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ABSTRACT 
This paper addresses the question of how many serial switches are 
necessary to implement a given logic function as a switch 
network. This issue is important because it affects directly the 
resistance that will be charging/discharging output loads, thus 
affecting cell and circuit performance. We derive exact lower 
bounds to easily evaluate the number of serial switches needed 
and demonstrate that Complementary Series/Parallel (CSP) and 
Pass Transistor Logic (PTL) topologies exceed the lower bounds 
for many practical examples. We also propose a design 
methodology that will produce cells with minimum number of 
transistors in series and evaluate the benefits obtained in circuit 
delay. 

1. INTRODUCTION 
The number of serial switches inside a cell is related to the 
maximum speed this cell may attain in CMOS technologies. 
Regardless of the transistor topology used to implement a 
switching function, there is a strong correlation between the 
length of the longest transistor chain and the delay, since the 
switches along this path are likely to correspond to the charge or 
discharge path that corresponds to the worst case delay scenario. 
As an example, let us consider the implementation of a pass 
transistor logic (PTL) module. The approach in [1] utilized this 
notion in its algorithm for performance-driven PTL synthesis. The 
method presented there exploits two separate effects. First, it aims 
to reduce the number of serially connected gates by applying 
functional decomposition. Second, it reduces the number of serial 
transistors (switches) inside the gates by encoding decompositions 
with a one-hot code and deriving cell level PTL networks partially 
from a BDD (Binary Decision Diagram) and partially from a one-
hot multiplexer. The results reported there show significant 
performance gains, proving the importance of the number of serial 
transistors (switches) as a parameter to the quality of cell 
networks, especially when performance is the design goal.  

Synthesis techniques for PTL circuits have been closely related to 
BDD representation of logic functions, for reasons such as 
elimination of sneak paths and the availability of efficient 
algorithms for the construction of BDDs [1]. Indeed, the 
approaches in [1-8] are based on BDDs. Therefore, when 
discussing PTL networks, we will concentrate our discussion on 
PTL networks derived from BDDs. Despite the gains 
demonstrated by [1], we will demonstrate that even the 
introductory example used there, the circuit c3 (carry-out for the 
first 3 bits of an adder), shown in Fig. 1.a, may be synthesized 

with a significantly smaller number of serial transistors than 
originally presented. Fig. 1.a shows a PTL gate for c3 with 
(inverting) buffers inserted. This way, the bottom part, below the 
first stage of buffers, has four transistors in series (counting the 
transistors inside the buffer that generates signal B2), while the 
top part of the cell has three transistors in series (counting the 
transistors inside the buffers). Consequently, the PTL realization 
in Fig. 1.a may then be viewed as two independent gates 
connected in cascade. However, we noticed that the c3 function 
may be synthesized as a single cell where the pull-down network 
has at most four serial transistors and the pull-up chain has at most 
three. This implementation is shown in Fig. 1.b, and it is 60% 
faster than the fastest decomposed version presented in [1]. 
Moreover, this is not a problem that is unique to the cell 
generation method in [1]. Indeed, this seems to be true for 
approaches based on PTL, as we also found examples of non-
optimized pull-up and/or pull-down paths in several other papers 
based on PTL logic [2, 8]. Notice that the circuit in Fig. 1.b does 
not use Complementary Series/Parallel (CSP) logic [9-12]. The 
use of CSP topology would produce a network with a transistor 
chain longer than the PTL version of Fig. 1.a. These observations 
lead us to formulate the following questions.  

1) What is the minimum length for the pull-up and pull-down 
chains when designing a switch network for a given logic 
function?  

2) Is it possible to synthesize a network for the circuit in Fig. 1.b 
with shorter pull-up and pull-down path lengths? 

2. SWITCHES AND LOGIC CELLS 
A switch controls the connection between two different points. 
The discussion in this paper will be restricted to two different 
kinds of switches, as described in the following. An active-0 
switch will connect two nodes if the control variable is equal to 0; 
the switch will not connect these points when the control signal is 
equal to 1. Similarly, an active-1 switch will short-circuit two 
nodes if the control variable is equal to 1 and it will be an open 
circuit if the variable is 0. PMOS transistors are active-0 switches 
and NMOS transistors are active-1 switches. 

The main switch topologies used to design transistor networks for 
logic cells are Pass Transistor Logic (PTL) [1-8] and 
Complementary Series/Parallel (CSP) CMOS Logic [9-12]. PTL 
topology is composed of a single non-disjoint pull-up/down 
plane, while CSP topology has two disjoint switch planes: one 
pull-up plane and one pull-down plane. Independently of the 



topology, the output of the cell is connected to VDD or GND 
through a path composed of serially connected switches that are 
active (connected) under a given input assignment. A pull-up 
path connects the output of the cell to the VDD (logic-1) reference, 
through a set of serially connected switches. A pull-down path 
connects the output of the cell to the GND (logic-0) reference, 
through a set of serially connected switches. A pull-up path is 
associated with an on-set implicant cube, while a pull-down path 
is associated with an off-set implicant cube.  

Table 1: Pull-up and pull-down paths Fig. 2.b. 

Type Transistors Cube 
T1-T3-T8 cba ⋅⋅  
T2-T5-T8 cba ⋅⋅  

 
Pull-up 

T2-T6 ba ⋅  
T1-T4 ba ⋅  
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         (a) PTL implementation of c3     (b) CMOS Network of c3 

Figure 1: Implementations for function c3. 
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Figure 2: Two distinct PTL cells. 

Example 1: Consider the PTL cells shown in Fig. 2.a and 2.b, for 
the carry-out function of a full adder. The PTL cell in Fig. 2.a has 
the input c connected to transistor drains. However, inside an 
integrated circuit these signals will always be available through 
another cell that will generate them. In the best case, these signals 
will be generated through an inverter. Thus the following 
discussion will consider that drain signals are available through 
inverters. Fig. 2.b shows the PTL cell with the transistors 
corresponding to the inverters added to the transistor network. The 
existing pull-up and pull-down paths for circuit in Fig. 2.b are 
shown in Table 1. The on-set (off-set) equation is given by the 
sum of all on-set (off-set) implicants corresponding to pull-up 
(pull-down) paths, as given by equations 1 and 2 below. Notice 
that these equations are correct, but they are not prime covers, as 
prime covers for the on-set and off-set of this particular function 
would have cubes composed of at most two literals. 

bacbacbaseton ⋅+⋅⋅+⋅⋅=−  (1) 

cbabacbasetoff ⋅⋅+⋅+⋅⋅=−  (2) 

3. EXACT LOWER BOUND FOR SERIAL 
SWITCHES 
The lower bound we propose is based on the number of literals of 
the smallest cube in a prime irredundant cover. The problem with 
this is that if a function might have distinct prime and irredundant 
covers with a different number of literals in the smallest cube, 
then the lower bound would not be univocally defined. In the 
following we present a proof to ensure that this condition will 
never happen as the size of the smallest cube in distinct prime 
irredundant covers of a logic function is univocally defined. 

Definition 1: A cube with m literals will have cube size 2n-m in 
Boolean space Bn. By definition, the smallest cube is the cube 
with larger number of literals. 

Theorem 1: The number m of literals in the smallest cube does 
not change for distinct prime implicant covers of the same logic 
function. 

Proof (by contradiction): Consider two distinct prime 
irredundant covers C1 and C2 of the same function f such that the 
smallest cubes in C1 and C2 have different sizes. Suppose that 
cover C1 has smallest cube(s) composed of m literals. Suppose 
also that the smallest(s) cube(s) in cover C2 are composed of m-i 
literals, such that 0<i<m. To turn on the any prime irredundant 
cube in C1, it is necessary to assign m variables to logic-0 or 
logic-1 as appropriate. The reason for this is because the smallest 
cube in C1 is not redundant and has m literals. However, 
assigning at most m-i variables is sufficient to turn on any prime 
implicant cube in C2. Thus, the analysis of the complete set of all 
variable assignments containing m-i or fewer variables in Bn is 
sufficient to decide if function represented by C2 evaluates to 
logic-1. However, to decide if function represented by C1 
evaluates to logic-1, it is necessary to assign m variables in the 
worst case, due to the irredundant prime implicant(s) with m 
literals. Therefore, the functions given by covers C1 and C2 are 
not the same logic function, leading to a contradiction of our 
initial hypothesis that two distinct prime implicant covers of the 
same function could have smallest cubes with different sizes. 
QED. 



Corollary: Theorem 1 is valid for two prime irredundant covers. 
Non-prime covers may have smaller non-prime cubes with more 
than m literals, where m is the size of the smallest cube in any 
prime irredundant cover. However, no cover may have only cubes 
greater (with a smaller number of literals) than the smallest cube 
in any prime irredundant cover. 

Theorem 2: Given a function f, it is not possible to have a cell 
whose longest pull-up path has fewer switches than m, the number 
of literals in the smallest cube of any prime irredundant cover C1 
for the on-set of function f.  

Proof (by contradiction): Recall that the smallest cube has the 
greater number of literals (Definition 1). By theorem 1, all the 
prime irredundant covers of function f will have at least one cube 
with m literals, where m is the size of the smaller cube in any 
prime cover of f. Non-prime covers of f may have smaller cubes 
with more than m literals. However, covers where all the cubes 
have less than m literals are not possible, due to theorem 1 and its 
corollary. Consider a function f defined in Bn, such that a prime 
irredundant cover C1 of f has m literals. Suppose now that 
function f has a generic switch realization where the ith pull-up 
path has size pi, such that pi < m. As described in detail through 
example 1 of section 2, each of these pull-up paths would be 
associated with an on-set implicant cube with pi literals. As a 
consequence, every pull-up path with size pi < m will produce a 
cube with pi literals where pi < m. The cover obtained from the 
network this way will have only cubes with less than m literals, as 
pi<m, for every path. According to theorem 1, this contradicts the 
initial hypothesis that the smallest cube in the prime implicant 
cover C1 has m literals, as all the cubes in the realization would 
have a smaller number of literals pi < m and a greater size. QED. 

Theorem 3: Given a function f, it is possible to produce a cell 
where the longest pull-up path has m switches in series, where m 
is the number of literals in the smallest cube in a prime 
irredundant cover C1 for the on-set of function f.  

Proof (by construction): It is possible to construct a pull-up 
plane for function f given a prime irredundant cover  Pi of the 
function, where each cube Pi=∏ li is a product of literals 
associated to the variables in the domain of the function. Every 
prime cube Pi contributes to the pull-up plane with an independent 
pull-up path. The paths for each cube Pi are independent as they 
are parallel paths among each other. Each of the independent 
paths is composed of serially connected switches between the 
logic-1 reference (VDD) and the output of the cell. The path for a 
given cube in the cover contains one serially connected switch for 
each literal li in the cube, as described by example 1 in section 2. 
As the smallest cube has the greater number of literals, it will 
determine the size of the longest path. Thus this implementation 
will have by construction the longest pull-up path with a size 
correspondent to the number m of literals in the smallest cube, as 
stated by the theorem. Furthermore, as the path for each cube is 
independent, this solution has no sneak paths. QED. 

Theorem 4: The exact lower bound in the number of serial 
switches in the longest pull-up path of a logic function f is given 
by m, the number of literals in the smallest cube in any prime 
irredundant cover C1 for the on-set of function f. 

Proof: Immediate corollary of Theorems 2 and 3, and univocally 
defined as consequence of Theorem 1. QED. 

Theorem 5: Given a function f, it is not possible to have a cell 
whose longest pull-down path has fewer switches than m, the 
number of literals in the smallest cube of any prime irredundant 
cover C1 for the off-set of function f.  

Proof: The proof is similar to that of Theorem 2. 

Theorem 6: Given a function f, it is possible to produce a cell 
where the longest pull-down path has m switches in series, where 
m is the number of literals in the smallest cube in a prime 
irredundant cover C1 for the off-set of function f.  

Proof: The proof is similar to that of Theorem 3. 

Theorem 7: The exact lower bound in the number of serial 
switches in the longest pull-down path of a logic function f is 
given by m, the number of literals in the smallest cube in any 
prime irredundant cover C1 for the off-set of function f. 

Proof: Immediate corollary of Theorems 5 and 6, and univocally 
defined as consequence of Theorem 1.QED. 

4. APPLICATIONS AND CONSEQUENCES 
This section presents consequences of the lower bounds 
introduced in previous section. For a better understanding of the 
lower bounds, an illustrative example is presented. 

Example 2: As an example, consider a function f given by 
equation dcacbbaf ⋅⋅+⋅+⋅= . The minimum covers for the 
on-set and the off-set of this function are: 

dcacbbaseton ⋅⋅+⋅+⋅=−   (3) 

cbdbcabasetoff ⋅+⋅+⋅+⋅=−   (4) 

The smallest cube in the on-set is dca ⋅⋅ , so the lower bound for 
the number of serial transistors in the pull-up network is three. 
The cubes in the off-set are all the same size, and the lower bound 
for the number of serial switches in the pull-down network is two. 
This way the cell corresponding to the function f is a 3-2 cell, 
when mapped with the constructive method proposed here.  

Example 3: Recall the function in example 1, the carry-out of a 
full adder. Prime irredundant covers for the on-set and off set are 
given by the following equations. 

cbcabaseton ⋅+⋅+⋅=−  (5) 

cbcabasetoff ⋅+⋅+⋅=−  (6) 

It is easy to see that the lower bounds for the carry-out in a full 
adder are two switches for both the pull-up and pull-down planes. 
This is consistent with the classic 2-2 cell for carry-out generation 
presented in the cover of the Weste-Eshraghian book [13]. 

4.1 NCSP topology 
We will refer to the constructive method presented in this paper as 
Non-Complementary Series/Parallel (NCSP) topology. The 
constructive method was detailed in the proof of theorem 3. As an 
example, consider the resulting cell for the function f in example 
2. The NCSP cell has the pull-up derived from the on-set equation 
(hence the longest pull-up path has 3 switches) and the pull-down 
derived from the off-set equation (thus the longest pull-down path 
has 2 switches), as it may be observed in Fig. 3.a. As the on-set 
and the off-set may be interchanged by inverting the function and 
adding and inverter at the output, it is always possible to use the 



smaller constraint in the pull-up network. This is desirable 
because PMOS transistors are more resistive than NMOS ones. 
The NCSP network considering the inverted version of function f 
is shown in Fig. 3.b. 
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Figure 3: NCSP cells respecting the lower bounds for function 
f from example 2. 
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Figure 4: CSP cells not respecting the lower bounds for 
function f from example 2. 
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Figure 5: PTL cell not respecting the lower bounds for 
function f from example 2. 

 

4.2 Comparison with a CSP topology 
A Complementary Series/Parallel (CSP) [9-12] derived only 
from the on-set equation would result in a 3-3 cell, as shown in 
Fig. 4.a. Similarly, if a CSP [9-12] cell were derived exclusively 
from the off-set equation, the result would be the 2-4 cell 
illustrated in Fig. 4.b. Thus, the use of the lower bound will 
produce a cell that has smaller pull-up and pull-down networks 
than CSP [9-12]. Based on example 2 above, it is possible to see 
that the NCSP topology we propose may be used to reduce the 
length of pull-up and pull-down chains when implementing cell 
level networks. 

4.3 Comparing to PTL topology 
The Pass Transistor Logic (PTL) [1-8] realization of the cell from 
example 2 would be a 4-4 cell, independently of the BDD variable 
order used to generate the PTL network [14]. One possible PTL 
network is shown in Fig. 5. This way, the use of the lower bound 
will produce a cell that has smaller pull-up and pull-down 
networks than PTL [1-8]. Based on example 2, it is possible to see 
that the NCSP we propose may be used to reduce the length of 
pull-up and pull-down chains when implementing cell level 
networks. Indeed, we found examples of circuits not respecting 
the lower bound in [1-7]. 

4.4 Lower bound and general PTL styles 
Notice that the lower bounds we defined here apply to general 
PTL styles, due to our definition of pull-up and pull-down paths. 
As a pitfall counterexample, consider a prime irredundant cover, 
a⋅b. The theorem states that lower bound in the number of serial 
switches is two, but one could argue that it is possible to 
synthesize a PTL circuit with only one serial switch: an NMOS 
transistor with gate input b and the drain terminals directly 
connected to variable a. However, our definition of pull-up and 
pull-down paths starts at a power supply node, VDD or GND. 
Therefore, this counterexample is not valid, because variable a is 
not a power supply node.  

4.5 Evaluating the lower bound 
At first, it may seem too time-intensive to calculate the lower 
bound for candidate functions, as it is necessary to calculate two 
prime irredundant SOPs. However, as we only evaluate the pull-
up and pull-down chain inside cells, the evaluation process is not 
a critical step because it is easy to obtain prime irredundant SOPs 
when the number of variables is small. 

5. RESULTS 
Experiments were run on a set of well-known benchmark circuits 
available from many sources. Each circuit was preprocessed with 
SIS [15] and mapped with 4-input Look-up Tables (LUTs). A 
script for LUT based FPGAs suggested in the documentation of 
SIS was used. As a result each circuit is composed by a set of sub-
functions having at most four inputs. From these preprocessed 
networks, four different transistor networks were derived, as 
described in the following. We have used SIS, but the lower 
bound and the NCSP topology are compatible with the 
decomposition methods presented in [1-6]. What is important in 
the data presented is the relative performance among the four 
topologies, as the gains we obtain are at the cell level, and they 
are preserved independently of the specific decomposition method 
used, when comparing NCSP to more common PTL [1-8] or CSP 
[9-12] approaches. 



CSP. Each logic function in the preprocessed circuit is mapped 
into a transistor network as a single cell using the Complementary 
Series/Parallel (CSP) topology [9-12]. Notice that this procedure 
could generate some infeasible cells: an EXOR4 would have eight 
transistors in series, for one of the cell planes. As a consequence, 
single cells with more than four serial transistors in series are 
decomposed into a set of cells with at most four transistors in 
series, so that the mapping with 4-input LUTs may be translated 
to a CSP circuit. 

NPTL. Each logic sub-function in the preprocessed circuit is 
mapped into a transistor network using the PTL topology [1-8] 
composed only of NMOS transistors, as used in [1-6]. Notice that 
all the cells are feasible, as they will have at most 4 transistors in 
series. For instance, an EXOR4 would have four transistors in 
series, the maximum height of a 4-variable BDD [14]. However, 
some functions will be exceeding the lower bound. For instance a 
NAND4 would have four serial transistors for charging and 
discharging the output. We have used PTL networks derived from 
BDDs, as most of the recent publications on PTL synthesis derive 
PTL networks from BDDs [1-8]. 

CPTL. Each logic sub-function in the preprocessed circuit is 
mapped into a transistor network using the PTL topology 
composed of a pair of PMOS/NMOS transistors, as used in [7]. 
Notice that all the cells are feasible. For instance, an EXOR4 
would have four transistors in series. However, some functions 
will be exceeding the lower bound. For instance a NAND4 would 
have four serial transistors for charging and discharging the 
output. 

NCSP. Each logic sub-function in the preprocessed circuit is 
mapped into a transistor network using either the CSP or with the 
non-complementary series/parallel (NCSP) topology proposed in 
this paper to minimize the number of transistor in series. NCSP is 
preferred; CSP will only be used when it respects the lower bound 
and decreases the total transistor count (for area reasons). Notice 
that with this configuration all the cells will respect the lower 
bound. This is not achieved by using CSP or PTL alone, or even 
by using a mix of both [16-20], as demonstrated for the cell in 
example 2. Observe that NCSP uses disjoint pull-up (PMOS) and 
pull-down (NMOS) planes, which further increases speed when 
compared to NPTL. 

The main goal of the theory exposed in this paper was to reduce 
the number of switches in series in the pull-up and pull-down 
networks. Table 2 illustrates the reduction in the sum of the pull-
up and pull-down chains. As expected, the pull-up and pull-down 
chains obtained through NCSP are the shortest.  

The number of transistors necessary to implement each circuit is 
presented in Table 3 for mapping with 4-input LUTs. Notice that 
this number of transistors is shown only for a relative area 
comparison. The final number of transistors and the area depends 
on the quality of the decomposition. Small differences between 
CSP and NCSP in transistor count can be seen in Table 3. The 
implementations using NPTL and CPTL will result in smaller 
transistor counts, as they were obtained from optimized BDDs, 
while CSP and NCSP were obtained from non-optimized SOPs.  

Table 2: Sum of pull-up/pull-down switches in the critical 
path: LUT4. 

 CSP NPTL CPTL NCSP 
Circuit PU PD PU PD PU PD PU PD 
C432 28 60 68 68 68 68 28 60 
C1355 20 33 28 28 28 28 20 26 
C499 23 36 31 31 31 31 23 29 
C1908 33 59 48 48 48 48 33 43 
C880 27 44 48 48 48 48 27 36 
C2670 31 48 56 56 56 56 30 46 
C3540 45 72 67 67 67 67 44 64 
C7552 29 39 36 36 36 36 29 31 
C5315 28 49 45 45 45 45 28 42 
C6288 96 127 119 119 119 119 96 102 
Total 362 570 550 550 550 550 360 482 

Table 3: # of transistors for benchmark mapping: LUT4. 
Circuit CSP NPTL CPTL NCSP 
C432 726 754 958 726 
C1355 2910 1402 2031 2910 
C499 2800 1370 1962 2800 
C1908 2296 1452 1980 2298 
C880 1814 1436 1891 1814 
C2670 3414 2718 3465 3421 
C3540 5218 5010 6610 5219 
C7552 10384 7502 10125 10455 
C5315 8284 7286 9444 8292 
C6288 14912 8882 12478 15250 
Total 52786 37846 50990 53213 

Table 4: # Delay of the circuits simulated with SPICE: LUT4. 
Circuit CSP NPTL CPTL NCSP 
C432 5012ps 7746ps 7441ps 5012ps 
C880 5289ps 6008ps 5448ps 4951ps 
C2670 5269ps 6934ps 6310ps 4978ps 
C3540 8513ps 9285ps 9149ps 8056ps 
Total 25539ps 31713ps 29930ps 24453ps 

 

Table 4 shows the delay of the circuits obtained through SPICE 
simulations. The delay is in ps (picoseconds), for the TSMC 
0.25µm technology. It is possible to see that the delays correlate 
to the sum of the sizes of pull-up and pull-down networks in the 
longest path. The results in Table 4 are even more attractive for 
NCSP as it is composed of disjoint planes for pull-up and pull 
down. Therefore PMOS may be used for pull-up and NMOS for 
pull-down, and NCSP will be less susceptible to noise margin 
problems. This represents a significant reliability advantage for 
NCSP.  

6. CONCLUDING REMARKS 
The approach recently presented in [21] to increase circuit 
performance shows examples that use complex cells with reduced 
pull-up and pull-down paths, but these parameters (minimum pull-
up and pull-down chains) are not explicitly cited in the text. The 
approach in [21] clearly states that the cell transistor network 
generation is an important point in their performance oriented 
design flow. However, they make no explicit mention to the pull-
up and pull-down length of the cells as important parameters. We 
believe this work to be the first to explicitly and unequivocally 
point out the importance of these parameters.  



The use independently optimized logic for pull-up and pull-down 
planes was also used in [22]. However, the goal in that work was 
to produce hazard-free complex gates and the length of pull-up 
and pull-down chains was not discussed as a design parameter. It 
is important to notice that the work in [22] does not point to older 
references that use independently optimized logic for pull-up and 
pull-down planes. 

We have derived an exact lower bound for the number of switches 
needed to implement a logic function at the switch level. We have 
shown that the most used transistor topologies, pass transistor 
logic (PTL) [1-8] and complementary series/parallel (CSP) [9-12] 
will not respect the presented lower bound for some logic 
functions. This was demonstrated through the sum of the lengths 
of pull-up and pull-down longest chains for each cell in the 
critical path for circuits mapped with 3-input and 4-input logic 
functions. The impact of this overhead in the number of serial 
transistors in the delay of mapped circuits was evaluated through 
SPICE simulations, and compared to the delay of NCSP networks 
proposed here. The reduction of the length of pull-up and pull-
down translates into better timing for the NCSP approach. We 
believe that the lower bounds presented here will have a 
significant impact in the design of high performance integrated 
circuits using methods like [1, 21], through the guidance for the 
choice of better cell topologies. Note that the NCSP topology and 
the lower bounds proposed here are valid and useful 
independently of the decomposition used [1-6], and could 
possibly increase the speed of many circuits by simply 
exchanging the switch level cell networks in the critical paths with 
optimized versions. We are currently working on methods for 
automatic synthesis of area efficient switch networks that respect 
the lower bound. 
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