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Abstract—The analysis of transient stress buildup in on-
chip interconnects due to electromigration (EM) requires the
solution of partial differential equations (PDEs) with appro-
priate boundary conditions, but prior approaches have been
computationally expensive. This paper uses a stress-electrical
equivalence to map the solution of the system of PDEs for a
general multisegment interconnect to an RC network. For tree
structures, this system is solved in linear time using model
order reduction (MOR) techniques in the frequency domain.
We present two MOR approaches: one that is not guaranteed
to provide a stable approximant due to the presence of the
mass-conservation equation, but empirically does so for a large
fraction of testcases; and another that is guaranteed-stable. To
achieve a guaranteed-stable solution, the approach approximates
the RC circuit in a Krylov space and captures the impact of
mass conservation in the form of a mass conservation excitation.
However, the latter is observed to be slightly less accurate than
the first approach when it does provide a solution. The method
demonstrates excellent accuracy against a commercial numerical
solver, and is scalable, solving transient EM analysis problems
on large power grid interconnect benchmarks.

I. INTRODUCTION

Electromigration (EM) is a reliability failure mechanism that
may occur when high currents flow through wires for long
periods, e.g., in supply wires in a digital or analog circuit.
In older technologies, EM was considered a problem only
in upper metal layers that carry the largest current, but in
FinFET technologies, as transistors drive increasing amounts
of current through narrow wires, EM hotspots have emerged
as a significant issue in lower metal layers [1], [2].

Conventional EM analysis, using the Blech criterion [3] to
filter out immortal wires, followed by Black’s equation [4] to
check EM lifetime, is well known to be flawed for multiseg-
ment interconnects. Physics-based EM analysis [5] presents
a canonical formulation of one-dimensional EM equations,
and has formed the basis of much recent work. Steady-state
immortality checks can be performed in linear time [6]–[8],
but for the general transient analysis problem, for predicting
EM stress over time in multisegment interconnect structures,
existing methods [9]–[13], are computationally expensive.
Linear time-invariant (LTI) methods have been explored in
the time domain [14] as well as in the frequency domain [15],
but do not leverage of the efficiencies available in analyzing
tree-structured interconnects, and have large runtimes. Recent
work [16] achieves low computation times by drawing a
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Fig. 1: Illustration of electromigration in a Cu wire [12].

parallel with a stress wave that emanates from each end-point
or via in a multisegment interconnect structure, but is only
applicable to RC lines without branches.

We propose to perform transient EM analysis in general
interconnects in the prenucleation phase through a stress-
electrical equivalence that maps Korhonen’s equation for
stress [5], and its boundary conditions, to an RC network
with current source excitations. The proposed RC mapping is
superficially similar to [17], but with a more straightforward
translation of the discretized stress equations to lumped RC
networks, as well as mapping of the necessary boundary condi-
tions (especially mass conservation) to appropriate excitations.
We then solve the resulting RC network by using model order
reduction (MOR) techniques in the frequency domain. Unlike
prior computationally expensive time-domain solutions, or
matrix-based frequency-domain solutions [15], our frequency-
domain methods use linear-time graph traversals for trees.
Frequency domain solution for the EM problem is nontrivial
due to the mass conservation condition, whose application
in MOR can lead to unstable reduced-order models. We
circumvent this with a two-step solution: we first apply a fast
approach that does not guarantee stability, but in practice, often
provides stable solutions. If this method fails, we use a second
approach that achieves stability but may be less accurate. To
our knowledge, this is the first linear-time solution for transient
EM stress analysis in interconnect trees.

II. BACKGROUND

Fig. 1 shows the cross-section of a Cu dual-damascene (DD)
wire and illustrates the electromigration mechanism in terms
of two driving forces i.e. the electron wind force and the back-
stress force [5]. When current flows in the wire, the momentum
of the electrons drive metal atoms from the cathode towards



the anode, in the direction of electron flow. The movement of
migrating atoms is limited to a single metal layer since the bar-
rier layer acts as a blocking boundary for mass transport [18],
[19] and prevents atoms from migrating across layers. Due
to this electron wind force, the cathode is depleted of metal
atoms and a tensile stress is built up near the cathode, which
may lead to void formation. Simultaneously, migrating atoms
accumulate at the anode terminal and a compressive stress
is created near the anode. As metal atoms migrate towards
the anode, the resulting concentration gradient (sometimes
referred to in the literature as the chemical potential gradient)
creates a stress-induced reverse flow of atoms to the cathode.
This force, which acts against the electron wind force, is
proportional to the stress gradient and known as back-stress.

The temporal evolution of EM-induced stress, σ(x, t), at any
point in a segment is modeled by the 1–D partial differential
equation [5] that relates the stress σ to x, the distance from
the cathode:

∂σ

∂t
=

∂

∂x

[
κ

(
∂σ

∂x
+ βj

)]
(1)

where β =
Z∗eρ

Ω
, κ = DaBΩ/(kT ) (2)

Here, j is the wire current density, Z∗e is the effective electron
charge, ρ is the resistivity, Ω is the atomic volume for the
metal, B is the bulk modulus of the material, k is Boltzmann’s
constant, T is the temperature, and Da = D0e

−Ea/kT is the
diffusion coefficient, with Ea being the activation energy. The
thermally-induced stress, σT , caused by differentials in the
coefficient of thermal expansion in the interconnect stack, is
superposed over this stress. Its impact is realized by offsetting
the critical stress, σcrit, to (σcrit − σT ).

A general interconnect structure consists of a set of segments
of wires between vias and junctions, each associated with a
current density. In general, for a multisegment interconnect
structure, currents may be injected (or drawn) at intermediate
nodes through vias. For an intermediate node ni of the struc-
ture with degree di, we denote the set of incident segments as
Si = {s1, s2, · · · , sdi

}.
Stress evolution in each segment is described by the partial

differential equation (1). These equations are supplemented by
spatial boundary conditions and a temporal boundary condition
that initializes the segment stresses to zero at t = 0. The
spatial boundary conditions, which must be obeyed over all
time points, are [14]:
(1) Continuity: For each segment sk incident on node ni, if
σsk |ni is its stress at ni, then continuity of stress implies that:

σs1 |ni = σs2 |ni = · · · = σsdi
|ni (3)

(2) Flux: The net atomic flux entering each node ni is zero:∑
sk∈Si

wskτsk

(
∂σsk

∂x

∣∣∣
ni

+ βjsk

)
= 0 (4)

where Si is the set of segments incident on ni, jsk is the
current density through segment sk (leaving ni), and wsk and
τsk are, respectively, the segment width and thickness. At an
end point of degree 1, this reduces to ∂σ

∂x

∣∣
ni

+ βjsk = 0.

(3) Mass conservation: This conserves the flux over the
interconnect:∑

all segments sk

∫∫∫
σsk(x) dx dw dτ = 0 (5)

where σsk(x) is the stress at location x in segment sk. The
triple integral is taken over the volume of each segment sk.

III. PROBLEM FORMULATION

A. The Stress-Electrical Analogy

Each segment in an interconnect structure is assumed to carry a
constant current density j [7], [14]. Therefore, ∂(βj)/∂x = 0,
and Korhonen’s equation (1) for each segment becomes:

∂σ

∂t
= κ

∂2σ

∂x2
(6)

We present an equivalent circuit model for this structure. The
model is functionally similar to [17], which also shows a
transmission line formulation, but we believe our exposition
more intuitively uses κ as a “stress conductivity,” and also
provides a more intuitive explanation of boundary conditions
(BCs).

The form of (6) is similar to the heat equation, which is
well-known to admit a thermal-electrical analogy [20]. The pa-
rameter κ replaces thermal conductivity and can be called the
stress conductivity in this context. Using a similar principle,
we derive a stress-electrical analogy that maps the solution of
the electromigration problem to one of performing transient
analysis on an RC network. We use a uniform discretization
similar to the finite difference method, where for each element
i of size ∆x, the function σ(x, t) is discretized assuming a
uniform stress σi(t) for all points within the element.

Fig. 2 shows three consecutive discretized elements, i− 1,
i, and i + 1, in a two-segment line. Using a finite difference
to approximate the spatial derivative, (6) becomes:

dσi

dt
= κ

(
σi+1−σi

∆x

)
−
(

σi−σi−1

∆x

)
∆x

(7)

(∆x · w · τ) dσi

dt
= κ

(
σi+1 − σi

∆x/(w · τ)

)
− κ

(
σi − σi−1

∆x/(w · τ)

)
(8)

where w and τ are the width and thickness of the wire segment
that the element belongs to. The partial derivative with respect
to time in (6) becomes the ordinary derivative in (8), since after
discretization, σi in each element i depends only on time.

Now consider the electrical circuit shown in the lower half
of Fig. 2. The circuit equation at each node i is given by

CdVi/dt = ((Vi+1 − Vi)/R)− ((Vi − Vi−1)/R) (9)

Comparing (8) and (9), for each element of length ∆x,
the discretized stress equation has a direct mapping to the
electrical circuit. We summarize the stress-electrical relation
using the equivalences:

σ ↔ V ; (∆x · w · τ) ↔ C ;
1

κ

∆x

(w · τ)
↔ R

(10)



Fig. 2: A few discretized elements in a two-segment line, and
the RC equivalent structure around element i.

(a) (b)
Fig. 3: (a) A T-model for each discretized element of the line,
based on Fig. 2. (b) An equivalent π-model.

where V , R, and C are the electrical voltage, resistance, and
capacitance, respectively. Note that the stress resistance has
the familiar form of the electrical resistance of a conducting
material of length ∆x, cross-section (w · τ) and resistivity 1

κ ,
while the stress capacitance is equal to the volume (∆x ·w ·τ)
of the element.

Thus, stress analysis of a multisegment interconnect struc-
ture is translated into analysis of an RC circuit analysis
with current sources arising from BCs (as shown in the next
subsection). The stress-electrical analogy opens the doors to
mapping transient EM analysis to transient RC circuit analysis,
which has been well studied in the context of timing analysis
in IC design [21], [22].

The discretization in Fig. 2 is similar to the familiar T-model
used in interconnect analysis: each discretized element maps
to the T-structure shown in Fig. 3(a). Equivalently, a π-model
may be used, as shown in Fig. 3(b) [23].1 We choose to use
the latter model in this work. In this case, each element is
represented using two nodes, one at each edge of the element,
with capacitors of value C/2 connected to each node and a
resistor of value R connecting the nodes. By representing each
element by this π-model, an RC equivalent network may be
built for stress analysis.

B. Applying Boundary Conditions

The temporal BC sets all initial stresses to 0. The spatial BCs
are:

1The π-model can also be derived directly. We take two nodes i+1 and i
at the end points of an element, and create a node i′ at the center point. We
can then write the stress and its derivative at node i′ as the average of the
values at the two ends. The stress equation is discretized as:

1

2

(
dσi+1

dt
+

dσi

dt

)
= κ

[(
σi+1 − σi+1+σi

2

∆x/(w · τ)

)
−
( σi+σi−1

2
− σi−1

∆x/(w · τ)

)]
The remainder of the derivation is similar to that for the T-model.

(1) Continuity: Since the end points of adjacent RC segments
are connected to the same node, they have the same voltage (⇔
stress). The electrical circuit thus naturally satisfies continuity.
(2) Flux: The flux constraints do not map to those in the tradi-
tional statement of the thermal problem, where the Dirichlet-
type BC specifies one node “voltage” as the ambient temper-
ature, or reference. For the EM problem, the BCs at the end
points of each segment of the structure, given by Equation (4),
are Neumann-type where the derivative of the stress, ∂σ/∂x,
is specified. For the discretized line with elements of size ∆x,
we can use the stress-electrical equivalence (10) to relate the
stress derivative and the current, I , through an element in the
equivalent electrical circuit:

κ · (w · τ)∂σ
∂x

≈ κ
∆σ

∆x/(w · τ)
⇐⇒ ∆V

R
= I (11)

where ∆σ and ∆V are, respectively, the stress differential and
the voltage drop across the element of size ∆x.

Consider the node ni in the interconnect structure, and as
before, let Si be the set of segments incident on the node. The
BC (4) at ni can be written as

κ
∑

sk∈Si
wskτsk

∂σsk

∂x

∣∣∣
ni

+ κβ
∑

sk∈Si
wskτskjsk = 0 (12)

Using (11) and isk = wskτskjsk , this maps to:

χ
∑

sk∈Si
Isk + κ · β

∑
sk∈Si

isk = 0 (13)

Note that the first term comes from an equivalence rather than
an equality: χ is a scale factor of magnitude 1 that converts
the units of the first term to be consistent with those of the
second. For ease of readability, we will drop the term χ in the
rest of our discussion. The second term is the algebraic sum of
the EM stress current leaving the node ni, over all segments
sk incident on the node.

The boundary condition (4) must hold for all time points,
and thus also for t → ∞ where stress reaches steady state in
all segments and ∂σ

∂t = 0 at all spatial points. This translates
to DC state in the equivalent electrical circuit, where all
capacitors at the discretized nodes are opened.

This means that the above equation effectively represents
Kirchhoff’s current law (KCL) for node ni in the equivalent
electrical circuit at DC, and thus at any node of the RC
structure corresponding to the end point of a segment, a current
source of (κ ·β

∑
sk∈Si

isk) must be connected to ensure that
KCL is satisfied at DC. At internal nodes of a segment that
are not endpoints, the algebraic sum of isk is zero, and no
current source is needed.
(3) Mass conservation: Under 1-D analysis, where the length
of a wire is typically much larger than its width ws or thickness
τs, we use a discretization element that spans the entire width
and thickness dimensions. We compute the integral in the mass
conservation BC (5) as a finite sum over all elements j, which
maps to the following electrical equivalent:∑

j σj ·∆x · wj · τj = 0 ⇔
∑

j Vj ·∆x · wj · τj = 0 (14)

From (10), ∆x · wj · τj = Cj , the capacitance of element
j. Under the π-model, Vj (the element voltage) can be taken



(a)

(b)
Fig. 4: (a) A three-segment tree discretized into elements.
(b) The equivalent RC circuit with excitations.

as the average of the voltages at the two nodes at the end
of each element. Therefore, the node voltage at each node
k is multiplied by Ck =

∑
Cj/2 (the capacitance at the

node under the π-model); the summation is taken over all
elements j incident on the node; in other words, Ck is the total
capacitance at node k in the electrical circuit. The equation for
mass conservation maps to the electrical domain as∑

nodes k CkVk = 0 (15)

C. Example: Electrical Equivalent Model

We illustrate a mapping of the stress problem to an equivalent
electrical network, based on the above principles. Our illustra-
tive example is the three-segment tree of Fig. 4(a), with uneven
segment lengths, equal segment widths and thicknesses, and
with current densities j1, j2, and j3, as shown in the figure.

After discretization into elements of length L, from the
stress-electrical equivalence (10), we can build the equivalent
RC circuit shown in Fig. 4(b), where each discretized element
has identical resistance R and identical capacitance C. The
current sources correspond to the flux BCs, as described in the
previous subsection. Current sources are added to nodes that
correspond to segment end-points. The current source values
at the segment end nodes are equal to the algebraic sum of the
stressing currents on segments incident on those nodes. The
nodal equations for the RC circuit can be written as:

C



1
2 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 3

2 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1

2 0
0 0 0 0 0 0 1

2





V̇1

V̇2

V̇3

V̇4

V̇5

V̇6

V̇7


+ (16)

1

R



1 −1 0 0 0 0 0
−1 2 −1 0 0 0 0
0 −1 2 −1 0 0 0
0 0 −1 3 −1 0 −1
0 0 0 −1 2 −1 0
0 0 0 0 −1 1 0
0 0 0 −1 0 0 1





V1

V2

V3

V4

V5

V6

V7


= κβ



i1
0
0

−i1 + i2 − i3
0

−i2
i3


The conductance matrix G in (16) is singular (since its rows

and columns add up to 0), which is a consequence of the

fact that the RC equivalent circuit has no resistive path to
ground (or to a reference voltage). This will make the DC
equations needed for the computation of circuit moments (and
order reduction) linearly dependent. Here one equation can be
removed, say the last, and be replaced by the equation (15)
related to mass conservation [15], in order to make the DC
system solvable. For this particular example, the additional
mass conservation constraint (15) is:

CV1

2
+ CV2 + CV3 +

3CV4

2
+ CV5 +

CV6

2
+

CV7

2
= 0

IV. FREQUENCY DOMAIN SOLUTION

We approximate the circuit in the frequency domain using
model order reduction (MOR) techniques. MOR methods,
including Arnoldi methods, have been extensively explored
to approximate the voltage response of an RC interconnect
in timing analysis. However, there are significant differences
between the EM and timing analysis problems.
(1) For timing analysis, a first-order asymptotic waveform
evaluation (AWE) reduction guarantees a stable solution, be-
cause the response has a single time constant that is the
nonnegative Elmore delay [22]. For the stress problem, the
first moment can be negative, and it is easy to construct cases
with an unstable first-order approximant.
(2) For the EM problem, all resistors are separated from
ground by a cutset of capacitors and current sources
(Fig. 4(b)). For the DC state (encountered in moment com-
putation) where all capacitors are open-circuited, there exists
a cutset of current sources (whose voltage can be arbitrary)
which implies that there is no reference potential in the circuit
that uniquely defines all node voltages. This reference level
is determined by the mass conservation equation (15), which
is not represented in the circuit in Fig. 4(b). In contrast, in
timing analysis, since a voltage source is connected directly
to the driving point, all node voltages are uniquely defined in
the DC state.

Thus, our system is not a traditional timing analysis RC
circuit since it also includes the mass conservation constraint.
If (as done in [15]) we create a conductance matrix Gnew and
a capacitance matrix Cnew by replacing one equation (e.g.,
the last row in (16)) by the conservation of mass equation,
then Gnew is not guaranteed to be positive definite (nor is
symmetric), as required for stability [24].

Our two-step approach solves these equations in linear time:
Step 1: We create the reduced-order model via linear-time tree
traversals, similarly to timing analysis [24], but with an extra
step to incorporate mass conservation. This solution has no
guarantees of stability, but we find that in practice, instability
is seen in a very small fraction of testcases, and when the
solution is stable, it is accurate.
Step 2: For the few unstable cases (detected by checking
the signs of the poles in Step 1), we develop a guaranteed-
stable method. It is possible to use this approach for all EM
analyses, but empirically, this (still linear-time) approach has



more runtime and lower accuracy than the method in Step 1
(if Step 1 yields a stable approximation).

A. Step 1: MOR without Guaranteed Stability

The work in [15] appended mass conservation constraints to
the set of equations. However, their solution involved matrix
operations, which do not scale well. In this section, we show
how this system can be reduced to a lower order using
MOR using a linear-time method based on tree traversals. As
mentioned earlier, this is a nontrivial extension of RC timing
analysis due to the mass conservation constraint.

We start with the frequency domain representation of the RC
circuit equivalent of the stress analysis problem, without the
mass conservation equation, which is obtained by the Laplace
transform of the nodal equations (e.g. (16)) and can be written
as

(G+ sC)V(s) = Be(s) (17)

where G and C are, respectively, the node conductance and
capacitance matrices; V(s) is the vector of unknown node
voltages; B is a vector containing the algebraic sums of
stressing currents incident at every node (which form the
current source magnitudes); and e(s) is the Laplace transform
of a unit step excitation function. The part of (17) that does not
contain the excitation e(s) (i.e., when assuming a unit impulse
e(s) = 1) is a circuit transfer function V(s) = (G+sC)−1B,
and can be reduced by MOR to obtain a reduced-order model,
on which the time-domain excitation (here a unit step function)
can be applied afterwards to simulate stress at specific nodes.
To apply MOR we can use standard techniques [25] to find
the moments mi in the expansion V(s) =

∑
i mis

i, as:

Gm0 = B ; Gmi+1 = −Cmi, i ≥ 0 (18)

Efficient moment computation for an RC tree. For an RC
tree structure, each of the moment vectors mi can be computed
as the node voltages in a sequence of DC circuits, using tree
traversals. To solve for m0 in (18), all capacitors are open-
circuited and current sources with values equal to the algebraic
sums of stressing currents at every node (to form the vector B)
are applied to the resulting DC circuit. For mi+1, i ≥ 0, each
capacitor Ck to ground at every node k is replaced by a current
source of value (−Ck mi,k), where mi,k is the kth component
of mi. These transformations are illustrated in Fig. 5 for the
example structure and equivalent circuit of Fig. 4.
Incorporating mass conservation. Combining Vk(s) =∑

i mi,ks
i for the voltage at node k with mass conserva-

tion (15),∑
nodes k Ck · (m0,k +m1,ks+m2,ks

2 + · · · ) = 0 (19)

Since this relation holds for all values of s,∑
nodes k Ck ·mi,k = 0 ∀ i ≥ 0 (20)

Dealing with the absence of reference potential. Since no
reference potential is specified in the DC circuits2 (18), we

2Each DC circuit for moment computation has a cutset of current sources
(⇔ capacitors) to ground, and thus the moments are not uniquely solvable.

(a)

(b)
Fig. 5: (a) The equivalent circuit for computing the first
moment, m0, for the example in Fig. 4. (b) The equivalent
circuit for computing the (i+ 1)th moment, mi+1.

designate a reference node in the structure and find all voltages
as offsets from that reference node. Without loss of generality,
if node 1 is the reference, m∗

i , then a pair of tree traversals
can compute all voltages ⇔ moments, m0

i,k relative to the
reference. The true value of the moment at node k is obtained
by translating it by m∗

i , i.e.,

mi,k = m∗
i +m0

i,k (21)

We substitute Equation (21) into Equation (20) to obtain

m∗
i = −

∑n
k=1 Ckm

0
i,k∑n

k=1 Ck
(22)

Substituting this into (21) yields the moments of the system.
Constructing the reduced-order model. We use the PRIMA
approach [24] and intersperse the above tree-traversal-based
moment calculation with an orthogonalization step that creates
an orthogonal basis, which is then used to create a reduced
pth order model (by computing p orthogonalized moments).
The procedure consists of the following steps (the reader is
referred to [24] for details):

• Determine p moments mi, as described previously.
• Orthogonalize the moments using a Gram-Schmidt pro-

cess to obtain an n × p orthogonal Krylov basis matrix,
X .

• Generate a reduced order model

(G̃new + sC̃new)Ṽ(s) = B̃e(s),

Y(s) = L̃Ṽ(s)

where G̃new = XTGnewX , C̃new = XTCnewX , B̃ =
XTB, L̃ = LX , Ṽ is the p×1 reduced-order state vector,
and L is an r×n matrix that selects r out of the n nodes
in the RC circuit (i.e. discrete points in the interconnect
structure) where stress measurements Y are to be made.

The reduced-order model is small enough that it can be
solved directly to obtain the transient response of the equiv-
alent circuit, and compute stress at a desired subset of nodes
of the structure. In practice, we find that a low-order model



(of order p ≤ 4) provides excellent accuracy, and yields stable
approximations in most, but not all, testcases (Section V).
Computational complexity: The cost of finding the reduced-
order model for a tree structure is linear in the number of tree
nodes [21].

B. Step 2: MOR with Guaranteed Stability

The formulation in Step 1 effectively combines mass conser-
vation with the RC circuit equations, which can potentially
lead to unstable reduced-order models. We now show how we
can avoid this instability by superposing the results of two
separate analyses, each guaranteeing passivity of the reduced-
order model (and thus also stability) of the numerical solution,
by superposing two analysis steps described below: Analy-
sis A ignores mass conservation, while Analysis B captures
this constraint using a “mass conservation excitation.” Each
analysis solves a problem that maps onto timing analysis, and
the solution inherits guarantees of passivity.
Analysis A. This step ignores mass conservation (i.e., it uses
G rather than Gnew). As the system of circuit equations is
not independent (see the example in (16)), we first designate
a reference node (e.g., node 1 in Fig. 4) as ground: removing
the corresponding entries from the singular G converts it to a
nonsingular matrix G′. and find the moments of the transfer
function using a Krylov space method (like PRIMA) on a
standard RC circuit, characterized by A = −G′−1C. Without
mass conservation, the problem maps directly to MOR for
timing analysis, and the structure of the computations here is
identical to the first part of Step 1. For Analysis A, we will
use MA

i,k to denote the ith computed moment at node k.3

Analysis B. Due to mass conservation, using the notation in
Step 1, the voltage (⇔ stress) at the reference node is not zero
(as assumed in Analysis A), but has an ith moment of m∗

i (and
hence all moments in Step 1 are shifted by m∗

i in (21)). The
true voltage at the reference node is, in fact, represented by the
voltage moments as

∑
i m

∗
i s

i. This observation motivates an
alternative interpretation of stress analysis, where the excita-
tions can be split into two: e(s) = u(s), the Laplace transform
of the unit step excitation u(s) = 1/s that activates the current
sources in each wire, and a “mass conservation excitation” of
value (

∑
i m

∗
i s

i)u(s) at the reference node, which enforces
the mass conservation equation.4 A superposition of the two
responses provides the solution to the problem. Next, we find
the response to the corresponding impulse excitations e(s) ≡
δ(s) = 1 and

∑
i m

∗
i s

i and superpose them.
When we apply a unit impulse at the reference node, the

response at each node k is the transfer function to that node,
denoted as

∑
i Vi,ks

i. Note that V0,k = 1 ∀ nodes k for an
RC circuit with no resistive paths to ground [22].

3Note that MA
i,k ̸= m0

i,k except for the zeroth moment (i = 0), because
successive moments in Step 1 incorporate the mass conservation constraint
into their moments, while Analysis A is completely free of mass conservation.

4It is essential to treat the stress at the reference,
∑

i m
∗
i s

i, as an excitation;
it is not sufficient to simply shift the moments from Analysis A by the time-
domain stress at the reference, as in (21). This is because this is not a simple
DC shift, but a time-varying voltage excitation that affects the voltages at other
nodes. This is consistent with the observation in footnote 3 that MA

i,k ̸= m0
i,k .

The superposed impulse response of the stress at node k is:[(∑
i

MA
i,ks

i

)
+

(∑
i

m∗
i s

i

)(∑
i

Vi,ks
i

)]
where the first term comes from Analysis A, and the second
term is the response to the mass conservation excitation. Since
the summation of these terms over all vertices must be zero
to obey mass conservation, the coefficient of each power of s
must be zero. For the lowest power of s above, using a process
similar to (15), the sum of the capacitance-moment products
over all nodes is zero. Thus,∑
k

CkM
A
0,k +m∗

0

∑
k

CkV0,k = 0 ⇒ m∗
0 = −

∑
k CkM

A
0,k∑

k Ck

(23)

where the last equality uses V0,k = 1 ∀ k. Using a similar
approach for the coefficients sj , it can be shown that

m∗
j = −

∑
k CkM

A
j,k +

∑j−1
l=0 m∗

l

∑
k CkVj−l,k∑

k Ck
(24)

From (23) and (24), the moments of the mass conser-
vation excitation are in a Krylov space characterized by
A = −G′−1C; therefore, a passive approximation to the
excitation is obtained by PRIMA, and the excitation is stable.
In addition, the reduced order model for the circuit is obtained
from the same Krylov space as Analysis A, and is hence stable.
In short, mass conservation, the potential cause of instability in
the approach in Step 1, is moved to an excitation in Analysis B
and represented by a low-order rational approximation.

The responses from Analysis A and Analysis B are su-
perposed to obtain the stress at each node. Each analysis
is performed using PRIMA [24], where, for tree structures,
the moments are computed using tree traversals, followed by
orthogonalization steps to build the basis for the Krylov space.
Thus, trees are solved in linear time.

V. RESULTS

We present three sets of results to illustrate the accuracy and
scalability of our approach. Section V-A first demonstrates
our methodology and shows comparisons of our approach
with the FEM-based numerical solver, COMSOL, for a six-
segment Cu DD interconnect tree. Next, in Section V-B we
employ our algorithm on a multibranch interconnect tree
of consecutive T -junctions to demonstrate the linear time.
Finally, in Section V-C we apply our algorithm to perform
EM stress analysis on large-scale power grid benchmarks.

We assume interconnect structures to be built using Cu DD
wires: since there is no mass transfer across vias, each layer
is analyzed independently. The interconnect specifications [1],
[11] used in all our simulations are: ρ = 2.25e-8Ωm, B =
28GPa, Ω = 1.18e-29m3, D0 = 1.3e-9m2/s, Ea = 0.8eV,
Z∗ = 1, σcrit = 41MPa, T = 378K. Since the thermal
stress, σT , can be computed independently and superposed
over the stress computed here, without loss of generality we
assume σT = 0 everywhere. Our method is implemented using



Python3.6, and run times are reported on a machine with
128GB RAM and a 2.2GHz Intel® Xeon® Silver 4114 CPU.

A. Accuracy on a Multisegment Tree

We illustrate the application of our approach on a six-segment
tree where all horizontal and vertical segments are 20µm and
10µm long, respectively. The corresponding current densities
are marked in Fig. 6(a). A uniform element length of 5µm is
used for all segments: this results in 20 elements, implying that
this is a 20th order system. The transient values of the stress at
an exemplar node, node 4, is shown in Fig. 6(b). In this case,
the non-guaranteed-stable approximant from Step 1 provides
all-stable left-half-plane poles for orders p = 2, 3, · · · , 9. The
results for three orders are shown in the figure, and high
accuracy is obtained for p = 4. Similar results are seen at
all other nodes of the tree. Fig. 6(c) shows the results of
the simulation at the whole tree, at two time instants, where
the Step 1 and Step-2 plots overlap almost perfectly with the
COMSOL generated plots at both time points. In all cases,
Step 1 provides a stable solution, but for comparison, we also
show the results of the provably stable Step 2 MOR method.
The figure shows that the Step 1 results almost completely
coincide with the numerical COMSOL result, but Step 2
results show some small inaccuracy. This loss of accuracy is
the price paid for the stability guarantee, and we empirically
observe this in several cases. This is why we use Step 1 as
far as possible, going to Step 2 only when Step 1 fails.

B. Scalability Analysis

Table I shows the time cost of the proposed method for
a sequence of T -junctions as shown in Fig. 7 [26]. For a
structure with n junctions, each junction is a node and there
are 2n+ 1 segments in the tree. Each horizontal and vertical
segment is 20µm and 10µm long, respectively. A uniform
element length of 5µm is chosen. The table shows tdis,
the runtime to build the system matrices resulting from the
discretization; tmom, the runtime for computing the moments
using forward and reverse traversals for an order of p = 4;
tMOR, the runtime for model order reduction; tσ , the time
required to simulate the reduced-order model; and tTotal, the
total runtime. The runtime scales along the expected near-
linear trend for larger interconnect trees, as evident from the
reported total runtime and its components in Table I. For
all structures in Table I, Step 2 is never invoked. We report
runtime speedups for the structures in [26] on a comparable
machine: our approach is an order of magnitude faster.

C. Analysis on IBM Power Grid Benchmarks

We apply our approach to the IBM power grid bench-
marks [27]. These benchmarks are simulated using SPICE to
extract branch currents in every wire. Since these benchmarks
do not specify the widths and thicknesses of segments in the
grid, we back-calculate the product of the segment width and
thickness (cross-sectional area).

We model the connectivity of each benchmark using a
graph, where the nodes correspond to junctions, end-points,
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Fig. 6: (a) A six-segment interconnect tree. (b) Transient stress
at node 4 tree for multiple orders of MOR using Step 1.
(c) Spatial stress profile at two time instants for both Step 1
and Step 2 (x is the distance from node 1 [node 2 at x = 20,
node 3 at x = 40, etc.)].

or vias, and the edges are the power stripes that connect ad-
jacent nodes. Since each benchmark contains multiple voltage
domains and nets (Vdd and Vss), we first traverse the power
grid graph to identify connected components and extract tree
structures. We discretize each edge of the tree into elements of
size ∆x = 10µm; for wires whose lengths are not multiples
of 10µm, we consider the remainder of the wire length to be

Fig. 7: An interconnect structure with n T -junctions.

TABLE I: Runtime of our proposed algorithm on an intercon-
nect structure with n T -junctions (Figure 7).

n
Runtime (sec) Speedup

tdis tmom tMOR tσ tTotal over [26]
100 0.006 0.007 0.021 0.009 0.043 13×
200 0.011 0.015 0.062 0.017 0.105 11×
500 0.029 0.035 0.117 0.038 0.219 13×

1000 0.053 0.064 0.221 0.019 0.357 17×
2000 0.088 0.442 0.311 0.033 0.874 14×
10000 0.498 1.158 1.493 0.161 3.31 20×
20000 1.005 2.007 4.196 0.311 7.52 (not reported in [26])
50000 2.635 4.800 18.350 0.767 26.56 11×



TABLE II: IBMPG benchmarks: EM mortality statistics and
runtimes using our algorithm (#nodes after discretization).

# trees w/ # mortal wires CPU
# # # # Step 2 after time

trees wires nodes elements solution 3y 5y 10y (s)
pg1 1.2K 30K 0.9M 0.9M 0 46 63 94 39
pg2 1.2K 126K 0.7M 0.7M 0 0 0 3 42
pg3 15K 835K 8.1M 8.1M 6 2 5 14 484
pg4 20K 932K 4.3M 4.3M 4 0 0 0 300
pg5 3K 108K 4.9M 4.9M 0 0 0 0 330
pg6 21K 165K 3.5M 3.4M 24 59 164 658 432
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Fig. 8: Guaranteed stable (Step 2) stress profile of a 14-
segment ibmpg6 wire, where the Step 1 solution is unstable.

an independent smaller element. Table II lists the number of
trees5 in the benchmark, the number of wires, and the number
of nodes and elements after discretization for all benchmarks.

Next, we apply our approach to each tree structure using
p = 4 for the reduced-order models. We report the number of
trees that have no Step 1 solution because of passivity issues
(for which Step 2 was invoked), and we compute stress at
the end points of every wire for three different lifetimes (3, 5,
and 10 years). We list the number of mortal wires for different
lifetimes and the total runtime to compute the transient stress
using our proposed approach. As in Section V-B, the runtime
is the sum of tdis, tmom, tMOR, and tσ . The method is fast,
taking eight minutes to compute transient stress on the pg3
benchmark with >8M nodes after discretization). For pg4 and
pg5, we find no mortal segments for all three lifetimes which
is consistent with [8]. In addition, we also observe a few rare
tree structures (34 trees out of a total of 62K trees, or 0.05%),
in which the Step 1 solution gives right-half-plane poles and
is unstable, and where the guaranteed stable Step 2 solution
is invoked. The small number of invocations of Step 2 has no
discernible impact on the runtime.

Fig. 8 shows the Step 2 solution for a stripe in pg6 that
has no stable Step 1 solution. The stress profile agrees with
COMSOL, but slight differences are seen due to the accuracy-
stability tradeoff.

VI. CONCLUSION

We use stress-electrical equivalence and apply model or-
der reduction methods to solve for EM-induced stress in a
multisegment line. We solve the problem using a Krylov

5Note that the number of trees is larger than the number of trees reported
by [14], [26] as we report numbers for both Vdd and Vss nets.

subspace method that uses tree traversals to achieve a linear-
time solution of the transient stress in tree-structured inter-
connects, which has never been previously demonstrated. The
formulation is general enough to be extended to post-voiding
models [17], [28]. This is a topic for future work.
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