STEINER TREE OPTIMIZATION FOR BUFFERS, BLOCKAGES, AND BAYS

Charles J. Alpert*, Gopal Gandham®, Jiang Hu¥, Jose L. Neves'
Stephen T. Quay’ and Sachin S. Sapatnekar?

*IBM Austin Research Lab, fIBM Microelectronics, 1Depalrtment of ECE, University of Minnesota

ABSTRACT

Buffer insertion is essential for achieving timing closure.
This work studies buffer insertion under two types of con-
straints: (i) avoiding blockages, and (ii) inserting buffers
into pre-determined buffer bay regions. We propose a gen-
eral Steiner tree routing problem to drive this application
and present a maze-routing based heuristic. We show that
this approach leads to useful solutions on industry designs.

1. INTRODUCTION

Buffer insertion has become a critical step in modern VLSI
design methodologies (see [2] for a survey). Several works
have studied the delay driven-buffer insertion problem. Van
Ginneken’s algorithm [11] has become a classic in the field.
His dynamic programming algorithm finds the optimal
buffer placement under the Elmore delay model. Several ex-
tensions to this work have been proposed (e.g., [1] [6] [7] [9]).
Most works assume that a Steiner tree is given and that
buffers must be placed along the Steiner wires. The works
of [7] [9] also perform routing of the tree during buffer in-
sertion but do not consider blockages.

When attempting to insert buffers into a floorplanned
design, buffers may not be placed on top of pre-existing
macros; these regions are called blockages. If the Steiner
tree completely spans blockages, then any buffer insertion
algorithm which uses the routing topology will fail to find
a solution. Figure 1(a) shows an example 2-pin net whose
route runs over a large blockage, thereby making buffer in-
sertion infeasible. If one re-routes the tree as in Figure
1(b), then buffers can be inserted, albeit for an additional
wire length cost. Here, the Steiner tree serves as a guide
for buffer insertion, but does not necessarily represent the
final route. Figure 1(c) shows how the global router may re-
route the newly created nets while considering delay, noise,
congestion, etc. This helps ensure that regions of the chip
without blockages do not become unnecessarily congested
with interconnect.

. [, .

€) (b ©

Figure 1: Rerouting example.

Figure 2 illustrates an example where the best Steiner
tree construction avoids some, but not all, of the blockages.
In (a), the existing route is completely blocked for buffering,
while in (b), the re-routed tree avoids all blockage, allowing
buffers to be inserted. However, the most efficient solution
is shown in (c) which avoids only some of the blockage. The
problem of buffer insertion in the presence of blockage con-
straints has been addressed in [5] and [12]. The approach
of [12] also allows routing over some blockages while avoid-

A
(a (b) (©

Figure 2: Avoiding some blockage yields the best solu-
tion.

ing others. However, the algorithm is only applicable to
two-pin nets.

In some design methodologies, it may be suitable to
pre-allocate space for buffers during floorplanning, rather
than trying to squeeze buffers between large blocks during
physical design, which can cause both logical and wiring
congestion. We call these pre-allocated regions buffer bays.
In this scenario, the entire layout area is viewed as blockage
except for the buffer bays. Figure 3(a) shows an example
of a two-pin net that does not cross any buffer bays and
is thus totally blocked from buffer insertion. By re-routing
the tree through a buffer bay (b), buffers can be suitably

inserted (c).

e——— kT

@ (b) ©

Figure 3: A blocked tree (a) can be re-routed through a
buffer bay (b) which enables buffer insertion (c).

We propose a general Steiner tree problem formulation
for buffer insertion with either blockage or buffer bay con-
straints and present a new Steiner tree optimization for this
problem. The algorithm iteratively rips up a sub-path of an
existing Steiner tree and uses maze routing to re-connect
the two remaining sub-trees. In contrast to [5] [9] [12],
which simultaneously insert buffers during routing, we first
construct the Steiner tree, then inserts buffers. The simul-
taneous approach is arguably superior considering that one
cannot design the best tree until buffer locations are known.
However, the simultaneous operations of tree construction
and buffer insertion necessitate that the buffering compo-
nent be somewhat simplistic. Indeed, no efficient and ef-
fective simultaneous heuristic for multi-sink nets has ever
been proposed in the literature.

2. PROBLEM FORMULATION

Given a unique source so and a set of sinks S/, a rectilinear
Steiner tree (RST) T(V,E) is a spanning tree in the recti-
linear plane that connects every node in V ={so}USTUW,
where W is a set of additional nodes. W typically includes
two types of nodes: (i) internal Steiner nodes of degree
three or four, denoted by the set IN, and (ii) corner nodes
of degree two that connect a horizontal and vertical edge,
denoted by the set CO. We add a third node type to
W: a boundary node (belonging to the set BY') has de-
éree two, an incident edge lying over blockage, and an inci-

ent lying in a blockage-free region. For example, the RST
in Figure 4 shows a Steiner tree with source so = s and
sinks ST ={d,i,k}. All other nodes are in W with b € IN,
g,7 € CO, and a,c,e, f,he BY.

k
i

Figure 4: A Steiner tree illustrating different node types.

Definition: A 2-path of a tree T(V, E) is a path p(u,v) =
{(u,v1),(v1,v2),...,(vm,v)} € T such that {vy,...,vm} C
BY UCO and u,v € {so}USTUIN.

Every tree T' can be uniquely decomposed into a set of 2-
paths, e.g., the tree in Figure 4 can be decomposed into
four 2-paths: p(s,b),p(b,d),p(b,1) and p(i,k).

A rectangle r has a unique bounding box (z1,y1), (z2,y2),
where z1 < z5 and y; <y2. Given a set of rectangles B (i.e.,
the blockage map), an edge e € E is inside B (denoted by
e € B) if there exists a rectangle r € B such that both end-
points of e lie inside the bounding box of r. Let lc denote
the length of edge e.

Problem Formulation: Given a parameter «, a source so,
a set of sinks SI, and a set of rectangular blockages B,
construct a Steiner tree T(V,E) with {so}USI CV that

minimizes

cost(T(V,E)) = leta I (1)
eeF eEB

The parameter o represents the degree of the penalty
for routing over blockage. This problem 1s NP-Complete by
reduction to the Rectilinear Minimal Steiner tree problem
(when o = 0). Observe cost(T(V,E)) can be expressed as
the sum of the costs of all 2-paths in T', where the cost of a

2-path is given by:
cost(p(u,v)) = Z le +a E le (2)
e€BNp(u,v)

e€p(u,v)

For example, if o =1, then edges that intersect blockage
have twice the cost of the other edges. Recall the re-route
in Figure 1. If the wire length more than doubles when
changing the route from (a) to (b), then (a) is the lower
cost solution. The appropriate value for o depends on the
technology, though empirically a value of one seems to work
well. An advantage of this cost function is that it can be
used to handle both buffer bays and blockages. If B repre-
sents a set of buffer bays, then routing over rectangles in B
should actually reduce the cost function. Using a between

—1 and 0 achieves this effect, e.g., if @ = —%, then the cost

of routing outside a buffer bay is twice that of routing inside
a buffer bay.

3. THE EXTENDED HANAN GRAPH (EHG)

Our Steiner tree heuristic is based on maze routing, which
has a fundamental concept of a grid graph, G(Vg, Eg).
A grid graph can be viewed as a tessellation of rect-
angular tiles with Vi being the set of tile centers and
F¢ being edges that connect tile centers. A grid graph
can be uniquely induced by the sets X = {z1,...,zn

and Y = {y1,...,ym} of sorted non-duplicate coordi-
nates. The induced grid graph G(Vg,Eg) from X
and Y has vertices Vg = {(z,y) | z € X,y € Y}, and
edges Eg = {((z4,9),(zi31,v)) | 1 <1< |X[,ye Y}U
{((z,y5), (z,y541)) | 1 <i<|Y],z € X}. We do not use
a uniform grid graph since sink and blockage distributions
are non-uniform. Our grid graph allows high density chan-
nels in difficult routing areas and low density channels else-
where. Assume that some low-cost RC tree 7' has already
been computed over {so}USI. Our grid graph is a superset
of the Hanan grid [3] for 7. The algorithm is shown below.

Procedure Grid_graph(T, B)
Input: Steiner tree T(V, E), set of rectangles B
Output: Grid graph G(Vg, Eg)
1. Set X =0,Y =0.
2. For each v € V with coordinates (z,y),
X+zUX, Y+ yUuvY.
3. For each r € B with bounding box (z1,y1),(%2,y2)
If r is a blockage
X (1 -M)U(z2+M)UX,
Y (yp—MU(y2+M)uY.
If r is a buffer bay
X (@ +MU(za—M)UX,
Y (p1+M)U(y2—M)UY.
Sort the coordinates in X and Y
5. Generate induced grid graph G(Vg, Eg) from X,Y.
Ve € Eg, compute value of blocked(e).

=

o

Step 1 initializes sets X and Y to be empty, and Step 2
adds the coordinates of each tree node into X and Y. Step
3 adds the coordinates of the blockages (where M is the
minimum separation between a buffer and a blockage), and
Steps 4-5 construct the grid graph induced by X and Y.
Finally, Step 6 sets the attribute blocked(e) for each edge e
in G. If e overlaps with a blockage in B or does not overlap
with a buffer bay in B, then the attribute is set to true;
otherwise, it is set to false.

4. ALGORITHM DESCRIPTION

Our algorithm first decomposes the existing Steiner tree
into disjoint 2-paths and computes each 2-path cost. It then
iteratively chooses a poorly routed 2-path, removes it, and
re-routes it. The 2-path with the highest cost is not neces-
sarily the most poorly routed path, as the highest cost path
could simply be a very long path. We identify poorly routed
2-paths with the highest value of cost(p(u, U:):)/lp(uyv). Such

a 2-path has the highest ratio of wire length routed over
blockage to total wire length which implies room for im-
provement.

A complete description of the algorithm is shown be-
low. Step 1 computes the underlying grid graph for T" and
B. Step 2 finds the set of all 2-paths, and Steps 3 and 4 it-
erate through these 2-paths, each time picking the one with
the highest overlap cost. The selected 2-path is removed
in step 5, which induces two subtrees Ts and T;. Step 6
performs the maze routing which returns a minimum cost
2-path between Ts and Ty, and Step 7 re-connects the tree
using this 2-path. We now explain the maze routing per-
formed in Step 6.

Steiner_Tree Algorithm (T, B)

Input: T(V,E), a Steiner routing tree
B, rectangles representing blockages or bays
Output: Re-routed Steiner tree T

1. G(Vg, Eg) = Grid_graph(T, B).
2. Compute the set P of disjoint 2-paths in 7.
Compute cost of each 2-path in P from Equation (2).
3. While P#£0
Choose p(u,v) € P with max cost(p(u,v))/lp(u’u).

=

5. Remove p(u,v) from T" and P to get two sub-trees.
Label sub-tree containing so as T5; the other is 7.
Find 2-path p(q,w) = Maze_Routing(G,Ts,Tt).

7. Add the edges in the 2-path p(q,w) to T.

o

The path re-connecting two subtrees is found via maze
routing [8]. Each grid edge is assigned a cost, e.g., edge
length for unblocked and infinity for blocked edges. The
source node is initially assigned zero cost, and then wave
expansion proceeds out from the source, labeling all inter-
mediate nodes until the target node is reached. The grid
node labels reflect the routing cost from the source. For
a linear cost function, maze routing guarantees the least
cost path for connecting two points. The primary variation
of our algorithm is we wish to find the lowest cost path
between subtrees as opposed to unique points. This is ac-
complished by labeling all nodes in the source tree with
zero cost and stopping when any node in the target tree is
reached. The procedure is shown below.

Maze_Routing(G, Ty, T;) Algorithm
Input: Underlying grid graph G(Vg, Eg).
Disjoint RSTs T and T; embedded in G.
Output: 2-path p(q,w) with ¢ € Ts,w € Ty
1. Vv € Vg, set
label(v) = oo, visited(v) = false, parent(v) =0
2. For each node v € T
Set label(v) =0 and set @ = QU {v}.
While Q # 0
Let v € Q with minimum label(v).
Delete v from Q. Set visited(v) = true.
5. For each u, such that (u,v) € Eg, u # parent(v)
newLbl = label(v) + 1y v)-
If blocked(u,v) then newLbl = newLbl+al(y)

=W

6. If newLbl < label(u) then

label(u) = newLbl, parent(u) = v.
7. 1If visited(u) = false and u ¢ T}, insert u into Q.
8. Find node w € T} such that label(w) is minimum.
9. Find path p(g,w) from w to ¢ € Ts by tracing back

parent. Return p(q, w).

Step 1 initializes three arrays, label, visited, and parent
for each node in the grid graph. The label(v) value is the
cost of the best path from a node in T to v, the visited(v)
value indicates whether v has been explored, and parent(v)
is stores the best path to v. Step 2 initializes the labels of
all nodes in T to zero and puts them into a priority queue
Q. Steps 3-7 search the grid graph by iteratively deleting
the node v with smallest label from @ and exploring that
node. Each neighbor node u of v is explored in Steps 5-
6, and the label for u is updated according to length of
edge (u,v) and whether edge (u,v) is blocked. If the new
label, corresponding to a path to u through v, is less than
the previous label, the label is updated and v becomes the
parent for u. Steps 8-9 find the node with the smallest label
in the target tree, and uncover the path back to the source

tree by following the parent structure.
The time complexity of Maze_Routing is O((|V|+

|B|)?log(|V| + |B|)) since the size of the grid graph is
O((IV]| +|B|)?). The number of times this procedure is
called is bounded by O(|V|), which means the complexity

for the entire algorithm is O(|V|(|V|+|B|)?log(|V|+|B|)).

5. IMPROVING EFFICIENCY

The high time complexity makes speedups a necessity. We
have implemented two techniques, a sparsified grid graph
construction and branch-and-bound maze routing, that to-
gether improve runtimes by more than a factor of ten.

When |B| is large, EHG may be dense. Several edges
can be extremely close together, and a routing tree algo-
rithm could choose any of these edges and result in es-
sentially the same tree. Our first sparsification technique
searches for pairs of redundant tracks that are closer than a
given step size, such as 0.1 mm, and removes one of them.
Our second technique severs some tracks which span the
entire grid graph. If a grid edge is caused by a blockage in
the lower left, it likely does not need a corresponding track
in the lower right part of the design. So the track is cut
short to avoid spanning the entire grid.

Since maze routing cannot distinguish between good
and bad global directions, branch-and-bound techniques are
required for efficient implementation. Recall Steps 3-7 of
Steiner_Tree Algorithm which iteratively delete and then
reconstruct 2-paths. The 2-path p(u,v) removed in Step 5
has cost(p(u,v)) which is also an upper bound for the cost of
the new 2-path.. Let upCost denote this value. After Step
4 of the maze routing procedure, one can compare label(v)
to upCost to determine if node v is worth expanding. If
label(v) > upCost then the cost of the path from T to v is
already higher than the cost of the original 2-path, which
makes it wasteful to expand v. Whenever a node v € T} is
reached, the value for upCost can be replaced by label(v) if
this value is less than upCost.

The bound can be made even tighter by using a lower
bound on the cost of the remaining routing to be done from
v to T;. Let dist(v,T;) be the Manhattan distance from

v to the bounding box of T; (which can be computed in

constant time:).1 Now the test becomes whether label(v)+
dist(v,T;) > upCost holds. If so, node v is not worth further

exploration and and Step 7 of the maze routing procedure
is skipped.

6. EXPERIMENTS

We performed experiments on two designs. Test1 is a small
hand crafted test case [10] and Test2 is a large macro block.
The comparisons that follow are made between two algo-
rithms, SMT, a Steiner minimal tree algorithm that is used
for net analysis within an industrial physical design tool
suite, and BBB, our proposed algorithm.

Note that works which perform simultaneous buffer in-
sertion and routing tree construction such as [7] [9] are in-
appropriate since they do not consider blockages. The work
of [12] attacks the right problem space, but cannot be ap-
plied to multi-pin nets. Run times are reported in seconds
for an IBM RS6000/595 processor with 512MB of RAM.

We first measure the additional wire length caused by
BBB compared to SMT. Since BBB is aware of blockage
constraints while SMT is not, BBB should naturally in-
crease total wire length, while decreasing wire length over-
lapping blockages. Tables 1 and 2 present these results for
Test1 and Test2, respectively.

For Testl, SMT and BBB were on 23 nets with 7 ran-
dom blockages inserted and on 30 other nets with 7 random

Tf « < 0, then (1 4+ a)dist(v,T}) is the lower bound.

[Avg. wire length [Avg. in-bloc. length |

‘ mode | #net | SMT [BBB [%imp | SMT [BBB [%imp |
[blck | 23 | 213 [217 | -18 [159 | 58 | 635 |
[(Days | 30 | 237 | 222 | 22 | 223 | 104 | 52.7 |

Table 1: Routing costs of SMT versus BBB for Test1.

buffer bays inserted. Table 1 presents the averaged results.
The average wire length increases by only 1.8% for block-
ages and 2.2% for buffer bays which indicates that BBB is
virtually as effective as SMT obtaining low wire lengths.
However, the total wire length in blocked regions was re-
duced by 63.5% for blockages and 52.7% for buffer bays by
BBB. The average CPU time to run BBB on a net was less
than 0.2 seconds for both blockages and bays.

net | Wire length [Blocked wire length]
(#pin) [SMT [BBB | impr. | SMT [BBB [impr. | cpu
1(2) 10.7 12.2 -13.9% 9.3 2.0 78.6% 0.5
2 (2) 9.0 9.0 0.0% 5.2 0.4 92.9% 0.8
3(9) 14.6 15.1 -3.8% 12.7 4.9 61.4% 1.3
4(9) 14.6 15.2 -4.6% 12.8 7.1 44.4% 1.3
5 (9) 18.4 18.7 -1.7% 18.2 14.0 23.2% 2.2
6 (11) 17.1 17.6 -2.8% 17.1 2.6 84.9% 2.7
7 (17) 241 24.1 -0.1% 22.4 21.9 2.3% 5.8
8 (19) 19.7 20.7 -5.0% 19.7 16.6 16.0% 5.2
9 (19) 20.2 20.8 -3.2% 20.2 17.7 12.3% 5.6
10 (25) 22.2 22.3 -0.3% 22.0 20.9 4.9% 4.7
11 (25) 22.6 22.7 -0.4% 22.4 21.3 4.9% 4.8
12 (25) 23.6 24.1 -2.1% 23.5 14.6 37.8% 5.9
13 (29) 23.3 23.9 -2.8% 15.7 10.9 30.3% 5.4
14 (29) 24.9 25.1 -0.6% 18.4 14.2 22.6% 4.9
15 (29) 30.5 31.4 -3.0% 23.3 11.2 51.8% 9.8
16 (29) 29.0 30.4 -5.0% 19.9 8.6 56.7% 14.0
[Ave [203 [908 [25% | 17.7 [118 | 333% | 47

Table 2: Routing costs of SMT versus BBB for Test2.

For Test2, we examined 16 timing critical nets that
had differentiating characteristics (number of pins, pin lo-
cations, wire length topology, etc.) and ran both algorithms
with the 54 blockages that were present in the design. Ta-
ble 2 presents the results. Observe that BBB results in an
average of 2.5% higher than SMT while reducing blocked
wire length by 33.3%.

To assess the utility of BBB versus SMT trees, buffer
insertion must be performed after routing. The next set of
experiments were performed on a net by net basis with the
following methodology: (i) compute the SMT tree for the
net, (i) compute the delays to each sink, then compute the
slack to the most critical sink based on the RATs supplied
by the static timing analyzer, (iii) run BBB re-routing, (iv)
perform buffer insertion, and (v) re-compute the slack to
the most critical sink. Let Aslack denote the difference be-
tween this slack and the slack computed in Step 2. Skipping
(iii) yields buffer insertion with the SMT algorithm while
including (iii) yields results for the BBB algorithm.

Average results for Test1 are presented in Table 3 with
Aslack values presented in ps. Observe that BBB utilizes
more buffers than SMT (2.9 versus 2.2 for blockage and
2.3 versus 1.9 for bays) since BBB offers more potential
locations for buffers. BBB trees also reduced slack by an
additional 337 (768) ps over SMT trees for blockage (bay)
mode.

Table 4 presents the same experiments for the 16 Test2
nets. Overall, SMT trees resulted in an average slack im-
provement of 519.4 ps as compared to 694.6 ps for BBB. The
runtimes reported are for the combination of BBB plus the
buffer insertion step. By comparing these runtimes to those
reported for BBB alone in Table 2, we see that the runtimes
of BBB do not dominate the buffer insertion runtimes.

[SMT + BI (Ave) | __BBB ¥ Bl (Ave) |

‘ mode

#net | Aslack [#buf | Aslack | #buf [CPU |
[blockage [23 [2064 | 2.2 [2401 [29 [40 |
[bays [30 | 2494 | 1.9 [3262 | 23 | 43 |

Table 3: Average slack improvements for Test1.

[net (#pin) | SMT Aslack | BBB Aslack [#buf [CPU(s) |
1 (2) 1032 1118 2 1.2
2 (2) 1034 1036 1 1.2
3(9) 109 239 2 71
Z(9) 109 236 2 2.2
5 (9) 190 152 1 2.9
5 (11) 7 71 T 70
7(17) 350 1181 2 78
3 (19) 578 1089 2 73
9 (19) 605 330 2 78
10 (25) 277 299 2 76
11 (25) 295 323 2 7.4
12 (25) 205 228 2 9.0
13 (29) 223 308 5 24.4
14 (29) 371 375 4 25.2
15 (29) 1049 1605 7 35.3
16 (29) 1376 1674 5 36.6
| Ave | 5194 | 6946 | 26 [114 |

Table 4: Slack improvement for Test2.

We proposed a new Steiner tree heuristic for making
nets more amenable to buffer insertion in the presence of
blockages Experimental results show that our method achieves
the objective of avoiding buffer blockages (or seeking buffer
bays) and can provide significant improvements in terms of
delay when used in conjunction with an industrial buffer
insertion tool.

7. REFERENCES
[1] C. J. Alpert, A. Devgan and S. T. Quay, “Buffer Insertion

with Accurate Gate and Interconnect Delay Computation,”
ACM/IEEE DAC, pp. 479-484, 1999.

[2] J. Cong, L. He, C.-K. Koh, and P. H. Madden, “Perfor-
mance Optimization of VLSI Interconnect Layout,” Inte-
gration: the VLSI Journal, vol. 21, pp. 1-94, 1996.

[3] M. Hanan, “On Steiner’s Problem with Rectilinear Dis-
tance,” STAM J. Appl. Math., 14(2), pp. 255-265, 1966.

[4] D. W. Hightower, “A Solution to Line Routing Problems on
the Continuous Plane,” in Sixth Design Automation Work-
shop, pp. 1-24, 1969

[5] J. Hu and S. S. Sapatnekar, “Simultaneous Buffer Insertion
and Non-Hanan Optimization for VLSI Interconnect under
a Higher Order AWE Model,” Intl. Symp. Physical Design,
pp. 133-138, 1999.

[6] J. Lillis, C.-K. Cheng and T.-T. Y. Lin, “Optimal Wire
Sizing and Buffer Insertion for Low Power and a generalized
Delay Model,” IEEE J. Solid-State Circuits, 31(3), pp. 437-
447, 1996.

[7] J. Lillis, C.-K. Cheng, and T.-T. Y. Lin, “Simultaneous
Routing and Buffer Insertion for High Performance Inter-
connect,” Great Lakes Symp. VLSI, pp. 148-153, 1996.

[8] C. Y. Lee, “An algorithm for Path Connection and its
Applications,” IRE Transactions on Electronic Computers,
vol. EC-10, no. 3, pp. 346-365, 1961.

[9] T. Okamoto and J. Cong, “Buffered Steiner Tree Construc-
tion with Wire sizing for Interconnect Layout Optimiza-
tion,” TEEE/ACM ICCAD , pp. 44-49, 1996.

[10] W. Thirtle, personal communication, 1997.

] L. P. P. P. van Ginneken, “Buffer Placement in Distributed
RC-tree Networks for Minimal Elmore Delay,” IEEE IS-
CAS, pp. 865-868, 1990.

[12] H. Zhou, D. F. Wong, I-M. Liu and A. Aziz, “Simultaneous
Routing and Buffer Insertion with Restrictions on Buffer

Locations,” ACM/TEEE DAC, pp. 96-99, 1999.

