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ABSTRACT
High performance integrated circuits are now reaching the
100-plus watt regime, and power delivery and power grid
signal integrity have become critical. Analyzing the perfor-
mance of the power delivery system requires knowledge of
the the current drawn by the functional blocks that com-
prise a typical hierarchical design. However, current designs
are of such complexity that it is difficult for a designer to
determine what a realistic worst-case switching pattern for
the various blocks would be in order to maximize noise at
a specific location. This paper uses information about the
power dissipation of a chip to derive an upper bound on
the worst-case voltage drop at an early stage of design. An
exact ILP method is first developed, followed by an effec-
tive heuristic to speed up the exact method. A circuit of
43K nodes is analyzed within 70 seconds, and the worst-
case scenarios found correlate well with the results from an
ILP solver.

Categories and Subject Descriptors
B.7.2 [Integrated Circuit]: Design Aids; B.8.2 [Performance
and Reliability]: Performance Analysis and Design Aids

General Terms
Algorithms, Performance, Design, Reliability

Keywords
Power grid, Supply network, Random walk, Early estima-
tion

1. INTRODUCTION
Power grid noise has become an increasing fraction of the

supply voltage in successive technology generations. The
net effect of this is a reduction in noise margins and an
increase in the variability of gate delays. Some of the major
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causes for this increase can be attributed to increases in
wire resistances and in the currents generated per unit area
from one technology node to the next, which together cause
IR drops on power grids to worsen. Since power grids play
an important role in determining circuit performance, their
accurate and efficient analysis is critical at all stages of the
design cycle.

Several analyzers have been proposed to handle large cir-
cuit sizes efficiently [5][6][7]. All of these deal with the de-
terministic analysis of a power grid for a complete design; in
other words, they assume that the current loads at bottom-
layer nodes are given, and power grid analysis is performed
subsequent to this. On the other hand, [4] proposes to
perform analysis without deterministic current loads, and
instead, uses current constraints to limit possible working
modes, formulating a linear programming problem to find
the worst voltage drops.

This paper is motivated by two issues that have not been
adequately addressed by prior works:

• To efficiently model uncertain working modes
Modern designs operate under a number of power modes,
in each of which a different set of blocks may be on.
This uncertainty can exert a large influence on power-
grid performance. The current loads in our work are
modeled not as constants, but as functions of the work-
ing mode of the chip, and we look at power grid anal-
ysis for these uncertain loads, to find the worst-case
scenario associated with the largest voltage drop.

• To perform early stage analysis The most effec-
tive fixes to the power grid must be made early in the
design cycle, when much of the details of the design
are unknown. If one waits until later in the design
flow, the number of available degrees of freedom for
optimization reduces dramatically. This implies that
it is important to analyze the grid early in the design
process; however, the side-effect of this is that such
analyses must operate under some uncertainty as to
the exact loads.

This paper focuses on power grid design at early stages
of design, under uncertain working modes. The information
that is available at this stage, say, after floorplanning is that
the chip is composed of a number of functional blocks whose
positions are known. One may determine a reasonable es-
timate for current consumed by each block, and based on
the position of a block, its proximity to VDD/GND pads is
known. The number of working modes for the circuit may be



Figure 1: GSRC floorplan n30a.

very large (potentially exponential in the number of blocks),
and it is often not possible to enumerate all such modes. Fig-
ure 1 illustrates a GSRC floorplan [2], a circuit consisting of
30 functional modules. In different working modes, some of
the blocks are active and consuming current, while others
are standing by.

One way to deal with this uncertainty is to perform a
worst-case analysis assuming every block is on. This is
clearly too pessimistic and produces false alarms, since such
a working mode may never occur. Instead, we use some
constraints to limit the analysis to working modes that are
more likely to occur, and find the worst one among them.
Examples of these constraints are:

• A power-limit constraint indicates that a design cannot
consume more than a certain amount of power Pmax.

• A synchronization constraint demands that two blocks
always work together.

• An exclusivity constraint provides that only one of two
RAM blocks may be accessed at a time, or that only
one of three ALUs is active at a time, etc.

Under such constraints, the worst case working mode needs
to be found, in terms of either the largest single-node voltage
drop, or in terms of the largest average voltage drop. If the
specified voltage drop design goal is violated, this must be
fixed by assigning more routing resources to the power grid
and/or moving certain blocks apart from each other. This
type of early-stage optimization can substantially reduce the
risk of later optimizations that may require expensive rip-
up-and-reroutes.

Another example where analysis of a power grid under
uncertainty is also meaningful is the case when there is a
critical noise-sensitive block in the design. For example, a
phase-locked loop is sensitive to VDD noise, i.e., sensitive
to the working mode of circuit units around it, and requires
careful analysis [1]. In this case, the scenario that causes the
largest voltage drop at these specific nodes must be found
to guarantee correct analysis of the unit.

The problem discussed above is formulated in Section 2.
Section 3 presents a heuristic solution. Simulation results
are provided in Section 4, and Section 5 lists our concluding
remarks.

2. PROBLEM FORMULATION
Our approach will be based on DC analysis, as little is

known about circuit waveform details at the early stage,
and it is impractical to perform transient analysis. The DC
analysis of a GND net is formulated as [3]:

GX = I (1)

where G is the conductance matrix for the interconnected
resistors, X is the vector of node voltages, and I is the vector
of current loads. For a VDD net, the right-hand-side vector
also contains perfect VDD sources, but if we look at the
voltage drops, i.e., if we subtract every entry in X by VDD

and reverse its sign, the formulation becomes the same as
equation (1).

To investigate variations in load vector I, we must account
for the origin of current loads. In reality, vector I is com-
posed of contributions from functional blocks, and can be
formulated as:

I = AJIb (2)

where Ib is a k-dimensional vector of block currents, I is
the n-dimensional vector of current loads, A is an n-by-k
matrix, and J is a k-by-k matrix.

At an early stage of the design, only block-level estimates
of the currents are available. Since these blocks are large and
may cover many nodes of the power grid, typically k � n.
The matrix A is an incidence matrix that describes the dis-
tribution of block currents, with each column corresponding
to a block, such that the sum of all entries in a column is
one. For example, if the non-zero entries in a column of
A is {0.1, 0.7, 0.2}, the current drawn by this block is dis-
tributed among three nodes in power grid, each with 10%,
70% and 20% of the total current respectively. In reality,
the block size is much larger than three: for instance, an
SRAM would be distributed over hundreds of sink nodes for
the power grid. In the early design stage, matrix A can be
constructed by assuming uniform distribution of block cur-
rents among nodes of each block, or, if we have more specific
knowledge of the structure of a block, certain patterns can
be assumed in the corresponding column of matrix A.

Each entry in I could consist of contributions from more
than one block, because each bottom-layer node in the power
grid typically provides power for multiple logic gates that
could belong to different functional modules. Also, leakage
current contributions can be considered as a block that is
always on and contributes to every entry in I.

If all blocks were always on, then J would be an iden-
tity matrix. However, this is typically not the case: for
instance, if it is known that the maximum operating power
for a circuit is Pmax, which is less than the sum of the power
dissipated by all blocks, then clearly, we know that all blocks
cannot be on simultaneously. Therefore, realistically, J is a
diagonal matrix with jr,r = 1 if a block is on and jr,r = 0
otherwise. Different J matrices represent different working
modes of the circuit, and hence model the source of uncer-
tainty.

Our approach is superficially similiar to [4] in terms of us-
ing upper bounds to constrain the maximum current drawn.



However, unlike that approach, which solves the power grid
late in the design process when much more information is
known, we solve it under early uncertain conditions. Also,
[4] uses a U matrix to model current constraints provided by
the designer, and formulates a continuous linear programing
problem. On the other hand, in our approach, we account
for the origin of uncertainty and use jr,r as the 0-1 integer
variables to be optimized.

The solution to the system of equations (1) is therefore:

X = G−1AJIb (3)

Our objective is to find the matrix J that causes the largest
value in solution vector X, either for its maximum entry or
for the average of its entries, under certain constraints. The
ith entry in equation (3) can be written as

xi =

k∑
r=1

crjr,rbr (4)

where k is the number of blocks; jr,r is the rth diagonal
entry of matrix J , with value 1 when the rth block is on, 0
when it is off; br is the rth entry of vector Ib, i.e., the total
current of the rth block; cr’s are constant coefficients from
equation (3).

The power-limit constraint mentioned in Section 1 be-
comes:

n∑
i=1

(JIb)i≤
Pmax
VDD

(5)

A synchronization constraint of multiple blocks being on and
off together can be incorporated by considering these blocks
as one single block, although they might be physically apart
from each other. An exclusivity constraint that specifies
that only one out of l blocks is active can be written under
this notation as

jr1,r1 + jr2,r2 + · · ·+ jrl,rl ≤ 1 (6)

where r1, r2, · · · , rl are indexes of those blocks.
The estimation problem can now be set up as an integer

linear programming (ILP) problem as follows:

maxxi =

k∑
r=1

crjr,rbr (7)

subject to

n∑
i=1

(JIb)i ≤
Pmax
VDD

jr1,r1 + jr2,r2 + · · ·+ jrl,rl ≤ 1

Note that synchronization constraints are implicitly included
in assigning the blocks.

So far we have been dealing with the situation where each
block has only two modes: it is either off or consuming a
current amount given by the corresponding entry in Ib. Now
if we consider the case where each block has multiple working
modes, when some blocks are consuming maximum currents,
others may be also on, but in a low-consumption working
mode. This is can be modeled by multiple Ib vectors that
represent possible patterns. By constructing and solving an
ILP problem (7) for each Ib vector, we have a set of worst
case xi values, and the largest one among them is the real
worst case for this node.

Conceptually, the worst case working mode of the entire
circuit can be determined as follows. After constructing

and solving the ILP formulation for every entry in vector
X, a worst-case J matrix can be found for every node in
the circuit, as well as its worst-case voltage drop. Then,
if we pick the largest among these voltage-drop values, the
corresponding J matrix is the worst-case working mode for
the whole circuit, in terms of the largest single-node voltage
drop. If we are interested in the average voltage drop, we
can use the sum of equation (4) from all nodes as the object
function, and solve the resulting ILP problem for the worst
case J matrix.

In early power grid performance estimation, G is the global
supply network, which corresponds to the top two or three
metal layers. Simulating industrial circuits shows that ma-
jor voltage drop occurs at the top few metal layers, and
therefore the voltages at second or third layer nodes have
fidelity on what will happen in a complete design. In fact,
for our benchmark in its complete design, a worst case DC
analysis shows that the average voltage drop at the bottom
layer is 15mV, the average drop at the third metal layer is
8.6mV. Although this assumption will control the dimension
of G, it will still be very large.

The large size of G is one reason that affects the evalua-
tion of equation (4) since the coefficients cr require a knowl-
edge of G−1, and are expensive to compute. Secondly, when
the number of blocks is large, the dimension of J is corre-
spondingly large, which implies that the number of integer
variables may be prohibitive for an ILP solver. For these
reasons, it is impractical to construct equation (4) for every
node and use a ILP solver to find the exact solution.

In the next section, we propose a heuristic method to find
a near-worst J matrix.

3. HEURISTIC SOLUTION
The proposed algorithm is built on the power grid ana-

lyzer of [6], which is a statistical algorithm with complexity
linear in circuit size, and it has the feature of localizing com-
putation. This makes it especially useful when only part of
the grid is to be analyzed.

The algorithm in [6] constructs a random walk “game” to
model a linear equation set such as equation (1). Given a
finite undirected connected graph representing a street map,
a walker starts from one of the nodes, and goes to one of the
adjacent nodes every day with a certain probability. The
walker pays an amount of money to a motel for lodging
everyday, until he/she reaches one of the homes, which are
a subset of the nodes. If the walker reaches home, his/her
journey is complete and he/she will be rewarded a certain
amount of money. The problem is to find the gain function:

f(x) = E[total money earned |walk starts at node x] (8)

It is proven that f(x) is equal to the voltage at the corre-
sponding node x in the power grid. Therefore a node voltage
can be estimated by performing a certain number of walks
and computing the average money left in those experiments
[6].

In the case of equation (1), the award for reaching home is
zero, and the estimated f(x) is essentially the average motel
expenses in one walk. Thus, the estimated voltage can be
written as

Vestimate =

∑
motel i nimi

M
(9)

where M is the number of random walks, mi is the price of



motel i, ni is the number of days that the walker has stayed
in motel i. The price of a motel is a function of the current
load at the corresponding node in the power grid, as shown
below:

mi =
Ii∑degree(i)

j=1 gj
(10)

where Ii is the current load at node i, degree(i) is the num-
ber of resistors connected to node i, and gj ’s are the conduc-
tances of these resistors. Therefore, we can rewrite equation
(9) as a linear function of current loads:

Vestimate =

∑
node i αiIi

M
(11)

where αi =
ni∑degree(i)

j=1 gj

Then we substitute equation (2) into equation (11), and
equation (11) becomes a linear combination of block cur-
rents:

Vestimate =

∑k
r=1 βrjr,rbr

M
(12)

where βr =
∑
node i

αiai,r

Here, jr,r and br are as defined in equation (4), ai,r is the
(i, r) entry of matrix A. Equation (12) is an approximation
to (4).

The flow of proposed heuristic algorithm is as follows:

1. Run p random walks from node x, where p is an integer
parameter. Instead of calculating the walk results, we
keep track of the motels [corresponding to power grid
nodes] visited.

2. By the procedure from equation (9) to (11) (12), ob-
tain coefficients {β1, β2, · · · , βk}.

3. Sort {β1, β2, · · · , βk}. Repeat the above process until
this sorted sequence does not change any more, ac-
cording to a stopping criterion described at the end of
this section.

4. Greedily activate blocks one by one. Each time, acti-
vate the block with the largest β coefficient that does
not violate constraint (5) or (6), until no more blocks
can be added to the active block list.

Note that the first three steps are independent of the ac-
tual current loads of the blocks. In the case where multiple
Ib vectors are considered, the algorithm only needs to go
through the first three steps once, and simply repeats step
4 for each Ib vector. Thus the extra computational cost is
low.

The generated J matrix is a near-worst-case J matrix, in
terms of the voltage drop at node x. When entries in vector
Ib have different values, this problem is similar in flavor to
the bin-packing problem, and the proposed heuristic does
not guarantee optimality. However, since entries in vector Ib

have similar order of magnitude, it is likely that the degree
of suboptimality is minor.

The above process provides a heuristic that aims to find
the worst-case J matrix for a specific node in the power grid.
This procedure can be adapted for several global objectives:

• If the objective is to find the worst-case J matrix
that causes the largest maximum voltage drop in the
whole circuit over all working modes, we can apply the
heuristic to every node, and then, among the J ma-
trices and voltage-drop values obtained, we pick the
largest voltage-drop and its associated J matrix.

• If the objective is to find the worst-case J matrix that
causes the largest average voltage drop in the circuit
over all working modes, we can modify step 1 of the
heuristic to run a random walk from every node in the
circuit, and the outcome would be the near-worst-case
J matrix for average voltage drop.

In any case, a stopping criterion is required for step 3
of the proposed heuristic. In our implementation, p = 10,
i.e., we check convergence after every 10 random walks, and
look at a portion of the sorted β sequence, starting from the
largest β’s, such that the sum of the corresponding block
currents is equal or less than 2Pmax

VDD
. If this portion of the

sorted sequence does not change after 10 walks, the algo-
rithm claims convergence. When the number of blocks is
large, it takes a long time to converge when there is no
change in the sorted sequence. However, our primary inter-
est is which blocks are active, and not the precise significance
ranking of each block. Therefore, we loosen the stopping cri-
terion to save unnecessary runtime, by defining a tolerance
as T = d k

20
e. If the position change of every block after 10

walks is less than T , the algorithm claims convergence.

4. RESULTS
We use an industrial power grid and GSRC floorplans [2]

to evaluate the proposed heuristic. The results are com-
pared against exact solutions produced by an ILP solver,
and results from a pessimistic analysis. All computations
are carried out on a 2.8GHz P4-based Linux workstation.

Our power-grid benchmark is the top three layers of an in-
dustrial VDD net. It has 43,473 nodes, among which 19,395
third-layer nodes are to be analyzed. The total power is
26W if all circuit components are switching and consume
maximum current, which includes 8W of leakage power that
is assumed to be always on. The actual power limit is as-
sumed to be 16W; in other words, since this includes 8W
of leakage power, this implies that the active blocks cannot
consume more than 8W switching current. The nominal
VDD is 1.2V. Six GSRC floorplans [2] are mapped onto this
power grid, and third-layer current loads are grouped into
blocks accordingly in each floorplan. Block boundaries are
adjusted such that there are no white space with uncovered
current loads. After we obtain one Ib vector for each floor-
plan, by multiplying random numbers between 0.5 and 1.5
to the entries of Ib, we generate four extra Ib patterns for
each of the six cases. Because we are unable to obtain func-
tional description of floorplan blocks, we arbitrarily assign
exclusivity constraints. The number of constraints for each
floorplan is up to 21.

The comparison of largest single-point voltage-drop anal-
ysis using different strategies is shown in Table 1. In order to
study the performance of the proposed heuristic method in
finding J matrix without interference of error from any other
estimation step, we substitute the produced J into equation
(3), use a direct linear solver to solve (3), and list the max-
imum entry of the solution vector in the fourth column of



Table 1: Comparison of analysis methods for the largest single-point voltage-drop.
Floorplan Number Heuristic Heuristic ILP exact Pessimistic

of blocks runtime(s) result(mV) result(mV) result(mV)
n10a 10 48.33 234.4 234.4 250.8
n30a 30 49.00 274.2 274.3 304.3
n50a 50 49.53 190.9 191.0 247.4
n100a 100 51.42 223.3 223.5 236.7
n200a 200 56.66 238.2 240.4 266.0
n300 300 66.38 282.1 283.4 303.4

Table 2: Numbers of node-voltage violations reported by the proposed heuristic and the pessimistic analysis.
Floorplan n10a n30a n50a n100a n200a n300
Heuristic 113 120 44 69 91 91
Pessimistic 181 163 72 95 124 137

Table 1. For this circuit size, it is already impractical to
construct and evaluate the ILP equation (4) for every node.
The ILP results listed in the fifth column are the exact an-
swers by ILP analysis for the 50 highest-drop nodes found
by the proposed heuristic. The last column is the result by
solving equation (3) assuming J to be an identity matrix,
i.e., assuming that all blocks are active. All three method-
ologies consider the five Ib patterns for each floorplan, and
report the worst among the five results.

In Table 1, there are noticeable differences between con-
strained analysis and pessimistic analysis. This difference
depends on the details of the most power-intensive region of
the chip. For floorplan n50a, the largest voltage-drop node
happens to be close to a corner of its block, and these two
neighboring blocks have an exclusivity constraint. Conse-
quently, we see a 56mV overestimate by the pessimistic anal-
ysis. Although there may not be an exclusivity constraint
in the power-intensive region of every chip design, the pos-
sibility of existence of such constraints makes the proposed
heuristic superior to pessimistic analysis, thus avoiding false
alarms, and consequently, ensuring that routing resources
are not wasted. Figure 2 shows the working mode corre-
sponding to the J matrix found by the proposed heuristic
for floorplan n30a.

Table 2 shows the comparison of number of node-voltage
violations reported by different strategies, when the voltage-
drop threshold is 80mV. In most cases, about one third
of the violating nodes reported by pessimistic analysis are
found legal by the proposed heuristic.

Table 3 shows the comparison of average voltage-drop
analysis using different strategies. All results are for the
average of 19,395 third-layer nodes. In this case, because
only one ILP is required to be formulated and solved for
each floorplan with each Ib vector, the fifth column is the
exact solution. In both Table 1 and Table 3, results from
the proposed heuristic correlate well with those from ILP
solver.

5. CONCLUSION
The problem of early-stage power grid analysis under the

uncertainty of different working modes is investigated in this
paper. A random-walk based heuristic algorithm is proposed
to find the worst-case scenario. The method is tested on in-
dustrial circuits and is demonstrated to find the near-worst-
case working mode with low runtime.

Figure 2: Near-worst working mode of GSRC floor-
plan n30a found by the proposed heuristic. The
black dot marks location of the largest voltage drop.
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