp. 1–6.

[17] K. Zhu, M. Liu, Y. Lin, B. Xu, S. Li, X. Tang, N. Sun, and D. Z. Pan, “Genius route:
A new analog routing paradigm using generative neural network guidance,” in
Proc. ICCAD, 2019, pp. 1–8.

[18] K. Kunal, T. Dhar, M. Madhusudan, J. Poojary, A. Sharma, W. Xu, S. M. Burns,
J. Hu, R. Harjani, and S. S. Sapatnekar, “GANA: Graph convolutional network
based automated netlist annotation for analog circuits,” in Proc. DATE, 2020.

[19] M. Liu, K. Zhu, J. Gu, L. Shen, X. Tang, N. Sun, and D. Z. Pan, “Towards decrypting
the art of analog layout, placement quality prediction via transfer learning,” in
Proc. DATE, 2020, pp. 1–6.

[20] H. Wang, K. Wang, J. Yang, L. Shen, N. Sun, H.-S. Lee, and S. Han, “GCN-RL
circuit designer: Transferable transistor sizing with graph neural networks and
reinforcement learning,” arXiv preprint arXiv:2005.00406, 2020.

[21] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, “Graph
attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[22] Z. Ying, J. You, C. Morris, X. Ren, W. Hamilton, and J. Leskovec, “Hierarchical
graph representation learning with differentiable pooling,” in Advances in neural
information processing systems, 2018, pp. 4800–4810.

[23] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A comprehensive survey
on graph neural networks,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 1, no. 1, pp. 1–21, 2019.

[24] L. Gong and Q. Cheng, “Exploiting edge features for graph neural networks,” in
Proc. CVPR, 2019, pp. 9211–9219.

[25] L. T. Clark, V. Vashishtha, L. Shifren, A. Gujja, S. Sinha, B. Cline, C. Ramamurthy,
and G. Yeric, “ASAP7: A 7-nm finFET predictive process design kit,” Microelec-
tronics Journal, vol. 53, pp. 105–115, 2016.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 30.60 points
 Normalise (advanced option): 'improved'

 32
 1
 0
 Full
 790
 326
 Fixed
 Up
 30.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 9
 8
 9

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 9
 0
 1

 1

 HistoryList_V1
 qi2base

