
Exact lower bound for the number of switches in series to
implement a combinational logic cell

F.R.Schneider1
felipers@inf.ufrgs.br

R.P.Ribas1
rpribas@inf.ufrgs.br

S.S.Sapatnekar2
sachin@ece.umn.edu

A.I.Reis1,2
andreis@inf.ufrgs.br

1Instituto de Informática - UFRGS

CEP 91501-970 - Caixa Postal 15064
Porto Alegre – RS - Brasil

+55 51 3316 6810

2Department of Electrical and Computer Engineering
200 Union Street SE, University of Minnesota

Minneapolis, MN 55455.
+1 (612) 625-0025

ABSTRACT
This paper addresses the question of how many serial switches are
necessary to implement a given logic function as a switch
network. This issue is important because it affects directly the
resistance that will be charging/discharging output loads, thus
affecting cell and circuit performance. We derive exact lower
bounds to easily evaluate the number of serial switches needed
and demonstrate that Complementary Series/Parallel (CSP) and
Pass Transistor Logic (PTL) topologies exceed the lower bounds
for many practical examples. We also propose a design
methodology that will produce cells with minimum number of
transistors in series and evaluate the benefits obtained in circuit
delay.

1. INTRODUCTION
The number of serial switches inside a cell is related to the
maximum speed this cell may attain in CMOS technologies.
Regardless of the transistor topology used to implement a
switching function, there is a strong correlation between the
length of the longest transistor chain and the delay, since the
switches along this path are likely to correspond to the charge or
discharge path that corresponds to the worst case delay scenario.
As an example, let us consider the implementation of a pass
transistor logic (PTL) module. The approach in [1] utilized this
notion in its algorithm for performance-driven PTL synthesis. The
method presented there exploits two separate effects. First, it aims
to reduce the number of serially connected gates by applying
functional decomposition. Second, it reduces the number of serial
transistors (switches) inside the gates by encoding decompositions
with a one-hot code and deriving cell level PTL networks partially
from a BDD (Binary Decision Diagram) and partially from a one-
hot multiplexer. The results reported there show significant
performance gains, proving the importance of the number of serial
transistors (switches) as a parameter to the quality of cell
networks, especially when performance is the design goal.

Synthesis techniques for PTL circuits have been closely related to
BDD representation of logic functions, for reasons such as
elimination of sneak paths and the availability of efficient
algorithms for the construction of BDDs [1]. Indeed, the
approaches in [1-8] are based on BDDs. Therefore, when
discussing PTL networks, we will concentrate our discussion on
PTL networks derived from BDDs. Despite the gains
demonstrated by [1], we will demonstrate that even the
introductory example used there, the circuit c3 (carry-out for the
first 3 bits of an adder), shown in Fig. 1.a, may be synthesized

with a significantly smaller number of serial transistors than
originally presented. Fig. 1.a shows a PTL gate for c3 with
(inverting) buffers inserted. This way, the bottom part, below the
first stage of buffers, has four transistors in series (counting the
transistors inside the buffer that generates signal B2), while the
top part of the cell has three transistors in series (counting the
transistors inside the buffers). Consequently, the PTL realization
in Fig. 1.a may then be viewed as two independent gates
connected in cascade. However, we noticed that the c3 function
may be synthesized as a single cell where the pull-down network
has at most four serial transistors and the pull-up chain has at most
three. This implementation is shown in Fig. 1.b, and it is 60%
faster than the fastest decomposed version presented in [1].
Moreover, this is not a problem that is unique to the cell
generation method in [1]. Indeed, this seems to be true for
approaches based on PTL, as we also found examples of non-
optimized pull-up and/or pull-down paths in several other papers
based on PTL logic [2, 8]. Notice that the circuit in Fig. 1.b does
not use Complementary Series/Parallel (CSP) logic [9-12]. The
use of CSP topology would produce a network with a transistor
chain longer than the PTL version of Fig. 1.a. These observations
lead us to formulate the following questions.

1) What is the minimum length for the pull-up and pull-down
chains when designing a switch network for a given logic
function?

2) Is it possible to synthesize a network for the circuit in Fig. 1.b
with shorter pull-up and pull-down path lengths?

2. SWITCHES AND LOGIC CELLS
A switch controls the connection between two different points.
The discussion in this paper will be restricted to two different
kinds of switches, as described in the following. An active-0
switch will connect two nodes if the control variable is equal to 0;
the switch will not connect these points when the control signal is
equal to 1. Similarly, an active-1 switch will short-circuit two
nodes if the control variable is equal to 1 and it will be an open
circuit if the variable is 0. PMOS transistors are active-0 switches
and NMOS transistors are active-1 switches.

The main switch topologies used to design transistor networks for
logic cells are Pass Transistor Logic (PTL) [1-8] and
Complementary Series/Parallel (CSP) CMOS Logic [9-12]. PTL
topology is composed of a single non-disjoint pull-up/down
plane, while CSP topology has two disjoint switch planes: one
pull-up plane and one pull-down plane. Independently of the

topology, the output of the cell is connected to VDD or GND
through a path composed of serially connected switches that are
active (connected) under a given input assignment. A pull-up
path connects the output of the cell to the VDD (logic-1) reference,
through a set of serially connected switches. A pull-down path
connects the output of the cell to the GND (logic-0) reference,
through a set of serially connected switches. A pull-up path is
associated with an on-set implicant cube, while a pull-down path
is associated with an off-set implicant cube.

Table 1: Pull-up and pull-down paths Fig. 2.b.

Type Transistors Cube
T1-T3-T8 cba ⋅⋅
T2-T5-T8 cba ⋅⋅

Pull-up

T2-T6 ba ⋅
T1-T4 ba ⋅

T1-T3-T7 cba ⋅⋅

Pull-
down

T2-T5-T7 cba ⋅⋅

b2

a2
a1 b1 b2

b1

a1

a2 b2

a0 b0

VDD!

a0

GND!

b0
b2

b2
a1 b1

a2 b2

b1

a1

a2 b2

a2

VDD! GND!
__
b2

__
a2

a2

a2
__
a2

__
a1a1

__
a1 a1

b0

a0 __
a0

__
b0

__
b1b1

out

out

 (a) PTL implementation of c3 (b) CMOS Network of c3

Figure 1: Implementations for function c3.

cout_
a a

b

b
_
b

_
b

VDD!GND!

_
c

T1 T2

T3 T5
T6T4

T7 T8

_
c

cout_
a

VDD!GND!

a

b

b
_
b

_
b

c

 (a) drain inputs (b) strong signals through inverters

Figure 2: Two distinct PTL cells.

Example 1: Consider the PTL cells shown in Fig. 2.a and 2.b, for
the carry-out function of a full adder. The PTL cell in Fig. 2.a has
the input c connected to transistor drains. However, inside an
integrated circuit these signals will always be available through
another cell that will generate them. In the best case, these signals
will be generated through an inverter. Thus the following
discussion will consider that drain signals are available through
inverters. Fig. 2.b shows the PTL cell with the transistors
corresponding to the inverters added to the transistor network. The
existing pull-up and pull-down paths for circuit in Fig. 2.b are
shown in Table 1. The on-set (off-set) equation is given by the
sum of all on-set (off-set) implicants corresponding to pull-up
(pull-down) paths, as given by equations 1 and 2 below. Notice
that these equations are correct, but they are not prime covers, as
prime covers for the on-set and off-set of this particular function
would have cubes composed of at most two literals.

bacbacbaseton ⋅+⋅⋅+⋅⋅=− (1)

cbabacbasetoff ⋅⋅+⋅+⋅⋅=− (2)

3. EXACT LOWER BOUND FOR SERIAL
SWITCHES
The lower bound we propose is based on the number of literals of
the smallest cube in a prime irredundant cover. The problem with
this is that if a function might have distinct prime and irredundant
covers with a different number of literals in the smallest cube,
then the lower bound would not be univocally defined. In the
following we present a proof to ensure that this condition will
never happen as the size of the smallest cube in distinct prime
irredundant covers of a logic function is univocally defined.

Definition 1: A cube with m literals will have cube size 2n-m in
Boolean space Bn. By definition, the smallest cube is the cube
with larger number of literals.

Theorem 1: The number m of literals in the smallest cube does
not change for distinct prime implicant covers of the same logic
function.

Proof (by contradiction): Consider two distinct prime
irredundant covers C1 and C2 of the same function f such that the
smallest cubes in C1 and C2 have different sizes. Suppose that
cover C1 has smallest cube(s) composed of m literals. Suppose
also that the smallest(s) cube(s) in cover C2 are composed of m-i
literals, such that 0<i<m. To turn on the any prime irredundant
cube in C1, it is necessary to assign m variables to logic-0 or
logic-1 as appropriate. The reason for this is because the smallest
cube in C1 is not redundant and has m literals. However,
assigning at most m-i variables is sufficient to turn on any prime
implicant cube in C2. Thus, the analysis of the complete set of all
variable assignments containing m-i or fewer variables in Bn is
sufficient to decide if function represented by C2 evaluates to
logic-1. However, to decide if function represented by C1
evaluates to logic-1, it is necessary to assign m variables in the
worst case, due to the irredundant prime implicant(s) with m
literals. Therefore, the functions given by covers C1 and C2 are
not the same logic function, leading to a contradiction of our
initial hypothesis that two distinct prime implicant covers of the
same function could have smallest cubes with different sizes.
QED.

Corollary: Theorem 1 is valid for two prime irredundant covers.
Non-prime covers may have smaller non-prime cubes with more
than m literals, where m is the size of the smallest cube in any
prime irredundant cover. However, no cover may have only cubes
greater (with a smaller number of literals) than the smallest cube
in any prime irredundant cover.

Theorem 2: Given a function f, it is not possible to have a cell
whose longest pull-up path has fewer switches than m, the number
of literals in the smallest cube of any prime irredundant cover C1
for the on-set of function f.

Proof (by contradiction): Recall that the smallest cube has the
greater number of literals (Definition 1). By theorem 1, all the
prime irredundant covers of function f will have at least one cube
with m literals, where m is the size of the smaller cube in any
prime cover of f. Non-prime covers of f may have smaller cubes
with more than m literals. However, covers where all the cubes
have less than m literals are not possible, due to theorem 1 and its
corollary. Consider a function f defined in Bn, such that a prime
irredundant cover C1 of f has m literals. Suppose now that
function f has a generic switch realization where the ith pull-up
path has size pi, such that pi < m. As described in detail through
example 1 of section 2, each of these pull-up paths would be
associated with an on-set implicant cube with pi literals. As a
consequence, every pull-up path with size pi < m will produce a
cube with pi literals where pi < m. The cover obtained from the
network this way will have only cubes with less than m literals, as
pi<m, for every path. According to theorem 1, this contradicts the
initial hypothesis that the smallest cube in the prime implicant
cover C1 has m literals, as all the cubes in the realization would
have a smaller number of literals pi < m and a greater size. QED.

Theorem 3: Given a function f, it is possible to produce a cell
where the longest pull-up path has m switches in series, where m
is the number of literals in the smallest cube in a prime
irredundant cover C1 for the on-set of function f.

Proof (by construction): It is possible to construct a pull-up
plane for function f given a prime irredundant cover Pi of the
function, where each cube Pi=∏ li is a product of literals
associated to the variables in the domain of the function. Every
prime cube Pi contributes to the pull-up plane with an independent
pull-up path. The paths for each cube Pi are independent as they
are parallel paths among each other. Each of the independent
paths is composed of serially connected switches between the
logic-1 reference (VDD) and the output of the cell. The path for a
given cube in the cover contains one serially connected switch for
each literal li in the cube, as described by example 1 in section 2.
As the smallest cube has the greater number of literals, it will
determine the size of the longest path. Thus this implementation
will have by construction the longest pull-up path with a size
correspondent to the number m of literals in the smallest cube, as
stated by the theorem. Furthermore, as the path for each cube is
independent, this solution has no sneak paths. QED.

Theorem 4: The exact lower bound in the number of serial
switches in the longest pull-up path of a logic function f is given
by m, the number of literals in the smallest cube in any prime
irredundant cover C1 for the on-set of function f.

Proof: Immediate corollary of Theorems 2 and 3, and univocally
defined as consequence of Theorem 1. QED.

Theorem 5: Given a function f, it is not possible to have a cell
whose longest pull-down path has fewer switches than m, the
number of literals in the smallest cube of any prime irredundant
cover C1 for the off-set of function f.

Proof: The proof is similar to that of Theorem 2.

Theorem 6: Given a function f, it is possible to produce a cell
where the longest pull-down path has m switches in series, where
m is the number of literals in the smallest cube in a prime
irredundant cover C1 for the off-set of function f.

Proof: The proof is similar to that of Theorem 3.

Theorem 7: The exact lower bound in the number of serial
switches in the longest pull-down path of a logic function f is
given by m, the number of literals in the smallest cube in any
prime irredundant cover C1 for the off-set of function f.

Proof: Immediate corollary of Theorems 5 and 6, and univocally
defined as consequence of Theorem 1.QED.

4. APPLICATIONS AND CONSEQUENCES
This section presents consequences of the lower bounds
introduced in previous section. For a better understanding of the
lower bounds, an illustrative example is presented.

Example 2: As an example, consider a function f given by
equation dcacbbaf ⋅⋅+⋅+⋅= . The minimum covers for the
on-set and the off-set of this function are:

dcacbbaseton ⋅⋅+⋅+⋅=− (3)

cbdbcabasetoff ⋅+⋅+⋅+⋅=− (4)

The smallest cube in the on-set is dca ⋅⋅ , so the lower bound for
the number of serial transistors in the pull-up network is three.
The cubes in the off-set are all the same size, and the lower bound
for the number of serial switches in the pull-down network is two.
This way the cell corresponding to the function f is a 3-2 cell,
when mapped with the constructive method proposed here.

Example 3: Recall the function in example 1, the carry-out of a
full adder. Prime irredundant covers for the on-set and off set are
given by the following equations.

cbcabaseton ⋅+⋅+⋅=− (5)

cbcabasetoff ⋅+⋅+⋅=− (6)

It is easy to see that the lower bounds for the carry-out in a full
adder are two switches for both the pull-up and pull-down planes.
This is consistent with the classic 2-2 cell for carry-out generation
presented in the cover of the Weste-Eshraghian book [13].

4.1 NCSP topology
We will refer to the constructive method presented in this paper as
Non-Complementary Series/Parallel (NCSP) topology. The
constructive method was detailed in the proof of theorem 3. As an
example, consider the resulting cell for the function f in example
2. The NCSP cell has the pull-up derived from the on-set equation
(hence the longest pull-up path has 3 switches) and the pull-down
derived from the off-set equation (thus the longest pull-down path
has 2 switches), as it may be observed in Fig. 3.a. As the on-set
and the off-set may be interchanged by inverting the function and
adding and inverter at the output, it is always possible to use the

smaller constraint in the pull-up network. This is desirable
because PMOS transistors are more resistive than NMOS ones.
The NCSP network considering the inverted version of function f
is shown in Fig. 3.b.

out

GND!

VDD!

b c

a a

a b

b c

a

c

d

d

b

c

b

out

GND!

_
a
_
b

_
a
_
c

_
b
_
d

_
b
_
c

_
a
_
b

_
b
_
c

_
c
_
d

_
a

VDD!

 (a) for direct f (b) for inverted f

Figure 3: NCSP cells respecting the lower bounds for function
f from example 2.

out

GND!

VDD!

a c

a b

b c

a b

b c

a

c

d

d
out

GND!

VDD!

b c

a a

a b

a c

d

b

c

b

b d

b c

 (a) from on-set equation (b) from off-set equation

Figure 4: CSP cells not respecting the lower bounds for
function f from example 2.

out

a
_
a

b
_
b

c
_
c_c

_
dd

b

_
b

c

Figure 5: PTL cell not respecting the lower bounds for
function f from example 2.

4.2 Comparison with a CSP topology
A Complementary Series/Parallel (CSP) [9-12] derived only
from the on-set equation would result in a 3-3 cell, as shown in
Fig. 4.a. Similarly, if a CSP [9-12] cell were derived exclusively
from the off-set equation, the result would be the 2-4 cell
illustrated in Fig. 4.b. Thus, the use of the lower bound will
produce a cell that has smaller pull-up and pull-down networks
than CSP [9-12]. Based on example 2 above, it is possible to see
that the NCSP topology we propose may be used to reduce the
length of pull-up and pull-down chains when implementing cell
level networks.

4.3 Comparing to PTL topology
The Pass Transistor Logic (PTL) [1-8] realization of the cell from
example 2 would be a 4-4 cell, independently of the BDD variable
order used to generate the PTL network [14]. One possible PTL
network is shown in Fig. 5. This way, the use of the lower bound
will produce a cell that has smaller pull-up and pull-down
networks than PTL [1-8]. Based on example 2, it is possible to see
that the NCSP we propose may be used to reduce the length of
pull-up and pull-down chains when implementing cell level
networks. Indeed, we found examples of circuits not respecting
the lower bound in [1-7].

4.4 Lower bound and general PTL styles
Notice that the lower bounds we defined here apply to general
PTL styles, due to our definition of pull-up and pull-down paths.
As a pitfall counterexample, consider a prime irredundant cover,
a⋅b. The theorem states that lower bound in the number of serial
switches is two, but one could argue that it is possible to
synthesize a PTL circuit with only one serial switch: an NMOS
transistor with gate input b and the drain terminals directly
connected to variable a. However, our definition of pull-up and
pull-down paths starts at a power supply node, VDD or GND.
Therefore, this counterexample is not valid, because variable a is
not a power supply node.

4.5 Evaluating the lower bound
At first, it may seem too time-intensive to calculate the lower
bound for candidate functions, as it is necessary to calculate two
prime irredundant SOPs. However, as we only evaluate the pull-
up and pull-down chain inside cells, the evaluation process is not
a critical step because it is easy to obtain prime irredundant SOPs
when the number of variables is small.

5. RESULTS
Experiments were run on a set of well-known benchmark circuits
available from many sources. Each circuit was preprocessed with
SIS [15] and mapped with 4-input Look-up Tables (LUTs). A
script for LUT based FPGAs suggested in the documentation of
SIS was used. As a result each circuit is composed by a set of sub-
functions having at most four inputs. From these preprocessed
networks, four different transistor networks were derived, as
described in the following. We have used SIS, but the lower
bound and the NCSP topology are compatible with the
decomposition methods presented in [1-6]. What is important in
the data presented is the relative performance among the four
topologies, as the gains we obtain are at the cell level, and they
are preserved independently of the specific decomposition method
used, when comparing NCSP to more common PTL [1-8] or CSP
[9-12] approaches.

CSP. Each logic function in the preprocessed circuit is mapped
into a transistor network as a single cell using the Complementary
Series/Parallel (CSP) topology [9-12]. Notice that this procedure
could generate some infeasible cells: an EXOR4 would have eight
transistors in series, for one of the cell planes. As a consequence,
single cells with more than four serial transistors in series are
decomposed into a set of cells with at most four transistors in
series, so that the mapping with 4-input LUTs may be translated
to a CSP circuit.

NPTL. Each logic sub-function in the preprocessed circuit is
mapped into a transistor network using the PTL topology [1-8]
composed only of NMOS transistors, as used in [1-6]. Notice that
all the cells are feasible, as they will have at most 4 transistors in
series. For instance, an EXOR4 would have four transistors in
series, the maximum height of a 4-variable BDD [14]. However,
some functions will be exceeding the lower bound. For instance a
NAND4 would have four serial transistors for charging and
discharging the output. We have used PTL networks derived from
BDDs, as most of the recent publications on PTL synthesis derive
PTL networks from BDDs [1-8].

CPTL. Each logic sub-function in the preprocessed circuit is
mapped into a transistor network using the PTL topology
composed of a pair of PMOS/NMOS transistors, as used in [7].
Notice that all the cells are feasible. For instance, an EXOR4
would have four transistors in series. However, some functions
will be exceeding the lower bound. For instance a NAND4 would
have four serial transistors for charging and discharging the
output.

NCSP. Each logic sub-function in the preprocessed circuit is
mapped into a transistor network using either the CSP or with the
non-complementary series/parallel (NCSP) topology proposed in
this paper to minimize the number of transistor in series. NCSP is
preferred; CSP will only be used when it respects the lower bound
and decreases the total transistor count (for area reasons). Notice
that with this configuration all the cells will respect the lower
bound. This is not achieved by using CSP or PTL alone, or even
by using a mix of both [16-20], as demonstrated for the cell in
example 2. Observe that NCSP uses disjoint pull-up (PMOS) and
pull-down (NMOS) planes, which further increases speed when
compared to NPTL.

The main goal of the theory exposed in this paper was to reduce
the number of switches in series in the pull-up and pull-down
networks. Table 2 illustrates the reduction in the sum of the pull-
up and pull-down chains. As expected, the pull-up and pull-down
chains obtained through NCSP are the shortest.

The number of transistors necessary to implement each circuit is
presented in Table 3 for mapping with 4-input LUTs. Notice that
this number of transistors is shown only for a relative area
comparison. The final number of transistors and the area depends
on the quality of the decomposition. Small differences between
CSP and NCSP in transistor count can be seen in Table 3. The
implementations using NPTL and CPTL will result in smaller
transistor counts, as they were obtained from optimized BDDs,
while CSP and NCSP were obtained from non-optimized SOPs.

Table 2: Sum of pull-up/pull-down switches in the critical
path: LUT4.

 CSP NPTL CPTL NCSP
Circuit PU PD PU PD PU PD PU PD
C432 28 60 68 68 68 68 28 60
C1355 20 33 28 28 28 28 20 26
C499 23 36 31 31 31 31 23 29
C1908 33 59 48 48 48 48 33 43
C880 27 44 48 48 48 48 27 36
C2670 31 48 56 56 56 56 30 46
C3540 45 72 67 67 67 67 44 64
C7552 29 39 36 36 36 36 29 31
C5315 28 49 45 45 45 45 28 42
C6288 96 127 119 119 119 119 96 102
Total 362 570 550 550 550 550 360 482

Table 3: # of transistors for benchmark mapping: LUT4.
Circuit CSP NPTL CPTL NCSP
C432 726 754 958 726
C1355 2910 1402 2031 2910
C499 2800 1370 1962 2800
C1908 2296 1452 1980 2298
C880 1814 1436 1891 1814
C2670 3414 2718 3465 3421
C3540 5218 5010 6610 5219
C7552 10384 7502 10125 10455
C5315 8284 7286 9444 8292
C6288 14912 8882 12478 15250
Total 52786 37846 50990 53213

Table 4: # Delay of the circuits simulated with SPICE: LUT4.
Circuit CSP NPTL CPTL NCSP
C432 5012ps 7746ps 7441ps 5012ps
C880 5289ps 6008ps 5448ps 4951ps
C2670 5269ps 6934ps 6310ps 4978ps
C3540 8513ps 9285ps 9149ps 8056ps
Total 25539ps 31713ps 29930ps 24453ps

Table 4 shows the delay of the circuits obtained through SPICE
simulations. The delay is in ps (picoseconds), for the TSMC
0.25µm technology. It is possible to see that the delays correlate
to the sum of the sizes of pull-up and pull-down networks in the
longest path. The results in Table 4 are even more attractive for
NCSP as it is composed of disjoint planes for pull-up and pull
down. Therefore PMOS may be used for pull-up and NMOS for
pull-down, and NCSP will be less susceptible to noise margin
problems. This represents a significant reliability advantage for
NCSP.

6. CONCLUDING REMARKS
The approach recently presented in [21] to increase circuit
performance shows examples that use complex cells with reduced
pull-up and pull-down paths, but these parameters (minimum pull-
up and pull-down chains) are not explicitly cited in the text. The
approach in [21] clearly states that the cell transistor network
generation is an important point in their performance oriented
design flow. However, they make no explicit mention to the pull-
up and pull-down length of the cells as important parameters. We
believe this work to be the first to explicitly and unequivocally
point out the importance of these parameters.

The use independently optimized logic for pull-up and pull-down
planes was also used in [22]. However, the goal in that work was
to produce hazard-free complex gates and the length of pull-up
and pull-down chains was not discussed as a design parameter. It
is important to notice that the work in [22] does not point to older
references that use independently optimized logic for pull-up and
pull-down planes.

We have derived an exact lower bound for the number of switches
needed to implement a logic function at the switch level. We have
shown that the most used transistor topologies, pass transistor
logic (PTL) [1-8] and complementary series/parallel (CSP) [9-12]
will not respect the presented lower bound for some logic
functions. This was demonstrated through the sum of the lengths
of pull-up and pull-down longest chains for each cell in the
critical path for circuits mapped with 3-input and 4-input logic
functions. The impact of this overhead in the number of serial
transistors in the delay of mapped circuits was evaluated through
SPICE simulations, and compared to the delay of NCSP networks
proposed here. The reduction of the length of pull-up and pull-
down translates into better timing for the NCSP approach. We
believe that the lower bounds presented here will have a
significant impact in the design of high performance integrated
circuits using methods like [1, 21], through the guidance for the
choice of better cell topologies. Note that the NCSP topology and
the lower bounds proposed here are valid and useful
independently of the decomposition used [1-6], and could
possibly increase the speed of many circuits by simply
exchanging the switch level cell networks in the critical paths with
optimized versions. We are currently working on methods for
automatic synthesis of area efficient switch networks that respect
the lower bound.

7. ACKNOWLEDGEMENTS
This work was partially supported by CAPES Brazilian funding
agency.

8. REFERENCES

[1] R.S. Shelar and S. Sapatnekar. Recursive bipartitioning of
BDDs for performance driven synthesis of pass transistor
logic circuits. ICCAD 2001. Pages: 449 – 452.

[2] P. Buch, A. Narayan, A.R. Newton and A. Sangiovanni-
Vincentelli. Logic synthesis for large pass transistor circuits.
ICCAD 1997. Pages: 663 – 670.

[3] C. Scholl and B. Becker. On the generation of multiplexer
circuits for pass transistor logic. DATE 2000. Pages: 372 –
378.

[4] P. Lindgren, M. Kerttu, M. Thornton and R. Drechsler. Low
power optimization technique for BDD mapped circuits.
ASP-DAC 2001. Pages: 615 – 621.

[5] R.S. Shelar and S.S. Sapatnekar. An efficient algorithm for
low power pass transistor logic synthesis. ASP-DAC 2002.
Pages: 87 – 92.

[6] S-F. Hsiao, J-S. Yeh and D-Y. Chen. High-performance
multiplexer-based logic synthesis using pass-transistor logic.
ISCAS 2000. Pages: 325-328, Vol.2.

[7] M. Avci and T. Yildirim. General design method for
complementary pass transistor logic circuits. Electronics
Letters, Vol.: 39, Number: 1, 9 Jan. 2003. Pages: 46 – 48.

[8] H. Zhou and A. Aziz. Buffer minimization in pass transistor
logic. IEEE Transactions on CAD, Volume: 20, Number: 5,
May 2001. Pages: 693 – 697.

[9] M.R.C.M. Berkelaar and J.A.G. Jess. Technology mapping
for standard-cell generators. ICCAD-1988, Pages: 470 – 473.

[10] A.I. Reis, M. Robert, D. Auvergne and R. Reis. Associating
CMOS transistors with BDD arcs for technology mapping.
Electronics Letters, v. 31, n. 14, p. 1118-1120, 1995.

[11] A. I. Reis, R. Reis, D. Auvergne and M. Robert. Library free
technology mapping. In: Reis, R.; Claesen, L. (Org.). VLSI:
Integrated Circuits on Silicon. London, 1997, p. 303-314.

[12] S. Gavrilov, A. Glebov, S. Pullela, S.C. Moore, A.
Dharchoudhury, R. Panda, G. Vijayan and D.T. Blaauw.
Library-less synthesis for static CMOS combinational logic
circuits. ICCAD 1997. Pages: 658 – 662.

[13] N. H. E. Weste and K. Eshraghian, Principles of CMOS
VLSI Design: A Systems Perspective, Addison Wesley,
Boston, MA, USA, 1999.

[14] S. Nagayama and T. Sasao, On the minimization of longest
path length for decision diagrams, IWLS04, Pages: 28-35.

[15] E.M. Sentovich et al. SIS: A System for Sequential Circuit
Synthesis. University of California at Berkeley,
Memorandum No. UCB/ERL M92/41, May 1992.

[16] S. Yamashita, K. Yano, Y. Sasaki, Y. Akita, H. Chikata, K.
Rikino and K. Seki. Pass-transistor/CMOS collaborated
logic: the best of both worlds. Symposium on VLSI Circuits,
1997. Pages: 31 – 32.

[17] Y.Jiang, S. Sapatnekar and C. Bamji. Technology mapping
for high-performance static CMOS and pass transistor logic
designs. IEEE Transactions on VLSI, Volume: 9, Number: 5,
Oct. 2001. Pages: 577 – 589.

[18] G.R. Cho and T. Chen. Mixed. PTL/static logic synthesis
using genetic algorithms for low-power applications. ISQED
2002. Pp: 458 – 463.

[19] G. R.Cho and T. Chen. Synthesis of single/dual-rail mixed
PTL/static logic for low-power applications. IEEE
Transactions on CAD, Volume: 23, Number: 2, Feb. 2004.
Pages: 229–242.

[20] K. Yip and D. Al-Khalili. Multilevel logic synthesis using
hybrid pass logic and CMOS topologies. IEE Proceedings,
Circuits, Devices and Systems. Volume: 150, Number: 5,
Oct. 2003. Pages: 445-452.

[21] R.Roy, D.Bhattacharya and V.Boppana. Transistor-level
optimization of digital designs with flex cells. IEEE
Computer, Feb. 05, pp. 53-61.

[22] P.Kudva, G.Gopalakrishnan, H.Jacobson and S.M.Nowick.
Synthesis of hazard-free customized CMOS complex-gate
networks under multiple-input changes. DAC 1996. Pages:
77 – 82.

