
Timing Optimization of Mixed Static and Domino Logic

Min Zhao Sachin S. Sapatnekar

Department of Electrical and Computer Engineering

University of Minnesota, 200 Union Street SE, Minneapolis 55455, USA.

contact: sachin@ece.umn.edu

Abstract

A timing optimization algorithm dealing with cir-
cuits containing mixed domino and static logic is de-
scribed. Transistor-level node timing constraints of
domino logic is described. The optimization proce-
dure preserves the requirements of maintaining ade-
quate noise margins by constraining the sizing proce-
dure. After sizing, charge-sharing problems are iden-
ti�ed with a new method and recti�ed.

1 Introduction

Domino logic is one of the most e�ective circuit
con�gurations for implementing high speed logic de-
signs. Domino logic has the advantage of small area,
fast operation and low power. However, it has draw-
backs which include an inherently non-inverting na-
ture, strict timing constraints, charge sharing and
noise susceptibility. All of these factors have restricted
applications of domino logic to the timing-critical re-
gions of high-performance designs. However, recently
there has been a vast amount of interest in using this
logic style. The goal of the paper is to present a tool
that performs optimal sizing for mixed domino and
static logic circuits.

In this paper, we provide a treatment that considers
the domino circuit as combinational logic embedded in
a sequential circuit. The analysis technique developed
here shows that techniques similar to the static combi-
national circuit analysis can be applied to domino cir-
cuits. Given a circuit consisting of ip-ops, domino
gates and static gates, the circuit segment between
ip-ops is considered here, and is optimized subject
to timing constraints. This circuit segment may con-
sist of static, domino or mixed logic.

Although several sizing algorithms have been pub-
lished in the past (a survey is provided in [1]), most
of them have not considered domino logic. The work
by Chen and Kang in [2] and by Wurtz [3] perform
sizing for domino circuits, treating them as combina-

1This work was supported in part by the National Science
Foundation under award MIP-9502556 and a gift from Intel
Corp.

tional circuits. However, both techniques perform lo-
cal optimizations, optimizing only one domino block
at a time. This work extends the timing analysis tech-
nique used in Venkat et al. [4] and van Campenhout
et al. [5] to identify timing problems, and develops a
sizing technique to rectify them.

2 Domino Logic Timing Constraints

Tc,f Tc,r Tc,f + P

o o

. n1

clk

clk

y

x

z

d o

Figure 1: A Typical Domino Circuit

A representative domino gate con�guration is
shown in Figure 1. When the clock input is low, the
gate precharges, charging the dynamic node d to logic
1. In the next half-cycle of the clock when it goes high,
the domino gate evaluates, i.e., the dynamic node ei-
ther discharges or retains the precharged state, de-
pending on the values of the input signals. The two-
step mode of operation with a precharge and an eval-
uate phase causes the timing relationships in domino
logic to be more complex than those for static logic.

We list the node timing constraints for domino logic
as follows in terms of the signal arrival times and the
clock arrival time. In case of multiple clocks for the
domino logic, the clock signal c should be set to be
the clock signal that feeds the gate that is currently
under consideration.
(i) Any falling event at a data input should meet the
setup-time requirement to the rising edge of the eval-
uate clock. If Tf (in) refers to the falling event time of
the input node, then we require that

Tf (in) � Tc;r � Tsetup (1)

where the setup time Tsetup is a constant that acts as
a safety margin.
(ii) The rising event of the output node of the domino
gate must be completed before the falling edge of eval-
uate clock. If Tr(out) refers to the rising event time
at the output node, then the circuit operates correctly
only if

Tr(out) � Tc;f + P (2)

In other words, before the beginning of the precharge
for next cycle, the correct evaluation result must have
traveled to the output node.

For example, in Figure 1, the rising event at the
output node o of the domino gate must satisfy (2).
Since we can write

Tr(o) = max((Tr(x) +Df (x; d); Tr(y) +Df (y; d);

Tr(z) +Df (z; d); Tc;r +Df (c; d))) +Dr(d; o) (3)

where Tr(x), Tr(y), Tr(z) are the rising event times
at inputs x; y and z, respectively, Df (i; d) represents
the delay of a falling transition at the dynamic node
d due to a rising transition at input i 2 fx; y; zg, and
Dr(d; o) represents the rise delay of the inverter feed-
ing the gate output node o. Therefore for i 2 fx; y; zg,
we get

Df (i; d) +Dr(d; o)� P � Tc;f � Tr(i) (4)

Df (i; d) +Dr(d; o)� P � Tc;f � Tc;r (5)

(iii) The rising event d of the domino gate must be
completed before the rising edge of the evaluation
clock, i.e.,

Tr(d) � Tc;r (6)

If we denote the rise time of the dynamic node through
the p-transistor fed by the clock as Dr(c; d), then the
rising event time can be expressed as:

Tr(d) = Tc;f +Dr(c; d) (7)

This leads us to the constraint given by

Dr(c; d) � Tc;r � Tc;f (8)

This constraint implies that the pulse width of
precharge clock must be capable of pulling up the out-
put node.

3 Sizing Algorithm

3.1 Overview

The problem is solved in two phases. In the �rst
phase, the sizing problem is solved subject to timing
and noise margin constraints. In the second phase,
any charge-sharing problems that were created as a

result of the sizing procedure are resolved. The sizing
problem is formally stated as follows:

minimize Area (9)

subject to

max(Tr(o); Tf (o)) � Tspec 8o 2 PO

Tf (in) � Tc;r � Tsetup 8in 2 Idomino

Tr(out) � Tc;f + P 8out 2 Odomino

Tr(d) � Tc;r 8d 2 Ddomino

K1 �
Wp

Wn

� K2 8 gates in the circuit:

where Area is the area of the circuit and, as in other
work on transistor sizing [6], is approximated as a sum
of transistor sizes, PO is the set of primary outputs,
Idomino, Odomino andDdomino are, respectively, the set
of inputs, outputs dynamic nodes of all of the domino
gates in the circuit.

3.2 Timing Analysis

The timing analysis procedure described here is
based on the PERT procedure and uses an table-
lookup delay model for delay calculation. The rising
and falling event arrival times for each node v are cal-
culated as follows:

Tr(v) = max(Tf (u) +Dr(u; v)) (10)

Tf (v) = max(Tr(u) +Df (u; v) (11)

where Tr(u) and Tf (u) are, respectively, the rising and
falling event times for nodes u and v, and Df (u; v),
Dr(u; v) are, respectively, the worst fall delay and rise
delay from input u to output v.

The domino clock input node is treated in the same
way as any primary input node, and the rising or the
falling edge of the clock provide the corresponding
event times for the clock node. The rising and falling
event arrival times at the output node of a domino
gate can be obtained similarly to the static gate ar-
rival time computations, using (10) and (11). The
only di�erence is that the rising event at the dynamic
node is related only to the falling edge of the domino
clock and is independent of the other input nodes. The
constraint graph is modi�ed to capture the fact that
(unlike static gates) the falling transition at an input
node cannot inuence the rising transition at the dy-
namic node by setting the value of Dr from each input
node of the domino gate to the output node as �1 .

3.3 Sizing Algorithm

The sizing algorithm used here is an adaptation of
the TILOS algorithm [6]. Beginning with a circuit

where all transistors are minimum-sized, each itera-
tion selects one transistor and increases its size by a
constant factor.

In each iteration, a timing analysis is performed to
identify the constraint g(w) � 0 with the largest viola-
tion, where g(w) denotes the fact that the constraint
g is a function of the vector w of transistor widths.
The traceback procedure described above is used to
determine the critical path of the circuit, which cor-
responds to that constraint. The sensitivity of the
constraint function g to each transistor width is com-
puted, and the width of the transistor with the most
negative sensitivity is increased. The iterations con-
tinue until the timing speci�cations are all met, or
until no further improvement is possible.

3.4 Noise Margins

Noise margin constraints are applicable to both
static and dynamic gates. In [2], Chen and Kang de-
scribe a technique for deriving bounds K1 and K2 on
Wp=Wn that will ensure that noise margin constraints
are satis�ed:

K1 � Ratio = Wp=Wn � K2 (12)

For an inverter, it is a simple matter to verify
whether Ratio satis�es the speci�ed bounds or not.
For complex gates, each domino gate is reduced to an
equivalent inverter corresponding to the largest and
smallest value of Ratio. During the sizing process,
these are compared with K1 and K2, respectively, to
ensure that during the sizing process, these bounds
are not violated.

In other words, the constraint above corresponds
to the following two constraints that are always main-
tained during sizing:

Ratiomin = Wp(min)=Wn(max) � K1

Ratiomax = Wp(max)=Wn(min) � K2

The value Wp(max)(Wn(max)) corresponds to the
equivalent inverter width when all pmos (nmos) tran-
sistors in the complex gate are on, and Wp(min)

(Wn(min)) is the equivalent inverter width when only
the largest resistive path [1] of the complex gate is on.

4 Charge Sharing Algorithm

4.1 Estimation of the Worst-Case

Charge-sharing noise is produced by charge redis-
tribution between a dynamic evaluation node and in-
ternal nodes within the gate. The usual way [2, 7, 8]
of estimating worst case charge sharing is as follows.
During the precharge stage, the uppermost device of

every n-stack is assumed to be o�, so that only the
capacitance at the dynamic node, Cd is precharged.
In the evaluate stage, the bottommost devices in the
n-stack are con�gured to be o�, and all devices above
these in the n-stack are assumed to be on. The total
capacitance that now shares charge with the dynamic
output node is Cd + C, where C is the sum of all in-
ternal node capacitors.

However, this may be too pessimistic. If the worst-
case arrival time for each input is known, and if we
can identify a node n such that there is a path from
the dynamic node d to n on which the rise transition
on all transistors is guaranteed to arrive su�ciently
before time Tc;r, then node n will be precharged and
will not trigger charge-sharing. If Cpre is the total
capacitance of all such nodes n, then we can arrive
at a less conservative estimate of charge sharing that
states that

Vworst = Vdd �
Cd + Cpre

Cd + C
(13)

The calculation of Cpre is illustrated by the example
of Figure 2, which is taken from a fast adder [9]. The
value of C is C1+C2+C3+C4+C5+C6+C7+C8. If
we know that signal a4 arrives before Tc;r and that the
arrival of a3, b3 is later than Tc;r, then we know C1, C3

should be precharged and C2 may not be precharged.
Therefore, the value of Cpre in (13) is C1 + C3. If
instead, b3 were to arrive before Tc;r, then C2 can
also be added to Cpre and this would correspond to a
smaller value of Vworst.

a3

b3

a3 b3

a2 b2

a1 b1

C0

a1

b1

a2

b2

a4

b4

a4 b4
C1 C3

C2
C4

C5

C6 C7 C8

Cd

Figure 2: An Example for Charge Sharing

4.2 Reducing Charge Sharing

We note that if two nodes are connected by a
transistor whose input arrives before evaluation, then

precharging one node will also precharge the other
node; otherwise, then precharging one node would not
precharge the other. We refer to any set of such nodes
as a channel-connected precharge set. Our algorithm
�nds the channel connected precharge set with the
largest total capacitance and connects a pmos tran-
sistor to a node in that set. This procedure requires
one traversal of the graph representing the channel-
connected component [1]. This total capacitance is
then added to Cpre and the worst case voltage due to
charge sharing is calculated.

5 Experimental Results

The CAD tool is implemented in C++, and takes
an input in the form of a transistor netlist. The con-
straints applied on the circuits include speci�cations
on the clocks, output timing speci�cations, technol-
ogy parameters, upper and lower bounds on the size
of each transistor and constraints on the worst-case
voltage Vworst due to charge sharing .

A summary of the results on several sample circuits
is shown in Table 1. For each circuit, the number of
transistors jT j is listed. For various speci�cations on
the output arrival time, Tspec (in ns) and for various
domino clock speci�cations listed in the \Clk" column,
the results of sizing are listed. The clock speci�cation
is in the format (Tc;r; Tc;f ; Tc;r + P), as in Figure 1,
where all numbers are speci�ed in ns. The area is
reported as \-" if the speci�cations are too tight to be
satis�ed.

Table 1: Results of Transistor Sizing
Circuit/ Tspec Clk Optimized CPU
Unsized (ns) (ns) Area Time
Area

test2/ 0.39 (0,0.15,0.39) 47 0.09s
28 0.36 (0,0.15,0.36) 71 0.10s

0.35 (0,0.11,0.35) 52 0.09s
0.32 (0,0.11,0.32) 93 0.11s

adder2/ 0.55 (-0.2,0,0.55) 177 0.18s
160 0.45 (-0.2,0,0.45) 222 0.55s

0.40 (-0.2,0,0.45) 317 0.81s
0.38 (-0.2,0,0.38) - 0.77s

The results of the application of the charge sharing
algorithm on the example in Figure 2 is illustrated
in Table 2. The set of signals that arrive before time
Tcr are listed as the early signals. The second column
shows the parameter Vworst

Vdd
, which is de�ned in (13).

The node at which a pmos transistor is added is de-
�ned in column Pn, and the updated value of Vworst

Vdd
is listed after the addition of the �rst pmos and the
second pmos, respectively.

Table 2: Charge Sharing Algorithm Result
N(< Tcr) Ratio 1st time 2nd time

Pn Ratio Pn Ratio

NULL 0.210 c5 0.361 c2 0.514
a1,b1,a3,b3,a4,b4 0.635 c5 0.939 c8 1
a1,b1,a2,b2,a3,b3 0.210 c1 0.939 c3 1
a1,b2,a3,a4,b4 0.939 c8 1 - -
a1,a2,a3,a4 1 - - - -

References

[1] S. S. Sapatnekar and S. M. Kang, Design automa-
tion for timing-driven layout synthesis. Boston,
MA: Kluwer Academic Publishers, 1993.

[2] H. Y. Chen and S. M. Kang, \A new circuit op-
timization technique for high performance CMOS
circuits," IEEE Transactions on Computer-Aided
Design, vol. 10, pp. 670{676, May 1991.

[3] L. T. Wurtz, \An e�cient scaling procedure for
domino CMOS logic," IEEE Journal of Solid-State
Circuits, vol. 28, pp. 979{982, Sept. 1993.

[4] K. Venkat, L. Chen, I. Lin, P. Mistry, and P. Mad-
hani, \Timing veri�cation of dynamic circuits,"
IEEE Journal of Solid-State Circuits, vol. 31,
pp. 452{455, Mar. 1996.

[5] D. van Campenhout, T. Mudge, and K. A.
Sakallah, \Timing veri�cation of sequen-
tial domino circuits," in Proceedings of the
IEEE/ACM International Conference on
Computer-Aided Design, pp. 127{132, 1996.

[6] J. P. Fishburn and A. E. Dunlop, \TILOS: A
posynomial programming approach to transistor
sizing," in Proceedings of the IEEE/ACM Inter-
national Conference on Computer-Aided Design,
pp. 326{328, 1985.

[7] K. Venkat, L. Chen, I. Lin, P. Mistry, P. Madhani,
and K. Sato, \Timing veri�cation of dynamic cir-
cuits," in Proceedings of the IEEE Custom Inte-
grated Circuits Conference, pp. 271{274, 1995.

[8] K. L. Shepard and V. Narayanan, \Noise in
deep submicron digital design," in Proceedings
of the IEEE/ACM International Conference on
Computer-Aided Design, pp. 524{531, 1996.

[9] Z. Wang, G. A. Jullien, W. C. Miller, J. Wang,
and S. S. Bizzan, \Fast adders using enhanced
multiple-output domino logic," IEEE Journal of
Solid-State Circuits, vol. 32, pp. 206{213, Feb.
1997.

