
Abstract
Buffer insertion has become an increasingly critical optimi-
zation in high performance design. The problem of finding a
delay-optimal buffered Steiner tree has been an active area
of research, and excellent solutions exist for most instances.
However, current approaches fail to adequately solve a par-
ticular class of real-world “difficult” instances which are
characterized by a large number of sinks, variations in sink
criticalities, and varying polarity requirements. We propose
a new Steiner tree construction called C-Tree for these
instance types. When combined with van Ginneken style
buffer insertion, C-Tree achieves higher quality solutions
with fewer resources compared to traditional approaches.

1. Introduction
Interconnect’s domination of system performance has made
buffer insertion a critical step in modern VLSI design
methodologies. The number of buffers needed to achieve
timing closure continues to rise with decreasing feature size.

Several works have studied the problem of inserting buffers
to reduce the delay on signal nets. van Ginneken’s dynamic
programming algorithm [13] has become a classic in the
field. Given a fixed routing topology, his algorithm finds the
optimal buffer placement on the topology under the Elmore
delay model for a single buffer type and simple gate delay
model. Together the enhancements to this work (e.g.,
[1][2][10][11][12]) make the van Ginneken style of buffer
insertion quite potent as it can handle many constraints,
buffer types, and delay models, while retaining optimality
under many of these conditions.

The primary shortcoming with this approach is that the
buffers must be inserted on the given Steiner topology. Thus,
both Okamoto and Cong [12] and Lillis et al. [11] have
combined buffer insertion with Steiner tree constructions,
the former with A-Tree [6] and the latter with P-Tree [9].

This simultaneous approach is in some sense equivalent to
the two-step approach of (1) constructing a Steiner tree, and
(2) running van Ginneken style buffer insertion. An optimal
solution can always be realized using the two-step approach
if one uses the “right” Steiner tree (i.e., the tree resulting
from ripping buffers out of the optimal solution) since the
buffer insertion step is optimal. Of course, finding the
“right” tree is difficult since the true objective cannot be

directly optimized during the Steiner construction. However,
if one tries to construct a “buffer-aware” Steiner tree, i.e., a
tree with topology that anticipates good potential buffer
locations, we believe the two-step approach can be as
effective as the simultaneous approach.

For most nets, finding the right Steiner tree is easy
(assuming no resource constraints). For two-pin nets a direct
connection is optimal, and there are a manageable number of
topologies for five sinks or less. This work focuses on the
most difficult nets for which finding the appropriate Steiner
topology is not at all obvious. These nets typically have
more than 15 sinks, varying degrees of sink criticalities, and
differing sink polarity constraints. Finding effective
solutions for these nets is critical; a high-fanout net is more
likely to be in a critical path because it is inherently slow.

Figure 1 Example showing the minimum unbuffered delay tree
(a) leads to a buffered tree (b) that is inferior to the best buffered

tree (c) (since it needs fewer buffers). If two sinks are critical
then a different optimal topology (d) would result.

Of course, a good heuristic for finding the right Steiner tree
must take into account potential buffering. Figure 1(a) shows
a 4-sink example where only one sink is critical. The (a)
unbuffered tree has minimum wire length, yet (b) inserting
buffers requires three buffers to decouple the three non-
critical sinks; however, for a different topology (c) the
buffered tree requires just one decoupling buffer. Thus, the
tree in (c) uses fewer resources, and may also achieve a
lower delay to the critical sink since the driver in (c) drives a
smaller capacitive load than in (b).

One approach to finding this topology is to cluster non-
critical sinks together and route each cluster individually. If
there are multiple critical sinks (d), then a different topology

Permission to make digital or hard copies of all or part of all or part of this
work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISPD’01, April 1-4, 2001, Sonoma, California, USA.
Copyright 2001 ACM 1-58113-347-2/01/0004.$5.00.

(a)

(c)

critical

(b)

(d)

critical

critical

critical
critical

Buffered Steiner Trees for Difficult Instances
C. J. Alpert1, M. Hrkic2, J. Hu1, A. B. Kahng3, J. Lillis2, B. Liu3,
S. T. Quay1, S. S. Sapatnekar4, A. J. Sullivan1, P. Villarrubia1

1 IBM Corp., Austin, TX 78758
2 University of Illinois at Chicago, EECS Dept., Chicago, IL 60607

3 University of California at San Diego, CS Dept., San Diego, CA 92093
4 University of Minnesota, ECE Dept., 55455

which clusters critical sinks together will yield the best
solution. One could find this tree by clustering sinks into a
critical and non-critical cluster. The Steiner algorithm must
be aware of opportunities to adjust the topology to allow for
potential off-loading of non-critical sinks.

Finding the “right” Steiner tree becomes more difficult if
one considers polarity constraints. During synthesis, fanout
trees are built to repower and distribute a signal and/or its
complement to a set of sinks without knowledge of the
layout of the net. Once the net is placed, the tree may be
grossly suboptimal. At this stage, the buffers and inverters
can be ripped out of the tree and re-inserted while utilizing
the new layout information. However, removing the buffers
and inverters may leave sinks with opposing polarities.

Figure 2 shows a net with five sinks with positive (‘+’)
polarity and five with negative (‘-’) polarity. The tree in (a)
requires at least five inverters to satisfy polarity constraints,
while the tree in (b) requires just one. The latter solution can
be found by independently routing two clusters, one with all
positive sinks and one with all negative sinks. Existing
timing-driven Steiner tree constructions (e.g., [3][4][9])
cannot find this topology.

Figure 2 Example of how polarity constraints affect topology.
The tree in (a) requires at least five inverters to satisfy polarity

constraints while the tree in (b) requires just one.

The purpose of this work is to find a Steiner tree algorithm
for particularly difficult instances which can be used in
conjunction with van Ginneken style buffer insertion. Our
proposed C-Tree heuristic first clusters sinks based on
spatial, temporal, and polarity locality. Next, a sub-tree is
then formed within each cluster, and finally, the trees are
connected using a timing-driven Steiner tree at the top level.
We show that this two-level approach is not only more
efficient than the existing state-of-the art, but also generates
higher quality solutions while using fewer buffers.

2. Preliminaries
We are given a net with pins,
where is the unique source and are the sinks.
Let and denote the 2-dimensional coordinates of

, and let , , and denote the
required arrival time, input capacitance, and polarity
constraint for sink . We assign for a sink

which requires the inversion of the signal from to , and
for a “normal” sink that prohibits the inversion

of the signal. A rectilinear Steiner tree has a set of
nodes where is the set of intermediate 2-
dimensional Steiner points and a set of horizontal and
vertical edges . Wire resistance and capacitance parasitics
are given to permit interconnect delay calculation for a
particular geometric topology.

For a given tree , a buffered tree can
be constructed from if (i) there exists a set of nodes
(corresponding to buffers) such that , (ii)
each edge in is either in or is contained1 within some
edge in and (iii) is a rectilinear Steiner tree. Note that

and are not necessarily disjoint. Hence, buffers in
can only be inserted on the edges in . Running van
Ginneken style buffer insertion on guarantees a buffered
tree . Let be the number of buffers inserted in

, i.e., .

Each Steiner tree (with or without buffers) has a unique path
from to sink . For each , let denote the
particular buffer type (size, inverting, etc.), chosen from a
buffer library ,inserted at . Let be the
delay from to within . The delay can be computed
using many ways; for this discussion, we adopt the Elmore
model for wires and a switch-level linear model for gates.
Our formulation is by no means restricted to these models
(see e.g., [2]). The slack for a tree is given by

.

The traditional buffer tree objective function is to maximize
. This can waste resources since additional

buffers may be used to garner only a few extra picoseconds
of performance. An alternative is to find the fewest buffers
such that . However, a zero slack solution
may not be achievable in this formulation, yet the designer
still wishes to reduce the slack, even if a positive slack is not
achievable. Instead of a single objective, one can generate a
solution set that trades off maximizing the worst slack with
the number of inserted buffers. This can be achieved with a
van Ginneken style algorithm [10] or via simultaneous
optimization [11]. Our problem statement is as follows:

Buffered Steiner Tree Problem: Given timing and polarity
constraints and the topology for net , a buffer library ,
and the technology’s interconnect parasitics, find a single
Steiner tree over so that the family of buffered trees
constructed from by applying van Ginneken style buffer
insertion using satisfies polarity constraints and is
dominant. A family is dominant if for every buffered tree

, there exists a tree in such that
 and .

The formulation does not restrict the algorithm to a
particular buffer resource or timing constraint, but rather
allows the designer to choose a solution within the family

(a)

+ + ++ +-- - - -

+ + ++ +-- - - -
(b)

N s0 s1 … sn, , ,{ }= n 1+
s0 s1 … sn, ,

x s() y s()
s RAT s() cap s() pol s()

s pol s() 1=

1 Edge is said to be contained within edge
if

and .

s0 s
pol s() 0=

T V E,()
V N I∪= I

E

T V E,() T B V B EB,()
T V '

V B V V '∪=
EB E

x1 y1,() x2 y2,()()
x3 y3,() x4 y4,(),() min x3 x4,() x1 x2, max x3 x4,()≤ ≤

min y3 y4,() y1 y2, max y3 y4,()≤ ≤

E T B
V V ' T B

T
T

T B nb T B()
T B V '

s0 si v V '∈ b v()

B v D s0 si T B, ,()
s0 si T B

T B
slack T B() min RAT si() D s0 si T B, ,()– 1 i n≤ ≤||{ }=

slack T B()

slack T B() 0≥

N B

T N F
T
B

F
T B' T B F
slack T B() slack T B'()≥ nb T B() nb T B'()≥

that is most appropriate for the particular design. Although
not explicitly stated, there is actually a wire length
component that can also be traded off. For example, if the
routing resources are more tightly constrained than the area
resources, one might want to reduce wire length for the
price of additional buffers, while maintaining the same
timing characteristics. To handle this constraint, one could
used a cost function that combine the costs of buffering and
wire resources which would allow simultaneous wire sizing
within the buffer insertion optimization.

3. The C-Tree Algorithm

3.1 Overview
Our Steiner construction is called C-Tree, for “Clustered
tree”, emphasizing the clustering step, as opposed to the
underlying timing-driven tree heuristic. The fundamental
idea behind C-Tree is to construct the tree in two levels. C-
Tree first clusters sinks with similar characteristics
(criticality, polarity and distance). This step potentially
isolates positive sinks from negative ones and non-critical
sinks from critical ones. The algorithm then constructs low-
level Steiner trees over each of these clusters. Finally, a top-
level timing-driven Steiner tree over the set of clusters is
computed. This tree is then merged with the low-level trees
to yield a solution for the entire net.

Figure 3 C-Tree Steiner Tree Algorithm (N, k).

Figure 3 presents C-Tree pseudocode. We assume that two
generic subroutines, Clustering and TimingDrivenSteiner,
are given (see Sections 3.2-3.4). However, one could
implement these subroutines in a variety of ways to achieve
similar clustering and routing functionality.

Step 1 invokes Clustering, which takes the sinks of a net as
input and outputs a set of clusters . The
net corresponding to the top-level tree is also initialized
to contain the source. Step 2 iterates over the clusters, and in
Step 3, a tapping point is computed for cluster . The
tapping point represents the source for the tree over
and also the point where the top-level tree will connect
to . We choose to be a point on the bounding box of

closest to . Step 4 then assigns to be the source
for . Step 5 invokes TimingDrivenSteiner on to yield
a tree . Step 6 then propagates the up to yield

an constraint for . The capacitance of is
assigned to be that of After completing these operations
for all the tapping points, consists of plus tapping
points which now serve as sinks. Step 7 computes the top-
level Steiner tree for this instance, and Step 8 merges all the
Steiner trees into a single solution.

Figure 4 shows an example. In (a), a clustering of the sinks
is performed. In (b), the three tapping points are shown as
black circles, and Steiner trees are computed for each
cluster. Next (c), the top-level Steiner tree connecting the
source to the tapping points is found, and finally, (d) the
tapping points are removed and the Steiner trees are merged
into a single tree. A clear advantage of this approach is that
van Ginneken style buffer insertion can insert buffers to
either drive, decouple, or reverse polarity of any particular
cluster. Of course, C-Tree is sensitive to the actual
clustering algorithm used, which we now describe.

Figure 4 Example execution of the C-Tree algorithm.

3.2 Clustering Distance Metric
The key to clustering any data set is devising a dissimilarity
or distance metric between pairs of points. The points in our
instances have three properties: spatial (coordinates in the
plane), temporal (required arrival times), and polarity. Our
distance metric incorporates all of these elements; we first
define individual spatial, temporal and polarity metrics, then
combine them using scaling into a single distance metric.

The correct spatial and polarity metrics are straightforward.
The spatial (Manhattan) distance and polarity
distance for sinks and are given by

and ,
respectively. is zero when the polarities for

 and are the same and one when they are opposing.

Finding a good temporal metric is trickier. First, is
not the only indicator of sink criticality. If and have
the same yet is further from than , then is
more critical since it is harder to achieve the same
over the longer distance. An estimate of the achievable

Input: � ≡ Net to be routed
≡ Number of clusters

Output: ≡ Routing tree over

1. . Set .
2. for to do
3. Find a tapping point for cluster .
4. Add to and label as the source.
5. Let .
6. Set , ,
 and add to .
7. Compute .
8. Combine all edges and nodes of into tree .

N s0 s1 … sn, , ,{ }=
k
T N

N 1 N 2 … N k, , ,{ } Clustering N s0–()= N 0 s0{ }=
i 1= k

tpi N i
t pi N i tpi

T i TimingDrivenSteiner N i()=
RAT tpi() slack T i()= cap tpi() cap T i()=

tpi N 0
T 0 TimingDrivenSteiner N 0()=

T 0 T 1 … T k, , , T

N 1 N 2 … N k, , ,{ }
N 0

tpi N i
T i N i

T 0
T i tpi

N i s0 tpi
N i N i

T i RAT T i

RAT tpi tpi
T i

N 0 s0 k

(a) (b)

(c) (d)

sDist si s j,()
pDist si s j,() si s j

x si() x s j()– y si() y s j()–+ pol si() pol s j()–
pDist si s j,()

si s j

RAT
si s j

RAT si s0 s j si
RAT

delay to can be used to adjust the . Assuming an
optimally buffered direct connection from to , with
sub-trees decoupled by buffers with negligible input
capacitance, then the achievable delay is equivalent to the
formula for optimal buffer insertion on a two-pin net. Let
the achievable delay be denoted by using the
formula from [1]. Let be the
potentially achievable slack for . Now gives a
better indicator of the criticality of than .

Yet, is still not a good temporal metric.
Assume that the achievable slacks for three sinks are

, , and .
Sink is most critical while and are both non-
critical. Intuitively, is more similar to than to ,
despite the 8 ns difference, because both and have
high positive achievable slack. A temporal metric that looks
at the differences in values cannot capture this
behavior.

The criticality of is given by , where the more
critical sink has and as

, i.e., the criticality of a sink is one if it is most
critical and zero if it is totally uncritical; otherwise it lies
somewhere in between. We define criticality as follows:

 where

, (1)

Here and are the minimum and average
values over all sinks, and is a user parameter.2

Observe that is indeed one when
and zero as goes to infinity. For a sink with
average achievable slack (), then
equals when . An average sink has
criticality much closer to that of a sink with infinite as
opposed to minimum . Now, temporal distance

can be defined as the difference in sink
criticalities, or .

Both temporal and polarity distances are on a zero to one
scale, so spatial distance must be scaled before combining
terms. Let
be the spatial diameter of sinks. The scaled distance
between two sinks can be expressed as dividing by

. Our distance metric is a linear
combination of the spatial, temporal, and polarity distances:

. (2)

The parameter lies between zero and one and trades off
between spatial and temporal distance (we use).
Note that the distance between two sinks with the same
polarity is no more than the distance between two sinks with
opposite polarity which ensures that polarity has precedence
over spatial and temporal distance. This is key to avoiding
the behavior shown in Figure 2(a).

3.3 Clustering
For clustering sinks, we adopt the K-Center heuristic [7]
which seeks to minimize the maximum radius (distance to
the cluster center) over all clusters. K-Center is just one of
several potential clustering methods that could be used to
achieve the purpose of grouping sinks with common
characteristics. K-Center iteratively identifies points that are
furthest away, which are called cluster seeds. The remaining
points are clustered to their closest seed. For geometric
instances, K-Center guarantees that the maximum diameter
of any cluster is within a factor of two of the optimal
solution [7]. The time complexity of K-Center is .

3.4 Timing-Driven Steiner Tree Construction
The timing-driven Steiner tree method is implemented via
the Prim-Dijkstra algorithm [3] which trades off between
Prim’s minimum spanning tree algorithm and Dijkstra’s
shortest path tree algorithm via a parameter which lies
between and . Since Prim’s algorithm yields minimum
wire length (for a spanning tree) and Dijkstra’s yields a tree
with minimum radius, the trade-off is able to capture the
desirable properties behind both extremes.

In our experiments, we run the Prim-Dijkstra algorithm for
followed by a post-processing

algorithm that remove overlapping edges and generates a
Steiner tree. Of the five constructions, the tree which
minimizes the slack at the tapping point is selected.

Certainly, other choices are just as reasonable. In fact, we
speculate that P-Tree [11] would probably improve results
slightly. We chose the Prim-Dijkstra algorithm because it is
simple to implement, efficient and scalable, and because it
outperformed the critical sink construction of [4] in separate
experiments. P-Tree, while likely superior in terms of
quality, is not as efficient, scalable, and easy to implement.

4. Experimental Results
We identified 8 nets on various industrial designs that the
current production-level buffer insertion methodology had
difficulty optimizing. The polarity characteristics and
timing constraints for the nets are summarized in Table 1.

We compare C-Tree to the P-Tree [9] and Prim-Dijkstra [3]
timing-driven tree constructions and also to BP-Tree
(simultaneous buffering and routing) [11]. P-Tree was
shown to yield better timing results than either SERT [4] or
A-Tree [6]. P-Tree actually consists of two algorithms: P-
TreeA seeks to minimize area, while P-TreeAT generates a
family of solutions that trade off between area and timing.
The Prim-Dijkstra algorithm is actually equivalent to “flat”
C-Tree with each sink in its own cluster. For each tree, we
ran van Ginneken style buffer insertion using a library of
five non-inverting and two inverting buffers to generate a
family of solutions. Like P-Tree, BP-Tree also has two
modes which we suffix with either N (normal) or F (fast).

The results are summarized in Table 2. Comparisons for
each net are shown in several rows. The first two rows
contain results for P-TreeAT and P-TreeA, except for the
three largest nets for which P-TreeAT ran out of memory

2 If all achievable slacks are exactly equal, i.e., , then
we define for all sinks .

si RAT
s0 si

AD si()
AS si() RAT si() AD si()–=

si AS si()
si RAT si()

AS si() AS s j()–

AS s1() 1ns–= AS s2() 2ns= AS s3() 10ns=
s1 s2 s3

s2 s3 s1
s2 s3

AS

si crit si()
crit si() 1= crit si() 0→

AS si() ∞→

crit si() e
α mAS AS si()–() aAS mAS–()⁄

=

mAS min1 i n≤ ≤ AS si()= aAS AS si()
1 i n≤ ≤

∑ n⁄=

mAS aAS AS
α 0>

aAS mAS=
crit si() 1= si

crit si() AS si() mAS=
AS si() si

AS si() aAS= crit si()
e α– 0.135≅ α 2=

AS
AS

tDist si s j,()
crit si() crit s j()–

sDiam N() max sDist si s j,() 1 i j n≤,≤||{ }=

sDist
sDiam N() dist si s j,()

βsDist si s j,()
sDiam N()------------------------------ 1 β–()tDist si s j,() pDist si s j,()+ +

β
β 0.65=

O nk()

c
0 1

c 0.0 0.25 0.5 0.75 1.0, , , ,=

T

(on a machine with 2Gb of RAM). The next row is for BP-
TreeN except for the largest test case, for which BP-TreeF
is reported since BP-TreeN ran out of memory. In general,
BP-TreeF inserted about 3 times as many buffers as BP-
TreeN. The next row is “flat” C-Tree or the Prim-Dijkstra
algorithm. The remaining rows for each net are presented
for C-Tree for a decreasing number of clusters to show the
trade-off. For each algorithm, we present the following data:

Table 1 Polarity and temporal characteristics of the 8 nets.
• slack (to the most critical sink) in picoseconds (ps) and

wire length of the tree before buffer insertion,
• the slack (ps) and the number of buffers used for three of

the family of solutions generated. The Min Opt solution
has the minimal buffering needed to fix polarity con-
straints. The Full Opt solution has the maximum slack,
regardless of the number of buffers used, and Mid Opt
reflects a solution in between. The three solutions give a
reasonable view of the trade-off curve generated.

• the slack (ps) and wire length after a post-processing
step on the Full Opt buffered solution. Once buffers are
inserted, some wire length may be eliminated via simple
re-routing. This step tries to reduce wire length without
increasing slack from the Full Opt buffered tree.

• the total CPU time (s) for the entire process (tree con-
struction, buffer insertion, and post-processing). Runt-
imes are for a Sun Sparc Ultra-60 with 2Gb of RAM.

We make several observations.

• For the Full Opt solution, C-Tree was able to find solu-
tions with slacks at least as high as all the other
approaches for at least one clustering (except for n873
for which C-Tree’s slack was inferior by one ps). Some-
times the C-Tree slacks were significantly better (e.g.,
n870, and big1); most of the time the Full Opt slacks
were fairly indistinguishable among the algorithms.

• The fewer clusters used by C-Tree, the fewer the number
of buffers are needed to fix polarity constraints. With
two clusters, one buffer is always sufficient. However,
fewer clusters yields additional wire length. Indeed, two
clusters yields almost double the wire length since two
low-level trees are being routed over the same geometric
space, one to the positive and one to the negative polarity
sinks. When the number of clusters is small, the wire
length does increase significantly.

• The post-processing step did not affect slack much at all,
but occasionally reduced wire length (e.g., for big3).

• P-TreeAT and BP-TreeN are the most inefficient algo-
rithms. P-TreeA is slightly more inefficient than the
Prim-Dijkstra approach, but C-Tree is actually the fast-
est of the three constructions.

• For the larger nets, the other approaches require many
more buffers than C-Tree to find a feasible solution. For
example, P-Tree required 32, 27 and 27 buffers to satisfy
constraints for big1, big2, and big3, respectively. C-Tree
could generally find a solution with slack at least as high
as P-Tree with 4, 6, and 9 buffers, respectively.

• There was not much differentiation in slack among the
algorithms. The tree capacitances are mostly wire domi-
nated causing most buffers to be used to improve delay
instead of decoupling large loads. Nets with some very
high capacitance sinks may prove more “difficult”. Also,
in several cases the highest slack solution was actually
very close to the minimum sink RAT, which is an upper
bound on slack at the source. For difficult instances, one
may wish to alter the objective to capture the benefits of
improving timing to the less critical sinks.

5. Conclusion
We identified a class of buffered Steiner tree instances for
which existing algorithms are inadequate. These instances
have several sinks and varying temporal and polarity
constraints. We proposed the C-Tree algorithm which
utilizes a distance metric that combines spatial, temporal,
and polarity characteristics. Experiments show that C-Tree
obtains results with slack equal to or better than previous
approaches while using fewer buffers. C-Tree can also
trade-off between buffering and wiring resources via the
number of clusters. We hope that this work opens the door
for additional research on these types of difficult instances.

References
[1] C. J. Alpert and A. Devgan, “Wire Segmenting for Improved

Buffer Insertion”, IEEE/ACM DAC, 1997, pp. 588-593.
[2] C. J. Alpert, A. Devgan, and S. T. Quay, “Buffer Insertion

with Accurate Gate and Interconnect Delay Computation”,
IEEE/ACM Design Automation Conf., 1999, pp. 479-484.

[3] C. J. Alpert, T. C. Hu, J. H. Huang, A. B. Kahng, D. Karger,
“Prim-Dijkstra Tradeoffs for Improved Performance-Driven
Routing Tree Design,” IEEE TCAD, 14(7), 1995, 890-896.

[4] K.D. Boese, A. B. Kahng, B. A. McCoy, G. Robins, “Near-
optimal Critical Sink Routing Tree Constructions”, IEEE
Trans. on CAD, 14(12), Dec. 1995, pp. 1417-1436.

[5] C. C. N. Chu and D. F. Wong, “Closed Form Solution to
Simultaneous Buffer Insertion/Sizing and Wire Sizing”, Inter-
national Symposium on Physical Design, 1997, pp. 192-197.

[6] J. Cong, K. S. Leung, and D. Zhou, “Performance-Driven
Interconnect Design Based on Distributed RC Delay Mode,”
IEEE/ACM Design Automation Conf., 1993, pp. 606-611.

[7] T. F. Gonzalez, “Clustering to Minimize the Maximum Inter-
cluster Distance”, Theoretical Comp. Sci., 38, 293-306, 1985.

[8] M. Lai and D. F. Wong, “Maze Routing with Buffer Insertion
and Wiresizing”, IEEE/ACM DAC., 2000, pp. 374-378.

[9] J. Lillis, C.-K. Cheng, T.-T. Y. Lin, and C.-Y. Ho, “New Per-
formance Driven Routing Techniques With Explicit Area/
Delay Tradeoff and Simultaneous Wire Sizing”, 33th IEEE/
ACM DAC, 1996, pp. 395-400.

[10] J. Lillis, C.-K. Cheng and T.-T. Y. Lin, “Optimal Wire Sizing
and Buffer Insertion for Low Power and a Generalized Delay
Model”, IEEE J. Solid-State Circuits, 31(3), 1996, 437-447.

Net
Name

Sinks RAT
+ - Total min max

n873 10 10 20 730 6656
poi3 10 10 20 52 6707
n189 15 14 29 610 6650
n786 18 14 32 97 6704
n870 24 19 43 739 6589
big1 40 48 88 1974 159565
big2 38 41 79 104 65838
big3 34 29 63 1097 40675

[11] J. Lillis, C.-K. Cheng and T.-T. Y. Lin, “Simultaneous Rout-
ing and Buffer Insertion for High Performance Interconnect”,
Sixth Great Lakes Symposium on VLSI, 1996, pp. 148-153.

[12] T. Okamoto and J. Cong, “Buffered Steiner Tree Construction
with Wire Sizing for Interconnect Layout Optimization”,
IEEE/ACM Int. Conf.Computer-Aided Design, 1996, 44-49.

[13] L. P. P. P. van Ginneken, “Buffer Placement in Distributed
RC-tree Networks for Minimal Elmore Delay”, Intl. Sympo-
sium on Circuits and Systems, 1990, pp. 865-868.

Table 2 Summary of experimental results.

Net
Name

Algorithm #
Clusts

Before Opt Min Opt Mid Opt Full Opt Post Process CPU (s)
slack (ps) wire bufs slack (ps) bufs slack (ps) bufs slack (ps) slack (ps) wire

n873 P-TreeAT 1 -788 4358 7 213 9 494 11 547 547 4293 2.6
P-TreeA 1 -780 4321 7 204 9 494 11 547 547 4272 0.4

BP-TreeN 1 ---- ---- 7 151 9 541 10 566 ---- ---- 62.1
C-Tree 20 -769 4272 7 201 9 488 12 536 536 4272 0.2
C-Tree 11 -822 4512 6 194 8 491 11 537 537 4301 0.3
C-Tree 5 -993 5328 2 -92 5 520 9 528 539 5180 0.3
C-Tree 2 -1036 5703 1 -17 4 529 7 546 546 5703 0.4

poi3 P-TreeAT 1 -727 6010 10 -418 12 38 13 40 40 6008 2.0
P-TreeA 1 -727 6008 10 -418 12 36 13 38 38 6008 1.1

BP-TreeN 1 ---- ---- 7 -441 9 38 10 40 ---- ---- 65.1
C-Tree 20 -713 5852 8 36 9 43 9 43 43 6030 0.7
C-Tree 11 -775 6550 5 36 6 43 6 43 43 6248 0.8
C-Tree 4 -860 7501 2 18 3 25 4 31 31 6087 1.2
C-Tree 2 -1155 10823 1 -544 3 16 5 26 26 10823 1.0

n189 P-TreeAT 1 -1235 4963 10 217 12 514 14 560 560 4953 33.8
P-TreeA 1 -1229 4935 11 112 15 486 25 493 494 5033 2.3

BP-TreeN 1 ---- ---- 8 -98 10 419 12 472 ---- ---- 511.4
C-Tree 29 -1230 4937 9 200 12 491 15 510 510 4937 0.5
C-Tree 16 -1271 5134 8 166 10 468 12 533 533 5112 0.5
C-Tree 10 -1519 6314 5 -277 8 538 10 548 548 5576 0.6
C-Tree 2 -1824 7772 1 -880 3 531 6 574 578 7582 0.6

n786 P-TreeAT 1 -816 4958 9 -496 11 56 13 82 83 4896 118.4
P-TreeA 1 -807 4859 11 -494 13 58 15 82 82 4859 3.2

BP-TreeN 1 ---- ---- 9 -422 11 79 13 84 ---- ---- 748.1
C-Tree 32 -807 4859 13 -501 16 50 19 67 67 4859 0.9
C-Tree 15 -847 5308 6 -505 8 51 10 82 82 4971 0.8
C-Tree 7 -884 5718 3 -505 5 67 7 82 82 5294 0.7
C-Tree 2 -1199 9252 1 -619 4 61 6 70 70 9255 1.3

n870 P-TreeAT 1 -2587 4136 18 8 19 84 19 84 122 4119 193.3
P-TreeA 1 -2567 4089 17 49 18 98 19 99 99 4089 4.1

BP-TreeN 1 ---- ---- 13 97 17 288 21 295 ---- ---- 860.5
C-Tree 43 -2677 4061 18 -186 22 -104 26 -101 -101 4061 1.4
C-Tree 17 -2677 4347 7 133 11 245 15 254 254 4297 1.3
C-Tree 9 -2727 4464 6 132 8 241 11 258 258 4386 0.9
C-Tree 2 -3749 7688 1 -1965 5 348 9 355 355 7688 1.5

big1 P-TreeA 1 -932 14734 32 830 40 1083 48 1106 1228 16368 14.9
BP-TreeF 1 ---- ---- 99 1381 98 1479 97 1555 ---- ---- 308.5

C-Tree 88 -162 15798 33 1267 35 1412 37 1416 1416 15798 5.3
C-Tree 30 -844 23866 19 1090 21 1570 23 1595 1595 22230 7.0
C-Tree 12 -1358 30021 6 236 9 1659 12 1682 1682 25550 3.7
C-Tree 2 -982 25985 1 10 4 1660 7 1690 1692 25811 8.7

big2 P-TreeA 1 -1263 8899 27 -461 32 -71 38 -44 -44 8899 4.0
BP-TreeN 1 ---- ---- 20 -201 25 -29 29 -12 ---- ---- 494.6

C-Tree 79 -1258 9018 26 -303 29 -257 31 -255 -142 9226 3.7
C-Tree 49 -1398 10672 21 -442 25 -129 29 -114 -112 9872 2.8
C-Tree 28 -1682 13995 15 -704 22 -74 29 -68 -68 12340 3.2
C-Tree 2 -1614 13199 1 -1118 7 -62 12 -51 -51 13199 3.1

big3 P-TreeA 1 -23 6907 27 867 31 1012 34 1021 1022 6907 1.9
BP-TreeN 1 ---- ---- 19 570 22 1048 25 1055 ---- ---- 199.6

C-Tree 63 0 6966 23 631 26 1024 28 1027 1027 6966 1.8
C-Tree 38 -91 7987 18 871 21 979 23 981 988 7437 1.6
C-Tree 21 -282 10300 11 652 14 1013 17 1021 1022 9422 1.5
C-Tree 2 -264 9965 1 278 5 992 9 1028 1028 9962 0.9

