
A Multicore GNN Training Accelerator
Sudipta Mondal, Ramprasath S., Ziqing Zeng, Kishor Kunal, and Sachin S. Sapatnekar

University of Minnesota, Minneapolis, MN, USA

Abstract—Graph neural networks (GNN) are vital for analytics
on real-world problems with graph models. This work develops
a multicore GNN training accelerator and develops multicore-
specific optimizations for superior performance. It uses enhanced
multicore-specific dynamic caching to circumvent the costs of
irregular DRAM access patterns of graph-structured data. A
novel feature vector segmentation approach is used to maximize
on-chip data reuse with high on-chip computation per memory
access, reducing data access latency, using a machine learning
model for optimal performance. The work presents a major
advance over prior FPGA/ASIC GNN accelerators by handling
significantly larger datasets (with up to 8.6M vertices) on a
variety of GNN models. On average, training speedup of 17×
and energy efficiency improvement of 322× is achieved over DGL
on a GPU; a speedup of 14× with 268× lower energy is shown
over GPU-based GNNAdvisor; and 11× and 24× speedups are
obtained over ASIC-based Rubik and FPGA-based GraphACT.

I. INTRODUCTION

In recent years, graph neural networks (GNNs) have achieved
unprecedented success on many real-life problems (recom-
mender systems, IC design, embedded sensing, e-commerce,
etc.). To accelerate the GNN inference several works have
been proposed (GNNIE [1], HyGCN [2], AWB-GCN [3],
GNNerator [4], BlockGNN [5], DyGNN [6], BoostGCN [7],
etc.) for small- to medium-scale graph workloads. However, a
well-trained model is a prerequisite for efficient inference.

Energy-efficient and scalable acceleration of GNN training
is an open problem that involves several major challenges:
(i) High computation and communication costs: GNN training
is more compute-intensive than inference, especially with
backpropagation, and incurs high access time and energy costs
for communication between memory and on-chip buffers;
(ii) Scalability for large graph sizes: Graph sizes in real-
world datasets have grown exponentially in recent years [8],
necessitating multiple accelerator engines to work together;
(iii) Load balancing during computation: High and variable
input feature vector sparsity, high adjacency matrix sparsity,
and power-law distributions of vertex degrees, result in irreg-
ular and random memory accesses during GNN computations,
with low utilization of processing elements [1]–[3].
(iv) Versatility: A GNN training accelerator must be able to
accommodate a wide range of GNN architectures.

GPU-based solutions are energy-inefficient. GNNAdvi-
sor [9], a single-GPU solution is limited to small-to-medium-
sized graphs. Multi-GPUs platforms can handle large graphs:
RoC [10] uses dynamic techniques for graph partitioning and
memory management; NeuGraph [11] employs 2-D graph
partitioning and inter-GPU vertex-chunk swapping (with in-
creased communication overhead); PaGraph [12] replicates
boundary vertices to reduce communication among partitions,
but faces scalability issues due to replica synchronization.

Several FPGA- and ASIC-based accelerators with better
energy efficiency have been proposed. Among FPGA-based
approaches, GCoD [13] implements algorithm-accelerator co-
design, but requires large on-chip buffers due to scatter-
based aggregation and incurs high preprocessing overhead for
sparsification and polarization; GraphACT [14] proposes a
CPU+FPGA platform, with graph sampling and loss gradient
calculation offloaded to the CPU, and forward- and back-
propagation handled in the FPGA. Among ASIC-based ap-
proaches, Rubik [15], uses a hierarchical array of processing
elements; GNNear [16] uses an ASIC-based central acceler-
ation engine for some computations and offloads others to
near-memory processing engines that reside in the buffer chips
of DIMMs. As single-core structures, these methods are not
scalable for larger graphs; they largely neglect input feature
vector sparsity and power-law degree distribution problems.

Any single-core solution has limited scalability. We acceler-
ate large GNN training by moving past the limitation of single
cores and using an array of processing cores for training, offer-
ing substantial speedup and energy-efficiency improvements.
We target much larger graphs than previous ASIC/FPGA
training accelerators (we show results on datasets with up
to 8.6M vertices in Section VI). We believe this is the first
multicore GNN training accelerator to support a wide range
of GNNs; the only other multicore accelerator [17] known
to us handles inference only and not training. The existing
multicore inference accelerators can not handle backpropaga-
tion efficiently due to: (i) massive computation/communication
overhead for the calculation/propagation of error gradients. (ii)
large gradient synchronization overhead. (iii) lack of support
for various special functions, e.g., log and softmax.

For the core, we choose the GNNIE inference accelerator [1]
over other candidates [2]–[7] as it can handle sparsity in
input vertex feature vectors and adjacency matrix, support
a wide range of GNN topologies (e.g., GCN, GraphSAGE,
GAT, GINConv), and shows speedup and efficiency advan-
tages over other methods. However, simply arraying a set
of GNNIE cores leads to performance bottlenecks due to:
(i) suboptimality in GNNIE’s caching scheme in a multicore
scenario; (ii) lack of multicore-specific optimizations that
consider both DRAM accesses and inter-core communication.
We develop novel techniques to address these challenges and
develop methods that are scalable for training large graphs.
Degree-Quant [18] proposes integer-based GNN training and
we leverage this in our implementation. Our contributions are:
• A novel feature vector segmentation scheme that reduces

memory accesses, and a random-forest-based machine learn-
ing (ML) model for optimal segmentation.

• Multicore-specific graph-specific caching with reduced ran-
dom DRAM accesses and limited on-chip communication.

• Demonstrated gains in scalability, speedup, and energy979-8-3503-1175-4/23/$31.00 ©2023 IEEE

Fig. 1. Block diagram of the proposed architecture (core architecture in inset)
with 4 cores; our evaluation considers accelerators with up to 36 cores.

efficiency over prior GPU/FPGA/ASIC solutions across mul-
tiple GNN topologies.

II. GNN TRAINING STEPS

GNN training involves a forward pass similar to inference, and
a backward pass that feeds gradients back to update weights.
Forward Pass Computations. The forward pass has two
steps [1], [2], [16]: (a) Weighting in layer l multiplies feature
vector hl

i (dimension F l) of each vertex i by a weight matrix,
W l (dimension F l−1 × F l). (b) Aggregation for vertex i
combines (sum/max/mean/pool) the weighted feature vectors
in a set Ni. For GCN/GAT/GINConv, Ni is the neighbors
N(i) of i; for GraphSAGE, Ni randomly samples N(i).
Backward Pass Computations. The output node features of
the forward pass are compared against the ground truth to
compute the loss function. Then, starting from the last layer,
the gradients of the loss with respect to the feature vectors
and weights are calculated, and weight updates are performed
at each layer using the chain rule until the input layer is
reached. Backward pass computations consist of Weighting
and Aggregation steps similar to the forward pass, and MAC
operations for loss computations and gradient updates.

III. MULTICORE ARCHITECTURE AND COMPUTATIONS

Architecture. Our GNN training engine, shown in Fig. 1, has
multiple cores connected by a network-on-chip (NoC).
GNNIE core [1]. A GNNIE core (inset of Fig. 1) consists
of an M × N array of computational PEs (CPEs) for ALU
computations; merge PEs (MPEs) within the CPE array that
aggregate partial results in their CPE column during Weight-
ing; and special function units (SFUs) for nonlinear functions.
Three on-chip buffers cache the input, weight, and output data.
The controller for each core orchestrates operations in the PE
array (workload reordering for CPEs, sending partial results to
MPEs). The memory access scheduler from [19] is modified
to handle memory requests from both DRAM and NoC.
Partitioning. For a multicore training engine with m GNNIE
cores, the input graph is partitioned into m clusters, and each
cluster is the workload for one core. Intra-cluster edges are
connections between vertices (“intra-cluster vertices”) within
a cluster and can be processed entirely within a core; inter-
cluster edges connect vertices in the cluster to vertices in
another cluster (“inter-cluster vertices”). We preprocess the
graph with METIS [20] to create clusters that (a) are balanced,
i.e., have roughly equal numbers of intra-cluster vertices,
(b) have a minimal number of inter-cluster edges.

Weighting. Weighting is performed separately on the feature
vectors of each vertex, and can be carried out independently in
each core, with no inter-vertex/inter-core communication. The
matrix-vector multiplication computations in this step are very
structured, but input vector sparsity variations can lead to load
imbalance during this computation. These issues are tackled
using the workload imbalance strategies using GNNIE’s flex-
ible MAC architecture and load redistribution [1].
Aggregation. Aggregation consolidates data from the neigh-
bors of each vertex, and may involve intra-cluster and inter-
cluster edges. For most GNNs (GCN/GINConv/GraphSAGE),
this involves summation, but GATs require nonlinear computa-
tion of attention coefficients. Aggregation for each vertex in a
cluster is performed on its own core, with no synchronization.
Operations on inter-cluster vertices, fetched via NoC from the
buffers of other cores, are read-only because there are no data
dependencies between operations in the same layer.

Ultra-high sparsity of the adjacency matrix and power-law
behavior incur numerous irregular and random memory ac-
cesses even on one core; this is exacerbated for large graphs on
multiple cores by heavy and irregular communication between
cores due to long feature vectors, limited NoC bandwidth,
and small on-chip buffers. We will address novel methods for
overcoming these bottlenecks in Sections IV and V.
Dynamic caching. Since the data for each cluster is too large
for the cache (input buffer), GNNIE uses a dynamic caching
scheme to fetch vertex data from the DRAM. It processes a
subgraph of the cluster, called the computational subgraph,
which is the subset of intra-cluster and inter-cluster vertices of
a core currently in the cache, and edges between these vertices.

For our multicore training engine, the intra-cluster vertices
of a core and their edge data are stored in CSR format in the
DRAM. For intra-cluster vertices, this data for a computational
subgraph is fetched into the input buffer from DRAM (off-
chip communication), and for inter-cluster vertices, the data is
fetched from the input buffers of other cores (which are re-
sponsible for DRAM fetches) via the NoC (on-chip communi-
cation). Within each core, the CPEs process the computational
subgraph using efficient load-balancing techniques [1].

IV. DYNAMIC CACHE REPLACEMENT POLICY

We first review the hardware-centric graph-specific caching
technique in [1] for the GNNIE inference engine. To maximize
cache data reuse, the number of unprocessed edges, ev , for
each vertex v is tracked during Aggregation. Since nodes
with larger ev are involved in a larger number of future
computations, they are more likely to be reused; hence they
are prioritized for retention in the cache. Specifically, a node
is replaced in the cache if ev ≤ γ, where γ is a threshold.

This strategy is used to promote cache reuse and minimize
DRAM fetches. The graph undergoes lightweight preprocess-
ing to store the vertices in descending order of degree in
DRAM (initially, ev = dv , the degree of vertex v). The cache
is initially populated with the first set of DRAM blocks with
the highest degrees. An iteration is completed when all edges
of the computational subgraph in the cache are processed. At
this time, the set of cache blocks that meet the replacement
criterion are evicted and the next sequential set of DRAM
blocks (the DRAM is stored in degree order) is brought

2

into cache. Multiple iterations are needed until all edges
are traversed. By construction, DRAM fetches exclusively
use sequential blocks, avoiding expensive random access. All
random accesses are limited to the on-chip SRAM cache,
which is much more inexpensive than random DRAM access.
Multicore-specific Graph-specific Caching. The direct ap-
plication of the graph-specific caching scheme of [1] to large
graphs in the multicore scenario results in bottlenecks related
to stagnation (described next), and requirements for increased
retention of inter-cluster vertices whose data must be sent
over the NoC to other cores. We alter the scheme, using new
methods that use dynamic thresholds to prevent stagnation.

In the multicore scenario, the preprocessing step stores each
cluster of the graph (instead of the entire graph) in degree
order. The retention requirements for intra-cluster and inter-
cluster vertices are different. Due to the min-cut objective
function of clustering, intra-cluster vertices in a core tend to
have higher connectivity within the cluster, while inter-cluster
vertices are connected to fewer vertices. Using the same γ
threshold for both types of vertices would disadvantage inter-
cluster vertices, which might then require frequent fetches
across the NoC, with high latency and cost overheads. There-
fore, separate thresholds γintra and γinter are required for
retaining intra-cluster and inter-cluster vertices, respectively.

As the distribution of vertex degrees varies across clusters,
the values of these γ parameters must be cluster-specific, and
using a uniform value of these γ variables for all clusters is
inefficient. For each core, we set γintra (γinter) to a certain
percentile value, κintra (κinter) of the degree distribution of
intra-cluster (inter-cluster) vertices of the cluster assigned to
the core. Empirically, we find that setting κintra and κinter to
the 50th percentile of the intra-cluster and inter-cluster vertex
degree distribution, respectively, is a good choice. Our choice
of γ parameters based on the above criterion also makes the
approach generalized (i.e., not tuned for a particular dataset).

We track the unprocessed intra-cluster (inter-cluster) edges
of an intra-cluster (inter-cluster) vertex through a simple decre-
ment operation, i.e., whenever an intra-cluster (inter-cluster)
edge of an intra-cluster (inter-cluster) vertex is processed in the
CPE array, the controller decrements the intra-cluster (inter-
cluster) edge count of the vertex by 1. Then, based on γintra
(γinter) cache replacement is performed. Fetch operations for
the next set of intra-cluster and inter-cluster vertices via off-
chip and on-chip communication for the next subgraph are
overlapped with the computation in the CPE array.
Dynamic Thresholds for Preventing Stagnation. Intra-
cluster (inter-cluster) stagnation occurs when the number of
cached intra-cluster vertices that meet the eviction criterion
based on γintra (γinter) is small, as the changes in the com-
putational subgraph across iterations are minor. This results in
low computation and low PE utilization per iteration.

We define the metric eintra[i] (einter[i]) as the ratio of the
number of intra-cluster (inter-cluster) edges processed up to
iteration i, to the total number of intra-cluster (inter-cluster)
edges of the cluster associated with the core. After a detection
interval of every I iterations, we detect stagnation as:

eintra[i] ≤ (1+δ)eintra[i−I], einter[i] ≤ (1+δ)einter[i−I]

where δ is a user-defined threshold. If this is satisfied, we

(a) (b)

Fig. 2. (a) Boosting γintra to break intra-cluster stagnation on Core 2.
(b) Invoking full random access after most edges are processed on all cores.

boost the relevant γ to κthboost percentile of the vertex degree
distribution. After one iteration with the boosted value evicts
numerous vertices and overcomes stagnation by changing the
computational subgraph, we revert to the original γ.

We tune the parameter values over a range of datasets.
Varying κboost ∈ [70, 95], the optimal value was found to
be κboost = 90; varying I ∈ [1, 15], an optimum was found
at I = 5; varying δ ∈ [0.01, 0.1] yielded the best value of
δ = 0.05. For the amazon0601 dataset on a 4-core system,
Fig. 2(a) shows the change in eintra with each iteration and
shows regions of stagnation that is found after the detection
interval of I . At this point, γintra is boosted, and as shown in
Fig. 2(a) this increases the rate of progress of eintra (the dotted
line shows the slower trajectory of eintra without boosting).

As the Aggregation computation nears completion, when
a large fraction of edges has been processed, it becomes
increasingly difficult to find unprocessed edges in the compu-
tational subgraph. To detect this, we monitor etotal, the ratio
of the number of intra-cluster/inter-cluster edges processed up
to iteration i, to the total number of edges in the cluster.
When etotal exceeds a threshold, we move to full random
access: the cache now has random access to the DRAM to
complete Aggregation. This is shown in Fig. 2(b), where
the original trajectory (dotted lines), is accelerated to faster
completion (solid lines). At this stage, the number of random
DRAM accesses is relatively small and the benefit of faster
convergence outweighs the cost of slower random DRAM
accesses during this final phase. We find the etotal threshold
values of 0.8 to be optimal over a range of datasets.

V. SCALING ON LARGE GNNS

A. Bottlenecks of Scaling on Large GNNs

While graph-specific caching significantly improves latency
and power/energy due to increased data reuse, the benefits of
this approach face bottlenecks due to fundamental limitations
in the traditional structure of GNN computations. Since node
feature vectors for each node can be long and the input buffer
size is small, the computational subgraph in each iteration
constitutes a very small fraction of the total number of vertices
in each cluster. Thus, only a small fraction of edges can be
processed in each iteration, leading to high rates of cache
replacement and slow convergence. Switching to full random
access mode can overcome this issue, with significant costs
due to the high energy of random DRAM access. The problem
becomes more acute for large GNNs that require more cores:
with more cores, more inter-cluster vertices are sent over NoC,
leading to higher injection rates and/or larger packet sizes. This
increases NoC latency, worsening performance.

3

The key to overcoming this problem is to increase the size
of the computational subgraph during Aggregation, subject to
the cache size. We achieve this by proposing feature vector
segmentation, splitting a vertex feature vector into multiple
segments, processing one segment at a time. We show that
the choice of segment size involves balancing off-chip and on-
chip communication latency as we seek to efficiently overlap
computation with communication for high performance.

B. Feature Vector Segmentation
During Aggregation, there is no dependency between opera-
tions in different elements of the feature vector of a vertex.
Therefore, Aggregation over the neighborhood for each feature
vector segment can be carried out independently. We develop
the concept of feature vector segmentation under a fixed cache
size, illustrated in Fig. 3. The conventional approach at left
(“Full”) uses full feature vectors of length F . For a cache
size of C, the number of vertex feature vectors that can fit
in the cache is roughly nF = C/F , and this limits the size
of the computational subgraph. We can increase the subgraph
size by using a subset of the entire feature vector. If we split
the feature vector into two segments (“2-segments,” middle),
we can fit a subgraph of 2nF vertices in the cache. For
the j-segments case (right), where each segment length is
q = dF/je, we increase the size of the computational subgraph
by a factor of j relative to the “Full” case.

Fig. 3. Feature vector segmentation.

Using j segments, Aggregation operations are performed on
one feature vector segment at a time, over all nodes, using the
graph-specific caching method of Section IV. For larger j, the
computational graph in each iteration is larger, and more edges
are available for Aggregation, so that CPEs in each core are
kept busy. However, as j increases, more vertices fit into each
core and have more neighbors in other cores. Hence, traffic in
the NoC also increases as more vertices are sent to other cores,
increasing the injection rate and slowing communication.

A few prior approaches have used concepts similar to
segmentation, but have significant limitations: our solution
gains efficiency by exploiting segmentation in harmony with
other schemes that reduce cache access latencies, including
graph-specific caching and on-chip fetches from other cores
using the NoC. P 3 [21] uses a superficially similar method that
segments the feature vector into dF/ce segments, where c is
the number of GPU cores. This accommodates the entire graph
into each core, but their power-hungry GPU-based solution
requires a much larger cache than our power-efficient ASIC
solution. BoostGCN [7] and GNNerator [4] implement 2-
D graph partitioning and use feature vector segmentation to
increase the number of vertices in each partition so that the
frequency of DRAM communication decreases. However, as
shown in [1], the lower bound of DRAM access for 2-D
partitioning is always higher than the graph-specific caching

(a) (b)

Fig. 4. Performance analysis of feature vector segmentation: (a) etotal
(Average) vs. Execution Cycles (b) Aggregation cycle comparison.

of GNNIE. In addition, while BoostGCN and GNNerator rely
solely on DRAM communication to fetch neighboring vertices,
we fetch neighbors from DRAM (off-chip communication) or
from the cache of other machines (on-chip communication);
since DRAM accesses are more costly than on-chip commu-
nication, our approach is more efficient.
Performance Analysis. Fig. 4 shows the results of combin-
ing feature vector segmentation with dynamic graph-specific
caching (Section IV), showing the number of cycles required
for Aggregation in the first GCN layer for the amazon0601
dataset (403,394 vertices/3,387,388 edges) on a 4-core system.
The results are shown for j = 1 (Full), 2, 4, and 8.

Fig. 4(a) shows the progress in processing graph edges as
the execution progresses, showing the fraction etotal of all
edges that are processed (averaged over all cores). For the Full
case, etotal rises very slowly and does not reach the threshold
of 0.8 required to transition to full random access mode. The
2-segments approach progresses faster, and the 4-segments
approach is still faster; however, increasing to 8-segments
slows down the progress of etotal. We will understand this
trend based on Fig. 4(b), which shows the total number of
cycles for the computation, and the components of this total.

Fig. 4(b) shows improvement in on-core computation cycles
from the Full to the segmented cases with larger j. Compared
to the Full approach, the 2-, 4-, and 8-segment cases reduce
off-chip stall cycles by 60%, 74%, and 83%, respectively:
increasing j reduces DRAM access frequency as the com-
putational subgraph becomes larger. While for the Full case
the computational subgraph, on average, contains just 8% of
the vertices in a cluster; for 2, 4, and 8 segments, the fraction
rises to 16%, 32%, and 64%, respectively. The number of
full random mode cycles reduces as j increases, because the
computation subgraph grows larger as j increases and fewer
edges are unprocessed at the switch to full random mode.

Under segmentation, the NoC injection rate increases with
higher j due to the increased size of the computational
subgraph on each core, which results in the transmittal of
multiple feature vector segments of inter-cluster vertices over
the NoC. However, since individual segments are smaller, the
message size is reduced. This tradeoff between the increased
injection rate and the reduced message size implies there is
an optimal j for which the on-chip stall cycles are minimized.
We develop an ML model to optimize j. The impact of stalls
can be further mitigated by overlapping on-chip and off-chip
communication during each iteration. In particular, no on-chip
stall cycles are required for the Full approach, because on-chip
communication per iteration is so low (due to a small number
of cached vertices) that it can be completely overlapped.

Fig. 4(b) also shows that the on-chip stall cycles increase

4

from 2- to 4- to 8-segment cases. Hence, the total cycle count
required to complete the computation has its minimum for the
4-segments case. This explains the trend in Fig. 4(a).
ML Model for Optimizing j. To optimize the number of
segments j, we trained a machine learning (ML) model using
a random forest (RF) regressor. This trained ML model is
then used on unseen graphs. Input parameters include graph at-
tributes (vertex and edge counts, a power-law metric capturing
the fraction of edges adjacent on the top 10 percentile of high-
degree vertices, and the number of cores). The total number
of samples corresponds to 144 synthetic graphs, ranging from
100K–10M vertices and 200k–100M edges, and with power-
law metric from 0.27–0.95. A train/test split of 80/20 was
used. The RF regressor used 100 estimators, and the model
achieved 95% training and test accuracy based on R2 score.

On real datasets, the model prediction was close to the
results of a much more costly enumeration of all j ∈ [2, 16].
For example, the optimal j predicted by the RF model is 5
for amazon0505 and amazon0601 datasets, close to optimal
enumerated value of 4 ; the prediction for com-amazon dataset
is j = 4, which matches the optimum from enumeration.
Comparison with P 3. Fig. 4(b) also show results for P 3 [21],
which switches between a segmented method (model paral-
lelism, across feature vector segments) to the Full method (data
parallelism, across cores) after the first layer, incurring a large
communication overhead due to a burst of communication at
that stage; by its very nature, this step provides no opportu-
nities for overlapping off-chip and on-chip communication.
Hence, it incurs high on-chip stalls: 89%, 63%, and 7%
higher on-chip stall cycles compared to 2-, 4-, and 8-segments,
respectively, in our implementation of their method.
PE Utilization. The segmented approach also leads to higher
PE utilization compared to full-length feature vectors. The
larger computational subgraph size allows more edges to be
processed per iteration, increasing the computational intensity
of data fetched from DRAM and keeping GNNIE PEs busy.
For the first layer of Aggregation of amazon0601 for GCN, the
average PE utilization for Full, 2-segments, 4-segments, and
8-segments are 67%, 86%, 100%, and 100%, respectively.

VI. EVALUATION

Hardware/Simulation Setup. Each core is implemented in
Verilog, synthesized with Synopsys DC in a 12nm standard VT
library, placed and routed using Innovus, and verified via RTL
simulations. The area, energy, and latency of on-chip buffers
are estimated using CACTI 6.5 [22]. Post-P&R metrics for
each core are: 4.97mm2, 0.93W, 934 MHz. The controller has
0.26 mm2 area and 0.1W power. For the NoC, latency and
throughput were analyzed using BookSim2 [23], and power
and area using Orion3.0 [24]. The NoC power overhead ranges
between 2.9%–6.3% of the total chip power. An in-house
simulator computes the execution cycles for our accelerator,
with Ramulator [25] modeling off-chip HBM access (256
GB/s, 3.97pJ/bit [26]).
Configuration of the Multicore Accelerator.
Individual GNNIE cores Configuration per core is as follows:
Buffer sizes: Output: 1MB; Weight: 128KB; Input: 512KB
CPE array with flexible MACs: 16× 16 array; 4 MACs (rows
1–8), 5 MACs (rows 9–12), 6 MACs (rows 13–16).
NoC Buffer size: 128 KB, 4 links per router, 50GB/s BW/link.

Table I: Type A datasets
(DD: D&D, TW: TWITTER-Partial,
YT: Yeast, SW: SW-620H,
OV: OVCAR-8H)

Dataset Vertices Edges (FL, m, j)
DD 335K 1.7M (89, 2, 4)
TW 581K 1.4M (1323, 4, 2)
YT 1.7M 3.6M (74, 16, 2)
SW 1.9M 3.9M (66, 16, 2)
OV 1.9M 3.9M (66, 16, 2)

Table II: Type B datasets
(SB: soc-BlogCatalog, CA: com-amazon,
A-05: amazon0505, A-06: amazon0601,
EN: enwiki, A-8M: amazon8M)

Dataset Vertices Edges (FL, m, j)
SB 89K 2.1M (128, 1, 2)
CA 335K 1.9M (96, 2, 4)
A-05 410K 4.9M (96, 4, 4)
A-06 403K 3.4M (96, 4, 4)
EN 3.6M 276.1M (300, 16, 16)
A-8M 8.6M 231.6M (96, 36, 16)

Number of GNNIE cores The number of cores for a dataset is
based on the ratio, ϑ, of vertices per computational subgraph
(i.e., the full-length vertex features that can fit in cache) to the
vertices assigned per core. Empirically, we determined that its
optimal range is 0.03 ≤ ϑ ≤ 0.15. Using this, we find the
number of cores m (see Tables I and II) for the optimal ϑ that
optimizes speedup gain vs. area/power overhead.

We analyze the change in speedup when the number of cores
is altered from the optimal m. For the A-06 dataset, m = 4;
for 2, 16, and 36 cores, the speedup changes by 0.43×, 3.1×,
and 7.29×, respectively. In each case, the speedup change is
sublinear, indicating that m = 4 is optimal.
Benchmark GNN Datasets and Models. We evaluate the
performance of our platform using Type A and Type B
benchmark graph datasets from Table I and II, respectively.
Type A datasets consist of multiple small graphs with no
inter-graph edges, while Type B datasets are large monolithic
graphs with a high amount of structural irregularity, i.e., higher
adjacency matrix sparsity and power-law behavior. Table I and
II also provide the input feature length (FL), number of cores
(m), and feature vector segments (j) used for each dataset.

We evaluate the accelerator for training four GNN models:
GCN, GINConv, GAT, and GraphSAGE. All GNNs have one
hidden layer, except GINConv which has five; for GCN,
GINConv, and GraphSAGE each hidden layer has 16, 64,
and 256 channels, respectively. The GAT hidden layer uses
eight 16-dimensional attention heads. All speedup and energy
numbers include preprocessing times, including runtime for
graph partitioning, degree-based vertex reordering, workload
reordering, and neighborhood sampling time (performed on
Intel Xeon Gold@2.60GHz CPU) for GraphSAGE. The pre-
processing overhead over 500 epochs for amazon0601 is 18%.
Performance comparison with DGL. We compare all GNNs
against Deep Graph Library (DGL) [27] on a V100 Tesla GPU
with V100S-PCIe@1.25GHz, 32GB HBM2 (“DGL+Tesla
V100”). The training latency for speedup comparison are
averaged over 500 epochs. As shown in Fig. 5(a) and (b), the
average speedup of our approach against DGL+Tesla V100 for
GCN, GINConv, GAT, GraphSAGE ranges from 8.9×–46.6×
across Type A datasets and 3.3×–15.5× for Type B.

The speedup comes from several of our optimizations:
(i) Feature vertex segmentation improves scalability for large
GNNs. (ii) Dynamic cache replacement mitigates irregular
random memory accesses and on-chip communication over-
head. (iii) Distributed computation across multiple batches
ensures weight reuse. The speedup is particularly high for
GINConv: unlike DGL, we use dimension-aware stage re-
ordering (DASR) [1], [3], which requires fewer computations.
To determine their impact, we removed these optimizations
successively on A-06. Without segmentation, the computation
did not complete (as in Fig. 4). With optimal segmentation,

5

(a)

(b)

(c)

(d)
Fig. 5. Speedup and energy efficiency vs. DGL+Tesla V100 and GNNAdvi-
sor+Tesla V100: (a), (c): Type A datasets (b), (d): Type B datasets.

removing dynamic cache replacement increases runtime by
34%; also removing weight reuse raises the penalty to 43%.

GraphSAGE shows lower speedup than other models due to:
(i) inclusion of preprocessing time for neighborhood sampling
on our platform, but not on DGL+Tesla V100. (ii) mitigation
of power-law behavior in real-world graphs by sampling. Type
A datasets have higher speedups than Type B datasets due to
the lack of on-chip communication overheads. Larger datasets
(e.g., OV, A-06) show higher speedups than smaller datasets
(e.g., DD, SB) for both Type A and B, indicating scalability.
Comparison with GPU-based accelerators. Speedup: GN-
NAdvisor implements only GCN and GINConv. For the same
configurations for these GNNs, Fig. 5(a) and (b) shows that
relative to GNNAdvisor, we achieve 15.5×–27.9× speedup for
Type A and 4.2×–9.2× for Type B datasets.

NeuGraph uses 2-D graph partitioning to process large
graphs using one NVIDIA Tesla P100 GPU. We achieve 12.2×
and 16.9× speedup for GCN on EN and A-8M, respectively,
over NeuGraph. The corresponding speedups over GNNAdvi-
sor are 3.1× and 6.8×, respectively.
Energy: Fig. 5(c) and (d), illustrate the energy efficiency
comparison with Tesla V100, reporting Egain, the ratio of the
energy required by the GPU to the energy of our approach.
Compared DGL+Tesla V100, our average Egain ranges from
149×–711× over Type A datasets and 75×–628× over
Type B. Against GNNAdvisor+Tesla V100, Egain ranges from
168×–415× and 118×–372×, respectively.
Comparison with FPGA-/ASIC-based accelerators. Our
approach achieves an average speedup of 11× and 24× over
Rubik and GraphACT, respectively; neither reports absolute
power numbers. Our speedup over Rubik is due to its in-
efficient reuse of cache data which incurs high on-chip and
off-chip communication costs, and over GraphACT since it
does not consider the power-law behavior of real-world graphs

and makes no explicit efforts to address the random off-chip
memory accesses. In comparison with GNNear, we achieve
17× average speedup over DGL+Tesla V100, but the speedup
of GNNear is only 2.5×. Unlike our approach, the graph
partitioner of GNNear is oblivious to community structure in
real-world graphs, resulting in high communication costs due
to the high number of cut edges between the partitions. GCoD
handles only small graphs (up to 233K vertices, as against
8.6M vertices for our approach), and uses a whopping 180W
of power even for these graphs, which can be handled by our
approach on a single core using < 1W.

VII. CONCLUSION

Our multicore GNN training accelerator has GPU-like scal-
ability and accelerator-like efficiency for large GNNs, lever-
aging novel feature vector segmentation and dynamic caching
schemes for scalability and to mitigate communication costs.

REFERENCES

[1] S. Mondal et al., “A Unified Engine for Accelerating GNN Weight-
ing/Aggregation Operations, with Efficient Load Balancing and Graph-
Specific Caching,” IEEE T. Comput. Aid. D., 2022.

[2] M. Yan et al., “HyGCN: A GCN Accelerator with Hybrid Architecture,”
in HPCA, 2020.

[3] T. Geng et al., “AWB-GCN: A Graph Convolutional Network Acceler-
ator with Runtime Workload Rebalancing,” in MICRO, 2020.

[4] J. Stevens et al., “GNNerator: A Hardware/Software Framework for
Accelerating Graph Neural Networks,” in DAC, 2021.

[5] Z. Zhou et al., “BlockGNN: Towards Efficient GNN Acceleration Using
Block-Circulant Weight Matrices,” in DAC, 2021.

[6] C. Chen et al., “DyGNN: Algorithm and Architecture Support of
Dynamic Pruning for Graph Neural Networks,” in DAC, 2021.

[7] B. Zhang et al., “BoostGCN: A Framework for Optimizing GCN
Inference on FPGA,” in FCCM, 2021.

[8] W. Hu et al., “Open Graph Benchmark: Datasets for Machine Learning
on Graphs,” in NeurIPS, 2020.

[9] Y. Wang et al., “GNNAdvisor: An Adaptive and Efficient Runtime
System for GNN Acceleration on GPUs,” in OSDI, 2021.

[10] Z. Jia et al., “Improving the Accuracy, Scalability, and Performance of
Graph Neural Networks with Roc,” in MLSys, 2020.

[11] L.Ma et al., “NeuGraph: Parallel Deep Neural Network Computation on
Large Graphs,” in USENIX ATC, 2019.

[12] Z. Lin et al., “PaGraph: Scaling GNN Training on Large Graphs via
Computation-Aware Caching,” in SoCC, 2020.

[13] H. You et al., “GCoD: Graph Convolutional Network Acceleration via
Dedicated Algorithm and Accelerator Co-Design,” in HPCA, 2022.

[14] H. Zeng et al., “GraphACT: Accelerating GCN Training on CPU-FPGA
Heterogeneous Platforms,” in FPGA, 2020.

[15] X. Chen et al., “Rubik: A Hierarchical Architecture for Efficient Graph
Neural Network Training,” IEEE T. Comput. Aid. D., 2021.

[16] Z. Zhou et al., “GNNear: Accelerating Full-Batch Training of Graph
Neural Networks with Near-Memory Processing,” in PACT, 2021.

[17] G. Sun et al., “Multi-Node Acceleration for Large-Scale GCNs,” IEEE
Transactions on Computers, 2022.

[18] S. Tailor et al., “Degree-Quant: Quantization-Aware Training for Graph
Neural Networks,” in ICLR, 2021.

[19] S. Mondal et al., “GNNIE: GNN Inference Engine with Load-Balancing
and Graph-Specific Caching,” in DAC, 2022.

[20] G. Karypis et al., “A Fast and High Quality Multilevel Scheme for
Partitioning Irregular Graphs,” SIAM J. Sci. Comput., 1998.

[21] S. Gandhi et al., “P 3: Distributed Deep Graph Learning at Scale,” in
OSDI, 2021.

[22] “CACTI 6.5.” https://github.com/Chun-Feng/CACTI-6.5.
[23] J. Nan et al., “A Detailed and Flexible Cycle-Accurate Network-on-Chip

Simulator,” in ISPASS, 2013.
[24] A. B. Kahng et al., “ORION3.0: A Comprehensive NoC Router Esti-

mation Tool,” IEEE Embedded Sys. Lett., 2015.
[25] Y. Kim et al., “Ramulator: A Fast and Extensible DRAM Simulator,”

IEEE Comp. Arch. Lett., vol. 15, no. 1, 2015.
[26] M. O’Connor et al., “Fine-Grained DRAM: Energy-Efficient DRAM for

Extreme Bandwidth Systems,” in ISCA, 2017.
[27] M. Wang et al., “Deep Graph Library: Towards Efficient and Scalable

Deep Learning on Graphs,” in ICLR, 2019. https://github.com/dmlc/dgl/.

6

