
E�cient Calculation of All-Pairs Input-to-Output Delays

in Synchronous Sequential Circuits

Sachin S. Sapatnekar

Department of Electrical and Computer Engineering

201 Coover Hall, Iowa State University,

Ames, IA 50011, USA.

Abstract

In this paper, we consider the problem of �nding all-pairs
input-to-output delays for combinational circuits. This
method is of practical utility in several design situations
and CAD algorithms, for example in [1, 2]. An algorithm
for solving this problem was proposed in [1]; however, this
can be computationally expensive. We take advantage of
some properties of large realistic circuits to present an al-
gorithm that is two orders of magnitude faster than the
method in [1] for large circuits. Experimental results on
ISCAS benchmark circuits prove the e�cacy of this ap-
proach.

I. Introduction

Particularly in the design of high-speed circuits that push
the limits of technology, the importance of obtaining the
circuit timing information cannot be understated. Vari-
ous methods for estimating the timing behavior of digital
VLSI circuits have been proposed in the literature. Most
fast timing estimation methods proceed by calculating the
delay of each gate individually and then using a traversal
technique to propagate the delays through the circuit. In
considering circuit delays, one is primarily concerned with
combinational blocks; a typical objective, for example, is
to ensure that all combinational blocks in a sequential cir-
cuit have delays that satisfy the clock period.
Any combinational circuit can be conceived as being

composed of a set of gates that lie between a set of input
ip-ops or primary inputs and a set of output ip-ops
or primary outputs. This work deals with the e�cient cal-
culation of all pairwise input-to-output delays in a com-
binational circuit, and presents an e�cient algorithm for
the purpose.
The motivation for the work is as follows. While in

some timing analysis situations, it is adequate to identify
the single worst-case input-output path and its delay, in
many cases, it is also required that one �nd the worst-case
delay from every single input of a combinational circuit
to every single output. We refer to this as the all-pairs
input-output delay calculation problem. An example of
such a situation arises in [1], where clock skew optimiza-
tion is used as a means of improving the timing behaviour
of a sequential circuit. In this situation, it is required
that the all-pairs input-output delay calculation problem
be solved for every combinational block of the sequential
circuit. Another example where this procedure is used in
an algorithm for retiming sequential circuits is described
in [2].
A simple algorithm for solving the all-pairs delay calcu-

lation problem has been proposed in [1]. In the absence
of a careful implementation, we show that it is compu-
tationally expensive, and that we may take advantage of
the structure of real circuits to make the procedure much
more e�cient.
The paper is organized as follows. In Section II, the

PERT method for critical path identi�cation, which forms
the basis for the algorithms described in this paper is de-
scribed. Section III outlines the adaptation of this method
in [1], and illustrates our method that performs the all-
pairs delay computations e�ciently. Experimental results
are presented in Section IV, followed by concluding re-
marks in Section V.

II. Finding the Critical Path in a Circuit

The Program Evaluation and Review Technique (PERT)
was �rst proposed for use in timing analysis in [3], and
dates back to a classical technique used in management
science. This method forms the heart of many static tim-
ing analysis algorithms. Although in many timing analysis
contexts, as pointed out in [4], the procedure that is re-
ferred to as PERT is actually an execution of the critical
path method (CPM) in management science, we will per-
sist in referring to this method as PERT for consistency
with the literature. PERT may be used to �nd the worst-
case path to each output of a combinational block from
any input (note that this di�ers from the all-pairs prob-
lem that we tackle, where one is required to �nd the delay
from each input to each output).
The procedure is best illustrated by means of a simple

example in which the worst-case (longest path) delay to
each output (from any input) is calculated. Consider the
circuit in Figure 1. Each box represents a gate, and the
number within the box represents the delay associated
with it. We assume that the worst-case arrival time for a
transition at any input, i.e., at the inputs to boxes A, B,
C, and D, is 0.
A component is said to be ready for processing when

the signal arrival time information is available for all of
its inputs. Initially, since signal arrival times are known
only at the primary inputs, only those components that
are fed solely by primary inputs are ready for process-
ing. In the example, these components would be A, B, C,
and D. These are placed in a queue and are scheduled for
processing.
In the iterative process, the component at the head of

the queue is scheduled for processing. Each processing
step consists of

(a) �nding the latest arriving input to the component,



1

3

1

2

1

2

1 3

A

B

C

D

E

F

G

H

1

3

1

2

4

5

6

9

Figure 1: The PERT technique.

which triggers the output transition,

(b) adding the delay of the component to the latest ar-
riving input time to obtain the worst-case transition
time at the output, and

(c) checking all of the components that the current com-
ponent fans out to, to �nd out whether they are
ready for processing. If so, the component is added
to the tail of the queue.

The iterations end when the queue is empty.
In the example, the algorithm is executed as follows:

(1) In the initial step, A, B, C, and D are placed in the
queue.
(2) A is scheduled. The latest input transition for A is 0,
the delay of A is 1; hence, the latest output transition for
A is at time (0+1) = 1. No additional elements can be
added to the queue.
(3) B is scheduled. The latest output transition is found
to be at time (0+3) = 3. No additional elements can be
placed in the queue.
(4) C is scheduled, and the worst-case output transition
occurs at time (0+1) = 1. At this point, all input infor-
mation for component E is available, and it is placed at
the tail of the queue.
(5) D is scheduled; the output transition time is found to
be (0+2) = 2.
(6) E is scheduled; the latest arriving input comes in at
time 3; hence, the worst-case output transition occurs at
time (3+1) = 4. At this point, F and G are added to the
tail of the queue.
(Step 7. F is scheduled; its latest output transition is at
time (4+1) = 5.
(8) G is scheduled; its latest output transition occurs at
time (4+2) = 6. H is added to the tail of the queue.
(9) H is scheduled; its worst-case output transition is at
time (6+3) = 9. The queue is now empty and the algo-
rithm terminates.
The worst-case delays at the output of each component

are shown in Figure 1.
The critical path, de�ned as the path between an input

and an output with the maximum delay, can now easily
be found by using a traceback method. We begin with

the component whose output is the primary output with
the latest transition time. This is the last component on
the critical path. Next, the latest arriving input to this
component is identi�ed. The component that causes this
transition is the preceding component on the critical path.
The process is repeated recursively until a primary input
is reached.
In the example, we begin with component H at the out-

put. The latest arriving input to this component is caused
by component G, which thus precedes H on the critical
path. Similarly, the transition at G is caused by the latest
arriving input, which comes in from component E, and so
on. By continuing this process, the critical path from the
input to the output is identi�ed as B-E-G-H.
In the case of CMOS circuits, the rise and fall delay

transitions may be calculated separately. For inverting
CMOS gates, the latest arriving input rise (fall) transition
triggers o� a fall (rise) transition at the output. This can
easily be incorporated into the PERT method.
One may also use this procedure to �nd the the best-

case (shortest path) delays to all outputs of a combina-
tional block from each input. The only di�erence is that
the earliest arrival time at the output of each gate is main-
tained, and the earliest arrival times at the inputs to each
gate are added to the delay of a gate to obtain the earliest
arrival time at its output.

III. Finding All Latch-to-Latch Critical Paths

A. Existing Method

In [1], a procedure for adapting PERT to �nd the worst-
case delay path for every input-output pair, i.e., from ev-
ery input latch to every output latch, was described. The
procedure is a simple adaptation of PERT.
The procedure for �nding the worst-case delay from a

speci�c input latch, i, to all output latches is described
below; this procedure is repeated for all input latches to
obtain all pairwise input latch-to-output latch delays.

(1) Initialize the latest arrival time at each input latch
except i to -1. Set the latest arrival time at latch
i to 0.

(2) Propagate all arrival times to the output using
PERT to �nd the longest paths to the outputs.

(3) The delays obtained at the output latch j represents
the maximum delay from input latch i to output
latch j. If this delay is �1, it implies that there is
no path from i to j.

The procedure works because in taking the maximum of
all arrival times at each gate in the PERT algorithm, all
paths that do not originate at i have a latest arrival time
of �1. If all paths to the inputs of a gate have a latest
arrival time of �1, the latest arrival time at the output of
the gate is also calculated as �1, consistent with the fact
that there is no path from i to the output of that gate. If,
however, there are one or more paths from input i to the
gate, then only the delays along these paths (which are
positive numbers) are e�ectively considered in calculating
the latest arrival time at the output of the gate, as all
other paths have an arrival time of �1.



In case of �nding the minimum delay for all input-
output combinations, the procedure is similar, except that
all inputs other than the input of interest are awarded ar-
rival times of 1, and PERT is carried out to �nd out the
shortest path to the outputs.

B. Complexity of the Method

Let the combinational circuit be represented by a directed
graph in which each gate corresponds to a node. A fanout
of gate i that goes to gate j is represented as a directed
edge from node i to node j in the directed graph. Since
the circuit is combinational, it cannot contain any cycles,
and therefore the graph is a directed acyclic graph (DAG).
The complexity of performing each PERT operation is

O(jEj), where jEj is the number of edges in the graph. If
the number of input latches is jIj, then the complexity of
�nding the maximum delays for all input-output pairs is
O(jEj � jIj).

C. E�cient All-Pairs Delay Computation on Real
Circuits

The procedure described above may be used to calculate
all pairs input-to-output delays of a combinational block.
However, if it were to be performed directly, it would lead
to large computation times, as will be shown in our ex-
perimental results.
We use a key attribute of realistic circuits in making

the procedure more e�cient, observed during the sym-
bolic propagation of constraints in [5]: that most inputs
to a combinational block exercise only a small fraction of
the total number of input-output paths in the combina-
tional block. In such a situation, performing the procedure
above results in excessive computation in propagating sig-
nals along paths that are not inuenced by the input un-
der consideration. Consider, for example, the situation
in Figure 2, where only the darkened edges contribute to
useful operations during PERT. However, if one applied
the approach outlined above, one would perform a large
number of wasteful computations in propagating arrival
times of �1 from the other primary inputs to the gates
along this path. We therefore see that if we could reduce
the number of wasteful propagations of �1 delays, the
complexity of the procedure could be brought down con-
siderably from the jEj operations required for each input.
In the example shown, it can be seen that the only useful
computations for input i are the ones corresponding to
the darkened edges, which is a small fraction of the total
number of edges.
Based on this observation, we develop an e�cient event-

driven procedure for calculating the values of the worst-
case delay from a given input to all outputs; if this pro-
cedure is repeated for all inputs to a combinational block,
all input-output worst case delays may be computed. It
was found that the use of this procedure gave run-time
improvements of several orders of magnitudes.
De�nition: The level number, level(k), of a gate k in the
combinational block is de�ned as the largest number of
gates from a primary input to the gate, inclusive of the
gate.
The level numbers of all gates may be computed by a

single PERT run in which all gate delays are set to 1; the
worst-case delay of each gate is equal to its level as de�ned

A

B

D

C

E

F

G

H

I

J

K

L

M

N Q

P

-infinity

-infinity

-infinity

-infinity

0

i

Figure 2: Computing the delay from i to all outputs.

above. To �nd d(i; o), the largest delay from primary in-
put i to all o 2 the set of primary outputs, we conduct
an event-driven PERT-like exercise starting at ip-op i,
as described in the following piece of pseudocode. During
the process, we maintain a set of queues, known as level
queues. The level queue indexed by k contains all gates
at level k that have had one or more inputs processed.

Initialize all level queues to be empty;

currentlevel = 0;

currentgate = flip-flop i;

while (currentgate != nil) f
if (currentgate 6= i)

for (all fanins j of currentgate)

d(i,currentgate) =

max(d(i; j)) + delay(currentgate);

else

d(i,i) = 0;

for (all fanouts k of currentgate)

Append gate k to the level queue indexed by

level(k), if it does not already lie

on the queue;

if (all level queues are not empty) f
currentlevel = lowest level number whose

level queue is nonempty;

currentgate = head of the level queue

for currentlevel;

delete currentgate from its level queue;

g
else

currentgate = nil;

g

At each step, an element from the lowest unprocessed
level is plucked from its level queue, and the worst-case
delay from ip-op i to its output is computed. All of
its fanouts are then placed on their corresponding level
queues, unless they have already been placed on these
queues. Note that by construction, no gate is processed



until the delay to all of its inputs that are a�ected by
ip-op i have been computed, since such inputs must
necessarily have a lower level number.
Referring back to the example in Figure 2, it can be

seen that the application of this procedure results in con-
sidering only the gates E, I, L, N and Q during the PERT
process, thereby considerably reducing the computation
by considering just 6 of the 25 edges for input i, and only
49 of the 125 (= 25 � 5)edges while considering the all-
pairs problem. In practice, we have observed that the
fraction of useful computations grows smaller for larger
combinational circuits.
It is worth noting that in the worst case, this proce-

dure performs PERT jIj+1 times on the circuit; once for
�nding the level numbers, and once for each input. How-
ever, each PERT operation after the �rst one typically
traverses a very small subset of the total number of gates
in the circuit, and therefore the amount of computation is
signi�cantly reduced for real circuits. This also illustrates
that in the worst case this approach is only marginally
worse than the method in [1]. This worst case was never
exercised in any of the large circuits that we ran the algo-
rithm on, and in reality, large computational savings were
seen.

IV. Experimental Results

The procedure described above was applied to circuits in
the ISCAS89 benchmark suite. The circuits in this suite
are sequential circuits, and each of these is decomposed
into a set of combinational subcircuits that lie between
latches. The algorithm above is applied to each combi-
national subcircuit to �nd the maximum all-pairs delays
from each input of the subcircuit to each output.

Table 1: Experimental Results

Circuit jGj jF j CPU CPU Speedup
Time Time

(in [1]) (ours)

s4863 2342 104 3.9s 0.17s 22.9
s5378 2779 179 6.8s 0.16s 42.5
s6669 3080 239 12.1s 0.25s 48.4
s9234.1 5597 211 18.5s 0.60s 30.8
s13207.1 7951 638 76.3s 0.94s 81.2
s15850.1 9772 534 82.5s 3.13s 26.4
s35932 16065 1728 418.5s 3.36s 124.6
s38417 22179 1636 529.9 4.01s 132.1
s38584.1 19253 1426 498.2 5.48s 90.9

The results on all of the large circuits in the ISCAS89
benchmark suite are shown in Table 1, where the �rst col-
umn lists the name of the circuit, followed by a listing of
the number of gates and ip-ops in the circuit, to give
an idea of the circuit size. The procedure described in
this paper was used to solve the all-pairs maximum delay
problem, and was compared to the approach in [1]. The
delays calculated in each case were identical, testifying to
the correctness of the new approach, with di�erence that
our approach took a signi�cantly smaller amount of time.

A comparison of the CPU times for the all-pairs prob-
lem is shown in the next two columns of Table 1. The
speedup, shown in the last column, is calculated as the
ratio of the CPU time required by the method in [1] di-
vided by the CPU time required by our approach. The
CPU times correspond to an execution of the program
on a DEC 3000/300L AXP machine. It is seen that the
speedup can be as high as 132, and is generally larger for
larger circuits. This is consistent with the intuitive obser-
vation that an input is likely to excite a smaller fraction
of the total number of paths in a larger circuit.
We also ran the algorithm on all of the circuits in the

ISCAS85 benchmark suite. However, these circuits are
su�ciently small so that the method in [1] can handle
them easily, and the additional gain from using our ap-
proach is not appreciable. The strength of the proposed
approach is its speedup when it is applied to large circuits,
and this has been illustrated in Table 1.
This approach has been embedded into the retiming

algorithm in [2] and has contributed to making the proce-
dure signi�cantly more computationally e�cient.

V. Conclusion

The problem of �nding all-pairs input-to-output delays
for combinational circuits is tackled in this paper. An ef-
�cient algorithm that is a hybrid of the event-driven and
compiled approaches has been presented for the purpose,
taking advantage of the observed properties of real cir-
cuits. Experimental results on a set of ISCAS benchmark
circuits illustrate that this approach provides a tremen-
dous bene�t.

References

[1] J. P. Fishburn, \Clock skew optimization," IEEE
Transactions on Computers, vol. 39, pp. 945{951, July
1990.

[2] R. B. Deokar and S. S. Sapatnekar, \A fresh look
at retiming via clock skew optimization," in Proceed-
ings of the ACM/IEEE Design Automation Confer-
ence, pp. 310{315, 1995.

[3] T. Kirkpatrick and N. Clark, \PERT as an aid to logic
design," IBM Journal of Research and Development,
vol. 10, pp. 135{141, Mar. 1966.

[4] T. M. Burks, K. A. Sakallah, and T. N. Mudge, \Criti-
cal paths in circuits with level-sensitive latches," IEEE
Transactions on VLSI Systems, vol. 3, pp. 273{291,
June 1995.

[5] W. Chuang, S. S. Sapatnekar, and I. N. Hajj, \Timing
and area optimization for standard cell VLSI circuit
design," IEEE Transactions on Computer-Aided De-
sign, pp. 308{320, Mar. 1995.


