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Abstract—Traditional methods that test for electromigration (EM)
failure in multisegment interconnects, over the lifespan of an IC, are
based on the use of the Blech criterion, followed by Black’s equation.
Such methods analyze each segment independently, but are well known
to be inaccurate due to stress buildup over multiple segments. This
paper introduces the new concept of boundary reflections of stress flow
that ascribes a physical (wave-like) interpretation to the transient stress
behavior in a finite multisegment line. This can provide a framework for
deriving analytical expressions of transient EM stress for lines with any
number of segments, which can also be tailored to include the appropriate
number of terms for any desired level of accuracy. The proposed method
is shown to have excellent accuracy, through evaluations against the FEM
solver COMSOL, as well as scalability, through its application on large
power grid benchmarks.

I. INTRODUCTION

Electromigration (EM) in on-chip interconnects is a major source
of concern in both digital and analog circuits in deeply scaled
technologies. EM concerns arise especially in interconnects that
carry large currents, e.g., power grid wires in digital and analog
circuits, or wires carrying large biasing currents in analog circuits.
EM failures are related to the current densities in wires: as wires have
grown narrower in recent technologies, these current densities have
increasingly resulted in EM susceptibility in lower metal layers.

Traditional EM analysis methods have been largely empirical. A
widely used approach employs the Blech product [1] to first identify
“immortal” wires, after which a method based on Black’s equation [2]
tests the current density in potentially mortal wires against foundry-
specified thresholds. However, there is a growing realization that such
empirical methods can lead to incorrect conclusions, and that EM in
multisegment interconnects requires a physics-based analysis that is
more complex. Following the work in [3]–[5], a significant advance in
modeling in Korhonen [6] presents a differential equation formulation
for each wire segment, modeling the interplay between the electron
wind force, driven by the current density, and the opposing back
stress force, driven by the diffusion gradient cause by imbalanced
accumulation of metal atoms as they migrate along a wire.

This system of differential equations can be solved to obtain
the stress in each wire segment. Two types of analysis are useful.
Steady-state analysis predicts the largest EM-induced stress in any
wire segment after all transients settle: if this stress is below the
critical stress for void formation, the wire segment can be considered
immortal. However, the time required to reach steady-state may often
exceed the useful lifetime of a chip. For such scenarios, a transient
analysis predicts the stress as a function of time, and a wire is EM-
susceptible if its stress exceeds the critical stress during its lifetime.
Several approaches have used the Korhonen formulation [7], [8].
For multisegment metal interconnects, analyses based on steady-state
stress [9]–[12] are used to identify immortal wires in multisegment
wires: this problem was recently shown to admit a linear-time
solution [12]. The problem of analyzing transient stress to determine
the stress at the end-of-lifetime period for the chip has seen several
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prior attempts, but is computationally expensive. Previous work in
[13], [14] first finds the infinite series solution and then truncates it
to a suitable number of terms. However, using this approach (a) it
is very difficult to calculate and write down the infinite series for
more than 3-4 segments; (b) it is practically impossible to obtain
expressions parameterized by a general number of segments; (c) it is
difficult to know how many terms the series should be truncated to
while maintaining sufficient accuracy. In [15], a numerical solution
for transient analysis is described.

In this paper, we consider the problem of finding a closed-
form solution to the transient stress profile in a multisegment metal
interconnect line due to EM. The reasoning behind limiting our
focus to only line structures is presented in Section III-A. Our
contributions are summarized as follows. First, our approach in-
troduces the new concept of boundary reflections of stress flow,
which ascribes a physical interpretation to the transient EM stress
behavior and provides insight to the terms of the infinite series
solution. Second, our proposed approach can, for the first time,
provide analytic solutions of transient stress for multisegment lines
with an arbitrary number of segments (i.e., not just restricted to lines
with 3-4 segments), which can be also parameterized with respect
to the number of segments. The proposed framework starts from the
sources of stress flow (to be defined later) as fundamental terms and
builds up the series solution by successive reflections at the physical
boundaries. We provide general expressions for the fundamentals and
the first group of reflections as function of the number and length
of segments in easy-to-use tabular forms, from which the analytic
solution containing an arbitrary number of reflections (or even the full
infinite series solution) can be easily deduced. Third, based on our
physical explanation, the framework provides a concrete termination
criterion that can be customized to each stress source: based on
the fact that the reflections of subsequent orders attenuate, we can
stop the build-up of the series at any desired accuracy. It is seen
experimentally that at most two reflections for each stress source
are sufficient for near-perfect accuracy for all of our testcases until
we reach steady-state. In addition, the capability for computation of
transient stress in any multisegment line allows the application of
the proposed method to very large chip structures such as power
grids. This is the first work to show an analytic method that is
applicable to structures of this scale, and our experiments on large
power grid benchmarks demonstrate significant pessimism of steady
state predictions vs. the actual EM failures at the end of chip lifetime.

Next, after providing basic background on EM analysis in Sec-
tion II, we present our analytical modeling framework in Section III.
Finally, in Section IV, we present an evaluation of our approach on
a set of test cases, and we conclude the paper in Section V.

II. BACKGROUND

Fig. 1 shows the cross-section of a Cu dual-damascene (DD) wire
and illustrates the electromigration mechanism in terms of two driving
forces i.e. the electron wind force and the back-stress force. When
current flows in the wire, the momentum of the electrons drive
metal atoms from the cathode towards the anode, in the direction
of electron flow. Due to this electron wind force, the cathode gets
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Figure 1: Illustration of electromigration in a Cu wire [10].

depleted of metal atoms that may lead to void formation, resulting
in open circuits. The movement of migrating atoms is limited to a
single metal layer since the barrier layer acts as a blocking boundary
for mass transport [16], [17] and prevents atoms from migrating
to other metal layers. As a result, mass depletion of atoms occurs
at the cathode terminal and a tensile stress gets built up near the
cathode. Simultaneously, migrating atoms get accumulated at the
anode terminal and a compressive stress is created near the anode. As
metal atoms migrate towards the anode, the resulting concentration
gradient creates a stress-induced reverse flow of atoms to the cathode.
This force, which acts against the electron wind force, is proportional
to the stress gradient and known as back-stress force.

A single interconnect segment injects electron current at a cathode
at x = 0 towards an anode at x = L. The temporal evolution of
EM-induced stress, σ(x, t), at any point in the segment is modeled
by the partial differential equation [6]:

∂σ

∂t
=

∂

∂x

[
κ

(
∂σ

∂x
+G

)]
(1)

Here, G = j(Z∗eρ)/Ω, and κ = DaBΩ/(kT ), where j is the current
density through the wire, Z∗ is the effective charge number, e is
the electron charge, ρ is the resistivity, Ω is the atomic volume for
the metal, B is the bulk modulus of the material, k is Boltzmann’s
constant, T is the temperature, andDa = D0e

−Ea/kT is the diffusion
coefficient, with Ea being the activation energy.

In the absence of current flow, the only stress in the wire is the
thermally-induced stress, σT , that originates due to differentials in the
coefficient of thermal expansion (CTE) in the interconnect materials.
The differential equation with the boundary conditions can be solved
numerically to obtain the transient behavior of stress over time and
then applying superposition principle σT can be added to account for
CTE effects. The impact of σT is realized by offsetting the critical
stress, σcrit, to (σcrit − σT ).

As in [6], the sign convention for j is in the direction of electron
current, i.e., opposite to conventional current and the electric field.
There are two terms on the right hand side of (1). The second term
that contains G represents atomic flux attributable to the electron
wind force, while the first term containing the stress gradient ∂σ

∂x

accounts for the flux related to the back-stress force. The sum,
(∂σ/∂x+G), is proportional to the net atomic flux. The constant of
proportionality varies linearly with the wire cross-sectional area.
BCs for single-segment interconnect When electron current is
injected through the anode and flows to the cathode at the other
end, we have zero-flux conditions at each end:

∂σ

∂x
+G = 0 ∀ t at x = 0, x = L. (2)

BCs for a multisegment interconnect line In an N -segment
interconnect line, shown in Fig. 2, currents may be injected (or drawn)
at intermediate points through vias (recall that atomic flux does not
cross vias in Cu DD designs), and the currents in each segment may
be unequal.

Figure 2: A multisegment interconnect line with potentially nonuni-
form segment lengths, showing the G value in each segment.

At x = 0 and x = LN the boundary conditions dictate that there
is zero atomic flux through the boundaries at the end points over all
time, i.e.,

∂σ1

∂x

∣∣∣∣
x=0

+G1 = 0 ;
∂σN
∂x

∣∣∣∣
x=LN

+GN = 0 (3)

At intermediate nodes, the boundary conditions state that the atomic
flux entering each boundary must be zero. For i = 1, · · · , N−1 [11],(

∂σi
∂x

∣∣∣∣
x=Li

+Gi

)
=

(
∂σi+1

∂x

∣∣∣∣
x=Li

+Gi+1

)
(4)

Moreover, the stress must be continuous at each intermediate node,
leading to the boundary condition:

σi|x=Li = σi+1|x=Li (5)

III. ANALYTICAL MODELING OF TRANSIENT STRESS VIA
STRESS FLOWS AND REFLECTIONS

We begin by justifying the importance of analyzing line structures
in modern designs. We then provide analytical solutions for stress,
first for a single-segment line (Section III-B), then for a two-segment
line (Section III-C), and finally, generalized to multiple segments
(Section III-D). The details of the supporting derivations, which are
based on the method of Laplace transformation, are provided in the
Appendix so as not to interrupt the flow of the paper. For the first
two cases, we present the solution as an infinite sum and examine
each term to obtain an intuitive understanding of the expressions. We
use this insight to extend the framework to multisegment lines, and
also to develop truncation criteria for the infinite sum based on an
accuracy specification.

A. Why is it enough to analyze line structures?
In scaled FinFET technologies using Cu DD interconnects, inter-
connect lines typically adhere to a set of requirements imposed by
lithographic constraints and design methodologies:

1) As stated above, all mass transfer occurs within each metal
layer as migrating atoms are prevented from moving across
vias across metal layers due to blocking boundaries in Cu DD
interconnects [16], [17].

2) Lithography considerations dictate that especially in lower
metal layers (which are now seen to be susceptible to electro-
migration [18]), wires must be routed unidirectionally. As a re-
sult, all wires in a given layer are oriented in the same direction,
and lines are the most commonly encountered structures.

3) In principle, bidirectional routing and meshes could be used in
upper metal layers that are less constrained by lithography. How-
ever, to facilitate routing of signal/clock wires, design method-
ologies widely use unidirectional routes and create meshes
by connecting grids of parallel orthogonal wires in successive
layers [19]–[21]. Thus, in each layer, separated from neighboring
layers by blocking boundaries, the resulting structure is a line.

Thus, for modern chips, it is sufficient to consider the analysis of
the line structures analyzed in this work. In some instances, very
short leads (“stubs”) may be introduced to connect the line to vias,
but these short stubs are unlikely to impact the solution. The steady-
state stress across these stubs is proportional to the product of their
current density j times length l: considering the steady-state as an
upper bound, the small (jl) product for the stubs implies that their
stress impact on the line is negligible in practice.
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Figure 3: A single-segment wire illustrating fundamental and first
two reflections of stress flow originating at side boundaries.

B. Single-segment line

At location x on a semi-infinite line starting at x = 0, at time t, the
solution to the stress equation is derived in the Appendix as (24) as:

σ(x, t) = G· g(x, t) (6)

where

g(X, t) = 2

√
κt

π
exp

(
−X

2

4κt

)
−Xerfc

(
X

2
√
κt

)
(7)

erfc(x) = 2√
π

∫∞
x
e−t

2

dt is the complementary error function. This
expression is identical to that provided in [6]. Similarly, for a line
starting at x = L and extending to −∞, the Appendix shows
(eq. (26)) that the stress can be written as

σ(x, t) = −G· g(L− x, t) (8)

where g(.) is as defined in (7).
For a single-segment interconnect line of length L carrying a

constant current density, j, the Appendix shows (eq. (28)) that the
solution to the stress equation is:

σ(x, t) = G

∞∑
n=0

(−1)n[g(nL+ x, t)− g((n+ 1)L− x, t)] (9)

Based on the resemblance between Equations (6) and (9), we can
construct a physical interpretation for the elements of the infinite
summation. This is illustrated in Fig. 3, which shows the single-
segment line on top and its decomposition into two semi-infinite lines.
As we will show below, the stress profile at location x on the line
corresponds to a superposition of the stresses in the two semi-infinite
lines, where n = 0 corresponds to the fundamental mode; every other
value of n corresponds to a “stress wave”1 that is reflected n times.
n = 0: This fundamental term consists of the terms G· g(x, t)
and −G· g(L − x, t) which can easily be seen to correspond to
superposition of (a) the stress at x in a semi-infinite line from 0 to
∞ (denoted as Line0), where the distance from the left edge is x, and
(b) the stress at x in a semi-infinite line from L to −∞ (denoted as
LineL), where the distance traveled from the right edge is L−x. This
is illustrated by the fundamental mode shown in Fig. 3, shown by
the green arrows next to Line0 and LineL. In view of the boundary
conditions (2), these terms have the physical interpretation of two
sources of stress flow equal to ∂σ/∂x = −G originating at the two
boundaries (at x = 0 and x = L) and traveling down in semi-infinite
lines of opposite directions.
n = 1: Using a similar argument, the two terms G· g(2L − x, t)
and −G· g(L + x, t) can be regarded as reflections of the afore-
mentioned stress flows at the opposite boundaries, which are then
superposed to the original fundamental components. Specifically, the
term G· g(2L−x, t) is the stress flow originating at x = 0 on Line0
after being reflected at L and going back at x (traveling total distance
L+ (L−x) = 2L−x), while −G· g(L+x, t) represents the stress

1Although stress is by no means a wave but a diffusing quantity governed
by equation (1), we informally call it a stress wave to emphasize the property
of reflection that it shares with waves and which is central to our development.

Table I: Stress flow components in a single-segment wire

Source of stress flow Component Distance X traveled
Fundamental x

1st Reflection 2L− x
2nd Reflection 2L+ xLeft Boundary x = 0

3rd Reflection 4L− x
Fundamental L− x
1st Reflection L+ x

2nd Reflection 3L− xRight Boundary x = L

3rd Reflection 3L+ x

flow originating at x = L on LineL after being reflected at x = 0
and going back at x (traveling total distance L+x). Fig. 3 illustrates
the first reflection to point x on Line0 and LineL.
n = 2: Here, the term G· g(2L + x, t) is the stress flow from x =
0 on Line0 after two reflections (at x = L and then at x = 0)
before traveling to location x (having traveled distance 2L + x).
Likewise, −G· g(L + x, t) is the stress flow from x = L on LineL
after reflections at x = 0 and then x = L before going back to
location x (having traveled distance 2L + (L − x) = 3L − x). The
second and third reflections for Line0 and LineL are shown in Fig. 3.

The reflected components reach the point x attenuated (being equal
to a fundamental that has traveled longer and longer distances) and
their contribution diminishes with each subsequent reflection. The
fundamental terms as well as the first three reflections of stress flow
for the single-segment wire are summarized in Table I.

C. Two-segment line

A two-segment line, shown in Fig. 4 can be considered to consist of
two line segments, one from x = 0 to x = L1, with parameter G1,
and another from x = L1 to x = L2 with parameter G2, where G1

and G2 depend on the current densities in the two segments. The line
consists of stress flow discontinuities at the ends of each segment,
i.e., x = 0 and x = L2, both similar to the single-segment line. At
x = L1, the lines must obey boundary conditions that enforce the
continuity of atomic flux (4), and continuity of stress (5).

The discontinuities at x = 0 and x = L2 are handled in a similar
way as the single-segment line, by considering semi-infinite lines
that originate at those points. At x = L1, the boundary condition
(4) indicates that there is another source of stress flow due to the
discontinuity2 ∂σ1

∂x
− ∂σ2

∂x
= G2 −G1 at the intersection point. This

source creates two fundamental components that travel sideways from
x = L1 and along the semi-infinite parts of a two-segment infinite
line (−∞ < x < L1) ∧ (L1 < x < +∞) (denoted as LineL1).
The Appendix shows (eqs. (32)) that the fundamental traveling left
(for x < L1) is G2−G1

2
g (L1 − x, t), while the fundamental traveling

right (for x > L1) is G2−G1
2

g (x− L1, t).
The fundamentals due to the discontinuity at the intersection

are superposed to the fundamentals of stress flow originating at
the boundaries x = 0 and x = L2, as shown in Fig. 4. Like
the fundamentals originating at the boundaries, the fundamentals
originating at x = L1 are also reflected at the boundaries x = 0
and x = L2. Specifically,
• The leftward traveling fundamental undergoes a 1st reflection at
x = 0 before arriving (again or for the first time) at location x
(having traveled distance L1 + x), then a 2nd reflection at the
boundary x = L2 before arriving once again at x (with distance
traveled L1 + L2 + (L2 − x) = L1 + 2L2 − x), and so on.

• The rightward traveling fundamental undergoes a 1st reflection at
x = L2 before arriving (again or for the first time) at location x
(having traveled distance (L2 − L1)+(L2 − x) = −L1+2L2−

2This is analogous to the electrostatic case of a surface charge being a
source of electric potential gradient (i.e. electric field) through the disconti-
nuity of the normal derivative.
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x), then a 2nd reflection at x = 0 before arriving once again at x
(with distance traveled (L2 − L1)+L2 +x = −L1 +2L2 +x),
and so on.

The fundamental terms as well as the first four reflections of all
sources of stress flow for the two-segment wire are summarized in
Table II. Regarding the stress flow from the intersection, we note
that depending on the location of the variable point x relative to the
intersection point x = L1 only one fundamental contributes before
the reflections commence (leftward traveling fundamental for x < L1

and rightward traveling fundamental for x > L1), while all reflections
of both fundamentals arrive afterwards at x.

Generalizing the traveling distances from the table, we can write
infinite series expressions for the stress due to the flow from the left
boundary (LB) and the right boundary (RB) as:

σLB(x, t) = G1

∞∑
n=0

[g (2nL2 + x, t) + g ((2n+ 2)L2 − x, t)]

(10)

σRB(x, t) = −G2

∞∑
n=0

[g ((2n+ 1)L2 − x, t) +

g ((2n+ 1)L2 + x, t)] (11)

Similarly, excluding the fundamentals, the infinite series expres-
sions for the stress flow from the intersection traveling to the left
(IL) and to the right (IR) are:

σIL(x, t) =
G2 −G1

2

∞∑
n=0

[g (L1 + 2nL2 + x, t) +

g (L1 + (2n+ 2)L2 − x, t)] (12)

σIR(x, t) =
G2 −G1

2

∞∑
n=0

[g (−L1 + (2n+ 2)L2 − x, t) +

g (−L1 + (2n+ 2)L2 + x, t)] (13)

The infinite series (10) to (13) are superposed with each other, and
with the addition of the proper (left or right) fundamental from the
intersection, yield the final stresses in the areas 0 < x < L1 and
L1 < x < L2, respectively, as:

σ1(x, t) =σLB(x, t) + σRB(x, t) + σIL(x, t)+

G2 −G1

2
g (L1 − x, t) + σIR(x, t) (14)

σ2(x, t) =σLB(x, t) + σRB(x, t) + σIL(x, t)+

G2 −G1

2
g (x− L1, t) + σIR(x, t) (15)

It can be verified that, accounting for the difference in coordinate
systems, the series (14, 15) exactly match the infinite series solution
that has been laboriously calculated in [13], [14]. Unlike our approach
where each term has a physical interpretation, the expressions in that
work do not provide specific insights into the solution.

The benefits of our approach building up the series solution by
stress flow fundamentals and reflections (instead of calculating first
the infinite series and then truncating the number of terms) are:

(a) The approach can be effortlessly extended to a larger (and
general) number of segments (as described in Section III-D).

(b) The series build-up can be terminated at any point and with pre-
scribed accuracy (while the accuracy of truncation of an infinite
series cannot be determined beforehand, and usually keeping
only the term n = 0 results in poor accuracy). Section III-E
discusses the formulation of an appropriate termination criterion.

Figure 4: A 2-segment wire illustrating fundamental and first two
reflection components of stress flow originating from the side bound-
aries at x = 0 and x = L2, and from the intersection at x = L1.

Table II: Stress flow components in a two-segment line

Source of stress flow Component Distance X traveled
Fundamental x

1st reflection 2L2 − x
2nd reflection 2L2 + x

3rd reflection 4L2 − x
Left Boundary, x = 0

4th reflection 4L2 + x

Fundamental L2 − x
1st reflection L2 + x

2nd reflection 3L2 − x
3rd reflection 3L2 + x

Right Boundary, x = L2

4th reflection 5L2 − x
Fundamental L1 − x if x < L1; else none
1st reflection L1 + x

2nd reflection L1 + 2L2 − x
3rd reflection L1 + 2L2 + x

Intersection, x = L1,
to the left

4th reflection L1 + 4L2 − x
Fundamental x− L1 if x > L1; else none
1st reflection −L1 + 2L2 − x
2nd reflection −L1 + 2L2 + x

3rd reflection −L1 + 4L2 − x

Intersection x = L1,
to the right

4th reflection −L1 + 4L2 + x

D. Multisegment line

A multisegment line of length LN , illustrated in Fig. 5, is composed
of N line segments with parameters G1 to GN (corresponding to
different current densities) and intersection points at locations x = L1

to x = LN−1 (where the length of the kth-segment is Lk − Lk−1).
The stress in every segment is governed by Korhonen’s equation (1),
and the boundary conditions of continuity of atomic flux (4) and
continuity of stress (5) must be satisfied at the intersection points.

The analytical solution of stress for the N -segment wire entails
symbolically solving (in the Laplace or s-domain) N differential
equations that are coupled by 2N boundary conditions, and then
transforming the solutions back to the time domain via inverse trans-
forms. This involves very heavy algebra for N ≥ 3 and expressions
which are extremely long to even write down (and impossible to do
so for general N ). The approach of building up the series solution
by stress flow fundamentals and reflections, which was described for
the two-segment wire in Section III-C, provides a natural extension
framework for any number of segments N . In particular, one has
only to consider the fundamental components of stress flow from the
two boundaries x = 0, x = LN and the N − 1 intersection points,
along with a limited number of reflections of these components at the
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Figure 5: A N-segment wire illustrating fundamental and first two
reflections of stress flow originating at an intermediate junction.

Table III: Stress flow components in an N -segment line

Source of stress flow Component Distance X traveled
Fundamental x

1st reflection 2LN − x
2nd reflection 2LN + x

3rd reflection 4LN − x

Left Boundary
x = 0

4th reflection 4LN + x

Fundamental LN − x
1st reflection LN + x

2st reflection 3LN − x
3rd reflection 3LN + x

Right Boundary
x = LN

4th reflection 5LN − x
Fundamental Li − x if x < Li; else none
1st reflection Li + x

2nd reflection Li + 2LN − x
3rd reflection Li + 2LN + x

Intersection x = Li
(i = 1, · · · , N − 1),
to the left

4th reflection Li + 4LN − x
Fundamental x− Li if x > L1; else none
1st reflection −Li + 2LN − x
2nd reflection −Li + 2LN + x

3rd reflection −Li + 4LN − x

Intersection x = Li
(i = 1, · · · , N − 1),
to the right

4th reflection −Li + 4LN + x

boundaries (reflections of subsequent orders die out fast, as argued
in Section III-E). Table III lists the fundamentals and the first four
reflections of all sources of stress flow in the N -segment wire.

In fact, generalizing the distances from the table, it is perfectly
possible to write the full infinite series solution for the multisegment
wire with a general number of segments N (which has not been
possible thus far). The series will be like (14, 15) but with a sum
over all N − 1 intersections. However, since infinite series are not
very useful for practical computations, we write here the analytical
expression containing the fundamentals and two reflections for each
source (which suffice to provide near-perfect accuracy for times up
to steady-state in all cases that were evaluated experimentally). This
constitutes the first analytical expression that gives transient stress in
every point of the N -segment wire for arbitrary values of N :

σ(x, t) ≈ G1 [g (x, t) + g (2LN − x, t) + g (2LN + x, t)]

−GN [g (LN − x, t) + g (LN + x, t) + g (3LN − x, t)]

+

N−1∑
i=1

Gi+1 −Gi
2

[g (|Li − x| , t) + g (Li + x, t)

+ g (Li + 2LN − x, t) + g (−Li + 2LN − x, t)
+g (−Li + 2LN + x, t)] (16)

where g(.) is the function defined in (7). The above expression can
easily be adapted to include more (or fewer) reflected terms (and
even different number of reflected terms for each individual source),
and Section III-E formulates appropriate criteria for termination of
the series build-up subject to a desired level of accuracy.

E. Defining Terminating Criteria

In this section, we present criteria for truncating each infinite series
component of the solution, such as (14) and (15). In fact, separate

termination criteria can be found for each source of stress – the
left edge (x = 0), the right edge (x = LN ), or any intermediate
discontinuity (x = Li, 1 ≤ i < N ), using the ideas presented below.

For any such source (e.g., the source at the left, modeled by (6)),
the fundamental is the dominant component of stress flow, and the
higher order reflection terms diminish quickly since the function g(.)
decays exponentially with distance traveled. Let us consider that the
reflection terms up to kth-order are good enough to reach reasonable
accuracy. This translates to:

σ(x, t) ≈ σ(0)(x, t) + σ(1)(x, t) + · · ·+ σ(k)(x, t) (17)

where σ(0)(x, t) is the fundamental and σ(k)(x, t) is the kth-order
reflection.

For a stress source at xL ∈ {0, L1, L2, · · · , LN} and a reflection
at an edge xE ∈ {0, LN}, we set the termination criterion to

σ(k+1)(xE , t)| < α |σ(0)(xL, t)|, (18)

where α is given and controls the tolerance. Since the stress wave
attenuates exponentially with distance, this indicates that the contri-
bution of the k + 1th-order reflection is not significant, so that the
infinite series can be truncated at kth-order reflection.

Note that the impact of each stress source can be considered
independently, and our method provides the flexibility of choosing
a different number of terms for each stress source. For instance, if
Gi −Gi+1 is relatively small, then the impact of the corresponding
stress discontinuity at x = Li may be small and the summation for
g(.) can be truncated early. Note that this flexibility and insight is
unavailable in conventional truncation of infinite series (e.g., in [14]),
which truncates all sources after the same number of terms.

IV. RESULTS

We present two sets of results to illustrate the accuracy and scalability
of our boundary reflection based approach. Section IV-A demon-
strates our methodology and shows comparisons of our approach with
a FEM based numerical solver, COMSOL, for a five-segment Cu DD
line. Then, in Section IV-B we employ our algorithm on large power
grid benchmarks. Our analysis of power grids on designs synthesized
on 12nm and 28nm (both commercial) PDKs, and on the Nangate
45nm PDK (all based on Cu DD interconnects) illustrates the risk of
EM-failure in modern VLSI designs.

The Cu DD interconnect specifications used in all our simulations
are [8], [22]: Z∗ = 1, e = 1.6 ×10−19 C , ρ = 2.25 ×10−8 Ω m, B
= 28 GPa, Ω = 1.18 ×10−29 m3, D0 = 1.3 ×10−9 m2/s, k = 1.38
×10−23 J/K, T = 378 K, and σcrit = 41 MPa.

A. Comparison with COMSOL on a multi-segment line

We illustrate the application of our approach on a five-segment line
with uneven segment lengths of (from left to right) 20 µm, 25 µm, 15
µm, 10 µm, and 30 µm. The corresponding current densities are −2×
1010 A/m2, 1×1010 A/m2, 1.5×1010 A/m2,−1×1010 A/m2, and
0.5× 1010 A/m2, respectively. Prior analytical solutions for straight
lines have limited their results to two-segment cases as the analytical
formulas become much more complex beyond two segments.

As time passes, we expect more reflections to come into play, and
we show the components of transient stress build-up at t = 6.3e8s,
or 20 years in Fig. 6. This period is at the high end of product
lifetime, typically used for automotive applications, and we choose
it to provide a sense of the number of reflections that are required
by our method. The figure shows the stress components generated
from each of the stress sources: from the side boundaries, x = 0 and
x = L5 in (a) and (f), respectively, and from the intersection points
at x = L1 through L4 in (b)–(e). It can be visually seen that the first
reflections in (a) and (f) are significantly attenuated with respect to
the fundamentals, and the magnitude of stress at the second reflection
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Figure 6: Stress along the five-segment interconnect for t = 20y due
to sources at (a) x = 0 (b) x = L1 = 20µm (c) x = L2 = 45µm
(d) x = L3 = 60µm (e) x = L4 = 70µm (f) x = L5 = 100µm.

is negligible. The first reflection for intermediate points in (b)–(e) is
more substantial than that of the boundaries, but again, the second
reflection is quite small.

We superpose these stress components to obtain stress profile at
various time points. Only a few significant reflections are sufficient to
build up the stress profile along the line, as shown in Fig. 7(a), where
a comparison with COMSOL simulation shows a visually perfect
match. The error, relative to the critical stress of 41 MPa, is quantified
in Fig. 7(b) along the line and is found to be well below 0.5%.

To illustrate the termination criterion (18), for each source (at the
two ends, x = 0 and x = L5, and at intermediate Li, going to
the left (IL) and right (IR)), we show the relative attenuation in
Table IV. The table shows the ratio Rk of the maximum stress,
σ(k), at the kth reflection point to the maximum stress, σ(0), of the
fundamental (at the stress source). The highest and lowest magnitudes
of all reflections are at the side boundaries, x = 0 and x = L5. For
a given line, by precalculating the magnitudes at the boundaries, the
order of reflections needed to reach desired accuracy can be set.

We choose the threshold α = 0.1% in (18). The table shows, in
boldface, the reflection at which the stress magnitude first falls below
the threshold. We see that the ratio R2 for the first reflection is below
α for 6 out of 10 stress components, i.e. it is enough to consider just
the first reflection. For the remaining four, the ratioR3 falls below the
threshold, showing that two reflections are enough for this testcase.

B. Analysis on OpenROAD power grid benchmarks

Next, we show simulations based on power grids from OpenROAD
circuits designed using a commercial 12nm FinFET, commercial
28nm FDSOI, and open source FreePDK45nm with the Nangate
Open Cell Library [23] using Cu DD interconnects. The circuits are
taken through synthesis, placement and routing in these technology
nodes (some circuits are implemented in multiple nodes) using a
standard design flow. The power grid is synthesized using an open-
source tool, OpeNPDN [21] from OpenROAD [23]. The IR drop and
current densities per segment are computed using PDNSim [24].
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Figure 7: (a) Comparison, against COMSOL, of the results of
superposing the stress waveforms from the six stress sources, shown
in Fig. 6, truncated using terminating criterion α = 0.1%. The
segment boundaries are marked by the vertical dotted lines. (b) The
percentage error in estimating stress using α = 0.1%.

Table IV: Terminating Criterion: Ratio Rk of the highest magnitude
of the kth reflection to the highest magnitude of the fundamental, for
all stress sources on the five-segment line (t = 20 years)

x 0 L1 L2 L3 L4
L5

IL/IR IL/IR IL/IR IL/IR
R1 1.7% 56.2% / 4.9% 23.4% / 15.6% 12.6% / 28.3% 8.0% / <40.5% 1.7%
R2 �0.1% 0.5% / <0.1% 0.5% / <0.1% <0.1% / 0.1% �0.1% / 0.3% �0.1%
R3 – �0.1% / – �0.1% / – – / �0.1% – / �0.1% –

All our experiments on these circuits are in Python 3.7 and
performed on a 2.20 GHz Intel R©Xeon R©Silver 4114 CPU. A two-
stage filtering process is used to to reduce the number of wires needed
for transient EM stress analysis:

• In the first stage, we calculate the steady-state stress, and if
this is lower than the critical stress, then the wire-segment
is immortal or EM-safe (EM-s) and needs not be considered
further. The Blech criterion [1] has often been applied for this
by multiplying each segment current density j by its length l,
and comparing this against a threshold. However, this is known
to be inaccurate for multisegment wires [11], [12], and we use
the method of [12].

• In the second stage, we perform transient analysis for the
remaining wire-segments, which are potentially mortal or EM-
vulnerable (EM-v). If the stress on these wire-segments exceeds
the critical stress at the specified product lifetime, then these
wire-segments are in danger of EM failures (EM-f).

For the first stage, we apply the method in [12] to each layer
to find the steady-state stress in linear time, which is then used to
locate the potential void locations and thus segregate the EM-safe
wire-segments from EM-vulnerable wire-segments. For the second
stage, it is not necessary to calculate the transient-stress inside the
wire-segments marked as EM-safe in the first stage. Our analytical
framework is very helpful here because it can provide the closed-form
solution at any location x, without evaluating all locations/segments
(in contrast to a numerical FEM method which needs to perform
transient analysis at all spatial discrete points). This reduces, by
a large margin, the number of wire-segments that need further
investigation to check the risk of EM-failure in the product lifetime.

The results of this two-stage analysis on the OpenROAD bench-
marks are summarized in Table V. For each benchmark, we show
the number of edges; the results of steady-state analysis, showing the
number of immortal wires; the number of EM failures for product
lifetimes of 5, 10, and 20 years; and the runtimes of the method.
We emphasize that steady-state analysis is fast and is important in
reducing the number of wires to be considered for transient analysis,
but is not a contribution of this paper. Therefore, our runtime numbers
focus on the time required by our reflection-based method. The
runtimes shown in the last column are practically identical for all
chip lifetimes, since the only extra cost when lifetime increases is the
possible evaluation and addition of more reflection terms. In contrast,
the runtime of an (already much slower) numerical method increases
at least linearly with the time period needed for simulation.
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Table V: Summary results of EM failure analysis on OpenROAD
benchmarks across three process technologies

Tech design #segments Steady-State t=5yrs t=10yrs t=20yrs Run
times (s)EM-s EM-v EM-f EM-f EM-f

12 nm

gcd 4,169 3,940 229 54 79 229 2
aes 195,353 117,404 77,949 4 153 988 75

dynamic node 151,568 94,707 56,861 2 15 160 62
jpeg 84,187 41,506 42,681 30 146 676 34

28nm
gcd 978 920 58 45 46 52 1
aes 17,713 10,649 7,064 2 8 315 4
jpeg 191,428 125,361 66,067 8 29 14 70

45nm

aes 8,012 4,354 3,658 3 694 1,855 2
dynamic node 6,614 3,302 3,312 7 501 1,013 2

ibex 12,728 6,509 6,219 4 247 1,563 4
swerv 61,961 43,295 18,666 5 8 12 16

0 200 400 600 800
-300

-200

-100

0

100

200

300
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Critical stress
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Figure 8: Stress profile of a 133-segment line of length 718µm from
the jpeg benchmark, using a commercial 12nm FinFET technology.

The table shows that, as expected, the immortality filter marks a
number of lines as EM-safe. EM effects are known to deteriorate over
time and the table shows this trend: the number of EM-f segments
increases monotonically as the product lifetime is increased. Our
runtimes are extremely fast, even faster than [12], where immortality
checks on these benchmarks require a few minutes.

Fig. 8 shows the stress profile along a power grid stripe in the jpeg
design, implemented in a commercial 12nm technology. The 718µm
long stripe contains 133 segments. The steady-state plot shows that
68 segments to the left of x ∼ 400µm exceed critical stress (the
dotted line), and are EM-vulnerable. Our transient analysis confirms
that (a) the EM-safe segments remain below critical stress, and (b)
only 3, 4, and 5 of the 68 EM-vulnerable segments experience EM
failures after 5, 10, and 20 years, respectively.
Runtime comparisons: COMSOL simulation accuracy for this stripe
depends on its spatiotemporal discretization. For a 20y lifetime,
COMSOL requires 7s for lower accuracy (30× slower than our
method) and 8m for high accuracy (2000× slower than our method).

V. CONCLUSION

We present a general analytical method for computing the EM-
induced stress in any N -segment interconnect lines. We focus on
lines because (1) in modern designs, interconnects are laid out as
metal lines on each layer, and (2) EM phenomena in each such
line can be independently analyzed since the barrier layer in a Cu
DD interconnect acts as a blocking boundary for mass transfer. Our
approach provides a physical interpretation for the solution that aids
both in creating a solution with generalized expressions, and in
terminating our infinite series solution to a desired accuracy.

APPENDIX: PROOF DETAILS

In this section, we derive solutions to the Korhonen equation for
various lines. In the following, we will denote the Laplace transform
of σ(x, t) as σ̂(x, s) ,

∫ +∞
0

e−stσ(x, t)dt. We begin by showing the
machinery required to obtain the solution (6) to Korhonen’s equation
for a semi-infinite line, and then use it to consider the solutions to

finite lines. As we will see, the results thus obtained have a different
form from the solutions in [6], and we explain in Section III how
this solution can be used to achieve better physical insight into the
solution that aids convergence. Taking the Laplace transform in both
sides of the Korhonen equation (1), and assuming zero initial stress
σ(x, 0) = 0, we obtain the ordinary differential equation:

d2σ̂(x, s)

dx2
− s

κ
σ̂(x, s) = 0 (19)

whose general solution is:

σ̂(x, s) = Ae
√
s
κ
x +Be−

√
s
κ
x (20)

The Laplace transform of the blocking boundary conditions (2) is:

dσ̂(0, s)

dx
= −G

s
;

dσ̂(L, s)

dx
= −G

s
(21)

We now introduce the inverse Laplace transform [25] that we will
use several times in the succeeding discussion:

L−1

(
1

s

√
κ

s
e−
√
s
κ
x

)
= 2

√
κt

π
e−

x2

4κt − xerfc

(
x

2
√
κt

)
, (22)

erfc(x) = 2√
π

∫∞
x
e−t

2

dt is the complementary error function.
Semi-infinite line 0 < x < +∞. For the semi-infinite line from x =
0 to +∞, since the stress must be bounded for x → +∞, A = 0
in (20). Applying the first boundary condition in (21),

σ̂(x, s) =
G

s

√
κ

s
e−
√
s
κ
x (23)

Applying the inverse Laplace transform (22) we obtain:

σ(x, t) = G

(
2

√
κt

π
e−

x2

4κt − xerfc

(
x

2
√
κt

))
(24)

which is the solution given originally in [6].
Semi-infinite line −∞ < x < L. For the semi-infinite line from L to
−∞, to ensure bounded stress as x → −∞, we must have B = 0
in (20) Applying the second boundary condition in (21),

σ̂(x, s) = −G
s

√
κ

s
e−
√
s
κ
(L−x) (25)

An inverse Laplace transform using (22) yields the solution:

σ(x, t) = −G

(
2

√
κt

π
e−

(L−x)2
4κt − (L− x) erfc

(
L− x
2
√
κt

))
(26)

Finite line 0 < x < L. For the single-segment finite line from 0 to
L we apply boundary conditions (21) to the general solution (20),
whereby solving with respect to parameters A, B we have:

A =
G

s

√
κ

s

e−
√
s
κ
L − 1

e
√
s
κ
L − e−

√
s
κ
L
, B =

G

s

√
κ

s

e
√
s
κ
L − 1

e
√
s
κ
L − e−

√
s
κ
L

Then after some algebraic manipulations, (20) becomes:

σ̂(x, s) =
G

s

√
κ

s


(
e−
√
s
κ
L − 1

)
e
√
s
κ
x +

(
e
√
s
κ
L − 1

)
e−
√
s
κ
x

e
√
s
κ
L − e−

√
s
κ
L


=
G

s

√
κ

s

[
e−
√
s
κ
(L−x) − e

√
s
κ
x + e

√
s
κ
(L−x) − e−

√
s
κ
x

e
√
s
κ
L − e−

√
s
κ
L

]

=
G

s

√
κ

s

2
(
cosh

(√
s
κ
(L− x)

)
− cosh

(√
s
κ
x
))

2 sinh
(√

s
κ
L
)


=
G

s

√
κ

s

2 sinh
(√

s
κ
L
2

)
sinh

(√
s
κ
L−2x

2

)
2 sinh

(√
s
κ
L
2

)
cosh

(√
s
κ
L
2

)
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=
G

s

√
κ

s

[
e
√
s
κ
L−2x

2 − e−
√
s
κ
L−2x

2

e
√
s
κ
L
2 + e−

√
s
κ
L
2

]

=
G

s

√
κ

s

[
e
√
s
κ
L−2x

2 − e−
√
s
κ
L−2x

2

1 + e−
√
s
κ
L

e−
√
s
κ
L
2

]

=
G

s

√
κ

s

[
e−
√
s
κ
x − e−

√
s
κ
(L−x)

1 + e−
√
s
κ
L

]

We now use the binomial expansion(
1 + e−

√
s
κ
L
)−1

=

∞∑
n=0

(−1)ne−
√
s
κ
nL

to arrive at the infinite series representation of the solution:

σ̂(x, s) =
G

s

√
κ

s

∞∑
n=0

(−1)n
(
e−
√
s
κ
(nL+x) − e−

√
s
κ
((n+1)L−x)

)
(27)

With the inverse Laplace transform, the time-domain solution is:

σ(x, t) = G

∞∑
n=0

(−1)n
[
2

√
κt

π
e−

(nL+x)2

4κt − (nL+ x) erfc
nL+ x

2
√
κt

−2
√
κt

π
e−

((n+1)L−x)2
4κt + ((n+ 1)L− x) erfc

(n+ 1)L− x
2
√
κt

]
(28)

The solution (28) is a different infinite series solution than the one
given in [6]. The series (28) is directly comparable to the semi-infinite
line solutions (24) and (26), and its terms include these fundamental
semi-infinite solutions as well as their successive reflections at the
physical boundaries (as remarked in Section III).
Infinite composite line (−∞ < x < L1) ∧ (L1 < x < +∞). The
two-segment infinite line with intersection at x = L1 can be
considered to be a composite of two semi-infinite lines, each with
different parameters G1 and G2 (corresponding to their different
electron current densities) and different stresses σ1(x, t) and σ2(x, t)
in each of the two semi-infinite segments.

However, they must obey additional boundary conditions beyond
those for the semi-infinite lines discussed earlier, which enforce con-
tinuous atomic flux (4), and continuous stress (5) at the intersection.
The boundary conditions are transformed in the Laplace domain as:

dσ̂1(L1, s)

dx
+
G1

s
=
dσ̂2(L1, s)

dx
+
G2

s
(29)

σ̂1(L1, s) = σ̂2(L1, s) (30)

As before, to avoid unbounded stresses at±∞, the Laplace-domain
stresses σ̂1(x, s) and σ̂2(x, s) in the segments −∞ < x < L1 and
L1 < x < +∞ will have, respectively, B = 0 and A = 0 in (20).
Applying the boundary conditions (29) and (30) we obtain:

σ̂1(x, s) =
G2 −G1

2s

√
κ

s
e−
√
s
κ
(L1−x)

σ̂2(x, s) =
G2 −G1

2s

√
κ

s
e−
√
s
κ
(x−L1)

Taking the inverse Laplace transform we finally arrive at the time-
domain solution for the two-segment infinite line:

σ1(x, t) =
G2 −G1

2

(
2

√
κt

π
e−

(L1−x)2
4κt − (L1 − x) erfc

(
L1 − x
2
√
κt

))
(31)

σ2(x, t) =
G2 −G1

2

(
2

√
κt

π
e−

(x−L1)2

4κt − (x− L1) erfc

(
x− L1

2
√
κt

))
(32)
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