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Abstract
High level synthesis (HLS) is often employed as a frequently

called kernel in design space exploration (DSE).Therefore, its non-
trivial runtime becomes a bottleneck that prevents extensive solu-
tion search in DSE. In this work, we develop amapping-basedHLS
technique that is fast and friendly to local incremental changes.
It exploits the static-single assignment (SSA)-form intermediate
representation (IR), starts with direct mapping from the IR to a
fully pipelined circuit and performs incremental resource sharing
in an iterative manner, which then alters the fully pipelined cir-
cuit to a partially pipelined or nonpipelined circuit. An algorithm
is also proposed for automatic synthesis of pipeline interlocks to
avoid structural hazards incurred by resource conflicts. Experi-
mental results show that the proposed method is fast without loss
of circuit performance in terms of throughput.

1. Introduction
High-level synthesis (HLS), which automatically synthesizes

designs from high-level languages to implementations in register-
transfer level (RTL), has been increasingly adopted by designers,
especially for FPGA synthesis. Since the FPGA has become a pop-
ular platform for high performance computing, such as that in
FPGA-based accelerators [1], HLS plays a central role in bridging
the gap between algorithms written in high-level languages, such
as C/C++ [2–5] and Haskell [6, 7], and RTL designs specified in
hardware description languages (e.g. Verilog HDL and VHDL).
The C/C++-based HLS usually spends a lot of effort on resource-
constrained optimizations and loop transformations. The HLS
with Haskell, quite different from the C/C++-based HLS, pays lit-
tle attention to loops due to the functional programming nature
of Haskell. The C/C++-based HLS has more mature frameworks,
such as Vivado HLS [3] and LegUp [2]. Our work is C-based HLS
and thus it is compared with C/C++-based previous works.

Despite the tremendous progress on HLS technologies, C/C++-
based HLS still requires complex configuration of constraints
and pragma/directive insertions in the high-level language source
code. For designers, it is very hard to control the architecture and
predict the performance and cost of synthesized RTL designs ac-
cording to these parameters of constraints and pragmas before
a complete run of HLS. In practice, due to the poor controllabil-
ity and predictability, HLS is more often employed as a solution
evaluation kernel frequently called in design space exploration
(DSE), which searches for parameters that lead to the optimized
designs [8–13]. Although HLS is much faster than logic and phys-
ical synthesis, the entire runtime of HLS-based DSE is very slow.
By attempting many possible combinations of constraints and
pragma parameters, a DSE can easily run for hours to days. The
nontrivial HLS runtime is mainly caused by the optimization pro-
cess in most C/C++-based HLS frameworks, which usually calls
a mathematical optimization solver to solve the models including
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one or more of integer linear programming (ILP) [14], linear pro-
gramming (LP) [15] and boolean satisfiability problem (SAT) [16].

In this work, we propose a fast mapping-based HLS technique
that is friendly to local incremental design and with particular
support to pipelined circuit synthesis and parallel processing. In
stead of constrained optimization via optimization engine such
as ILP and LP, our approach first directly maps a static-single
assignment (SSA)-form intermediate representation (IR) onto a
fully pipelined circuit with temporary relaxation of resource con-
straints. To facilitate the fastmapping, we propose a new datapath
control synthesis leveraging theΦ function used in SSA IR [17] in-
stead of the conventional finite-state machine based approach. If
there is resource constraint violation after the mapping, resource
optimizations are performed to achieve resource sharing in an it-
erative manner. The iterations can proceed till the circuit is only
partially pipelined or even without pipelining, depending on de-
sign needs. The resource relaxation and Φ function based data
path control help fast HLS, while the iterative resource optimiza-
tion allows local incremental modifications.

Resource sharing in a pipelined circuit may lead to structural
hazards. In conventional HLS, this problem is solved by regu-
lating the input data patterns according to interval pragmas in
source code and different pragmas may result in quite different
levels of resource sharing. We solve this problem through a new
approach of automatic interlock synthesis, which can remove the
requirement of regulated input patterns and fits well with our it-
erative resource optimization procedure. As such, we can achieve
explicit control on resource sharing as opposed to the conven-
tional trial pragma approach. To the best of our knowledge, this
is the first work on automatic pipeline interlock synthesis. Per-
haps the only remotely related work is [18], where local clock
gating for interlocked pipelines is studied and the large wire de-
lay of stall signals is addressed by two-phase transparent latches
or master-slave flip-flops.

The major contributions are summarized as follows.
(1) We propose a fast mapping-based high-level synthesis tech-

nique, which is an order of magnitude faster than a state-of-
the-art commercial HLS tool.

(2) A new dataflow control synthesis approach based on the
Φ function is developed. It plays an important role in the
mapping-based HLS.

(3) An iterative resource optimization method is developed. It
supports interlocked pipeline synthesis, which does not re-
quire data input regulation and helps reduce trial runs of HLS.

2. Background on SSA Form
SSA (Static Single Assignment) [17] is a form of intermediate

representation (IR) used in compilers for helping code optimiza-
tions. A variable in SSA is assigned value exactly once. If a vari-
able needs to be assigned value more than once in a program, a
new renamed variable is created corresponding to each value as-
signment. In SSA form, expressions like i = i+1 would virtually



become i2 = i1 + 1. Then, variable i might cause the use of two
different registers corresponding to i1 and i2, respectively. As a
small yet complete example, code 1 can be transformed to LLVM
IR [19] in code 2.

The labels such as “if.then:” divide a function in the IR into
several basic blocks. All instructions in LLVM IR lie in a certain
basic block. The label marks the starting point of a basic block,
which is terminated by terminating instructions such as br and
ret. For example, lines 9-11 in code 2 form a basic block. Each
function has an entry basic block, which has no preceding ba-
sic blocks. Other basic blocks always have at least one preceding
basic block. The br instruction has labels as arguments, which
determine the succeeding basic blocks to enter. All these basic
blocks within a function and their preceding/succeeding relation-
ships constitute a directed graph.

1 int br(int a, int b){
2 a = a + b ;
3 if( a > 0 ) b = b + 1 ;
4 else b = b - 1 ;
5 return b ;
6 }

Code 1: Simple C program with a branch.

Since each original variable has different names for every dif-
ferent values it may have during its lifetime, it is mapped to dif-
ferent registers for newly assigned values. These registers can be
naturally used as pipeline registers that divide a computing flow
into multiple pipeline stages.

One key problem for the SSA transformation is that when two
branchesmerge afterwards, the programmay need to select which
renamed variable (or register) from the two branches to use, since
theymay belong to the same variable in the original program. The
function that makes the selection is traditionally called phi or Φ
function in literatures related to SSA. The work of [20] proposed
an efficient algorithm to decide where to insert Φ functions.

1 define i32 @br(i32 %a, i32 %b) #0 {
2 entry:
3 %add = add nsw i32 %a, %b
4 %cmp = icmp sgt i32 %add, 0
5 br i1 %cmp, label %if.then,label %if.else
6 if.then:
7 %add1 = add nsw i32 %b, 1
8 br label %if.end
9 if.else:
10 %sub = sub nsw i32 %b, 1
11 br label %if.end
12 if.end:
13 %b.addr.0 = phi i32 [ %add1, %if.then ],
14 [ %sub, %if.else ]
15 ret i32 %b.addr.0
16 }

Code 2: Code 1 compiled to LLVM IR by clang -emit-llvm and
optimized by LLVM optimizer opt with -mem2reg, memory to register
promotion which promotes scalar variables from the stack in memory to
registers, removes LLVM instructions such as load, store, alloca, and
adds appropriate phi (Φ) functions.

3. Phase I: Mapping
Before HLS, the input C language code is first fed to the “clang”

compiler that performs optimizations, such as register promotion,
loop unrolling and dead code elimination, and generates LLVM
IR. Then, our HLS starts with the mapping phase that conducts
scheduling, resource binding, and datapath control generation in
one pass scan of the SSA form based LLVM IR. The IR is directly
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Figure 1: The storage binding for code 2. The circuit is divided into
pipeline stages indicated by dashed horizontal lines. Each black font
name corresponds to one register in code 2 and each gray font name
indicates a newly added register for pipeline synchronization or control.
Every variable has one pipeline register storing its value. The registers in
dashed rectangles, except Phi, are for data synchronization in the
pipeline. On FPGA, these registers can be implemented by configuring
look-up tables (LUT) to shift registers and thus have low cost [21].

mapped to a fully pipelined circuit with high throughput or in-
put data rates. Resource constraint is temporarily relaxed in this
phase such that the mapping can be finished in linear time.

3.1. Scheduling
Scheduling determines the relative start time for operations or

computing tasks obeying data and control dependencies. Since re-
source optimizations are deferred to next phase, we choose the as-
soon-as-possible (ASAP) scheduling, which has linear time com-
plexity and can be easily integrated in the one pass scan of the
LLVM IR.

Before scheduling, one needs to estimate the delay or number
of clock cycles for each operation. If the operations that require
multiple clock cycles to finish are not pipelined, they would cause
additional computing latency in the synthesized circuits. To sim-
plify the synthesis, all the LLVM IR instructions performing ac-
tual computing tasks such as add and sub are assumed to take
one clock cycle. Some trivial operations such as sext, the sign
extension operation, and trunc, the truncation operation, are set
to zero clock cycle, since they do not form a pipeline stage by
themselves and can be inserted into the datapath with negligible
latency overhead.

After the computing delay estimation, a control data flow graph
(CDFG) is obtained to capture operation dependencies. The SSA
form is originally used for control data flow analysis in compilers
and thus the SSA form based LLVM framework already builds a
dependence graph of instructions in the IR, which can be reused
for CDFG. Therefore, the ASAP scheduling is performed on the
instruction dependence graph of the parsed LLVM IR. Each in-
struction is assigned to the first available step or pipeline stage.
No two sequentially dependent LLVM instructions are assigned to
the same stage (e.g. the addition preceding %add and the compar-
ison before %cmp in Figure 1 are sequentially dependent), other-
wise clock frequency must be reduced. On the other hand, a low
frequency design with less registers can be obtained by merging
some pipeline stages by simply removing the pipeline registers.
For instructions with two or more inputs, often one input has data
available several cycles earlier than the other inputs. Then, the in-
put receiving data early requires additional pipeline stages using
shift registers like variable %b in Figure 1. Every basic block has a
starting pipeline stage to synchronize the data from its precedent
basic blocks.



3.2. Storage Binding for Scalar Variables
In this mapping phase, the storage binding for scalar variations

is straightforward. Each renamed scalar variable in the SSA form
is bound to one register. If the value of a variable is propagated to
later pipeline stages without computing operations, like variable
%b in Figure 1, it is bound to a shift register. Otherwise the variable
is bound to a discrete register. On FPGA, shift registers can be
realized by configuring look-up tables (LUTs) such that a low cost
is enjoyed [21]. For example, the pipeline registers of value %b in
Figure 1 cost 32× 2 = 64 flip-flops, which would occupy 32 slices
but only use 32/2 = 16 slices if implemented in LUTs (assuming
there are 2 flip-flops and 2 LUTs in each slice of Xilinx FPGAs).

In Figure 1, each solid rectangle represents a discrete register,
and each instruction that assigns a value in the LLVM IR has a
distinct register allocated to store the value. Therefore, registers
are never shared across different variables, or different values of
the same variable in the original C program during its lifetime.
Without register sharing, pipelining is well supported. At each
moment, registers at different levels can store values of differ-
ent program runs with different inputs. For instance, in Figure 1,
%b.addr.0 can be storing the final result of the first set of %a and
%b. At the same time, %add1 and %sub are storing the intermediate
results of the second set of inputs, %cmp and %b.2 are storing the
intermediate results of the third set of inputs, and %add and %b.1
are storing the intermediate results of the fourth set of inputs.

3.3. Datapath Control
Datapath synthesis involves assigning multiplexers to select

appropriate inputs for some operations. Existing works such as
[5,22] often use a finite-state machine (FSM) to control such mul-
tiplexing. Pipeline stages are recorded as the FSM states. If there
is no br instruction or other branch instructions (e.g. switch in
LLVM IR), the next states of the FSM are statically determined
without inputs to the FSM. If there are branches, the next states
are decided dynamically according to the branch variables. In a
fully pipelined circuit like our case, there are many pipeline stages
that make the FSM design rather complex.
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Figure 2: Details of the shaded region in Figure 1 (stage 2 and 3). The
AND operations require that the enable signals such as %if.then.3 are
replicated to have the same bit-width as the arithmetic operations. The
dashed arrows and boxes indicate an alternative implementation of the Φ
function where an enable signal resets the register in a dashed box (with
synchronous active-low RST) such that the value is zero and the
corresponding AND operation can be avoided.

We propose a new flow control method that dovetails with
pipelined circuits as well as our mapping procedure. It directly
maps the Φ functions in SSA-form IR to control circuits. An ex-
ample of implementing theΦ function in Figure 1 is shown in Fig-
ure 2. The variable %cmp is extracted to enable signals %if.then
and %if.else, which are propagated to the next pipeline stage as

%if.then.3 and %if.else.3, respectively. The AND and OR opera-
tions with %add1 and %sub basically select the result from the two
arithmetic operations. Alternatively, one can reset one operation
register, e.g. %add1, if corresponding enable signal is false. In this
alternative approach, registers %if.then.3 and %if.else.3 can
be omitted.

We describe the Φ function based flow control for a C language
function using code 2 as an example. If the enable signal is 1 for
the entry basic block, which starts with entry: in code 2, the in-
puts to this C function is available. If the circuit is fully pipelined,
the input can be fed to the function continuously and the enable
signal is 1 continuously as well. For non-entry basic blocks, their
enable signals are determined by the operands of branch instruc-
tions like br. For example, one br may have one variable operand
and two label operands. It selects the basic block marked by the
first label if the variable has value 1, and otherwise selects the
basic block marked by the second label. If br has only one label
operand, it always selects the labeled basic block, and behaves like
a jump instruction in assembly language.

The enable signal for each basic block is propagated through
the entire block. For example, there is an enable signal (%entry)
propagated through the basic block of lines 2-5 in code 2. The
enable signal %if.then for basic block of lines 6-8 is 1 when the
enable signal %entry.2 is 1 and the br in line 5 selects basic block
with label %if.then:.

3.4. Loops
In this phase, no loop unrolling is performed, since it can be

done more easily by the compiler front-end during the IR gen-
eration. For loops not unrolled, dynamically or at runtime the
variables within loop bodies in the SSA-form IR might still be as-
signed different values multiple times. The name of “Static Single
Assignment” just means the variables are assigned exactly once
only statically at compile-time or literally in the SSA-form IR.

The loops, which result in cycles in the CDFG of the IR, are
mapped directly to Verilog HDL from the SSA form, implying
sharing both the registers and operators within the loop bodies
by executing themmultiple times (e.g., Figure 3(c) is equivalent to
a loop adding 1 for five times), which inevitably causes pipeline
hazards. How to avoid these hazards incurred by resource sharing
is provided in Section 4.

4. Phase II: Resource Optimization
After the mapping phase, if any resource constraint is violated,

our HLS proceeds with the resource optimization phase. Other
than explicit resource sharing via a loop, operations of the same
type in different pipeline stages can share the same operator or
functional unit. In this optimization phase, resources are incre-
mentally shared in an iterative manner so that the resource usage
is lowered in sacrifice of input data rates. When resources are
shared in pipelined circuits, the conflict of operations in different
pipeline stages trying to use the same operator inevitably causes
structural hazards. The hazards also exist in pipelined micropro-
cessors such as MIPS, which are usually solved by interlocked
pipelines. A simpler option used by MIPS is inserting NOP instruc-
tions, which create bubbles in the pipelined microprocessors, by
compilers or manually in the assembly code. Then, pipeline inter-
locking is not needed.

In this phase, both corresponding methods are supported: the
manual insertion (or by something like a FIFO) of bubbles in
the input stream, similar to the NOP insertions, is trivial; Other
than that, automatic synthesis of the stall and bubble signals for
pipeline interlocking is also provided.



4.1. Iterative Resource Sharing
The number of possible combinations of sharing is very large

and with the number of operations increasing, grows even faster
than exponentially. To implement m distinct operations with n
identical operators, where m ⩾ n > 0, the number of possible
sharing combinations is equal to the number of ways to partition a
set of sizem into n non-empty subsets, known in combinatorics as
Stirling numbers of the second kind or {m

n
}. Then, the total number

of possible combinations of sharing form distinct operations with
any number of identical operators is

Bm = {m
0
}+ {m

1
}+ {m

2
}+ · · ·+ {m

m
} =

m∑
k=0

{m
k
}

where Bm is the mth Bell number, huge even for a small m. For
example, B19 = 5, 832, 742, 205, 057.

Although the number of possible combinations of sharing
is very large, lots of them are illegal (e.g., operations in the
same pipeline stage) or impossible to implement with interlocked
pipelines. In this work, we choose a representative subset of all
possible combinations of sharing, where operations sharing the
same operator can be iteratively added and the pipeline interlocks
can be added accordingly without causing deadlock. The opera-
tions need to be evenly distributed in different pipeline stages.
Formally, if the pipeline stages are numbered starting from 0, ac-
cording to the order of input to output like that in Figure 1, 3 and
4, then we can define that a list OP = {op0, op1, . . . , opN−1} ofN
operations is a periodic sharing list, if and only if

∀m,n ∈ {0, 1, 2, . . . , N − 1} ∃K ∈ N∗ :

stage(opm)− stage(opn) = K · (m− n) (1)

whereK is a positive constant integer indicating the period of the
periodic sharing list, and stage(opn) represents the number of the
pipeline stage of opn. Equation (1) implies

stage(opm)− stage(opn) = 0 ⇔ m = n (2)
stage(opm)− stage(opn) ≡ 0 mod K (3)

We define that an empty list and a list with only one opera-
tion are also periodic sharing lists. If the operations in a peri-
odic sharing list all share the same operator, the maximal asymp-
totic data rate without causing structural hazards will be f/N ,
where f is the clock frequency. Note that N is not the same as
the initiation interval, which is the number of clock cycles be-
tween the start times of two consecutive valid inputs. Only when
K = 1, they are equal. For example, If K = 3 and N = 3, an
input stream of the enable signals without structural hazards will
be 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, . . . . . . . The pat-
tern cannot even be specified by the function initiation interval
pragma (#pragma HLS PIPELINE II=X).

Figure 3 shows a special example of iterative resource sharing,
where the periodK is 1. The operations are iteratively added to a
periodic sharing list with period 1. Figure 3(b) shows the circuit
when two operations are in the sharing list; Figure 3(c) shows the
circuit when all operations are added to the sharing list. Note that
the multiplexers in Figure 3(c) can be simplified to only one multi-
plexer, like the implementation of a loop, for this special periodic
sharing list where the output of opn is the input of opn+1.

4.2. Pipeline Interlock Synthesis
Resource sharingmay hinder pipelining and lower the through-

put. If the input data rate is already lowered with bubble insertion
in the input stream, no pipeline hazards would occur. Otherwise,
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Figure 3: Example of resource sharing: the enable signals, similar to the
%entry in Figure 1, are initialized to 0. (a) The original circuit with no
sharing. (b) Two operations sharing the same one adder. This shared
adder selects inputs according to the enable signal. The enable signal
asserts when the corresponding input is valid. If the enable signals do
not assert consecutively, there is no structural hazard. A bubble needs to
be inserted between two consecutive valid inputs to avoid hazards. (c)
All operations sharing the same operator, equivalent to a loop adding 1
for five times.

Algorithm 1:Update the stall, the bubble and the in-
put signals of the operator to be shared, after adding
an operation to a periodic sharing list sharing the
same operator.
Data:
OP ← {}, N ← 0
K ← the period of the periodic sharing list OP
IT ← 1 i.e., VDD
{INi} ← undefined wire signals
STALL← an undefined wire signal
BUBBLE ← an undefine wire signal
Input:
op, the operation to share the same operator with operations in
OP
Results: Updated STALL,BUBBLE,OP,N, IT, INi

if N = 0 then
OP ← {op0 = op}
N ← N + 1
foreach INi do

INi ← INi(op)
end

else if stage(op) - stage(opN−1) = K then
OP ← {op0, op1, . . . , opN−1, opN = op}
N ← N + 1
foreach INi do

INi ←MUX{en[stage(op)− 1], INi, INi(op)}
end
IT ← OR{IT, en[stage(op)− 1]}

else if stage(op) - stage(opN−1) ̸= K then
Illegeal op

end
if op is legal and N ≥ 2 then

STALL← AND{IT, en(stage(op0)− 1)}
BUBBLE ← AND{NOT (IT ), en[stage(op0)− 1]}

end

the circuit cannot work correctly without proper pipeline inter-
locks.

The even distribution condition of the periodic sharing list de-
fined in (1) guarantees that if there is only one periodic sharing list
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Figure 4: Example of interlocked pipelines for the same example in
figure 3: (a) two operations sharing one operator. (b) another operation
added to the periodic sharing list sharing the same operator with the two
operations in (a). The IN(a) and IT (a) are the same as the IT and IN
in (a) and are updated with Algorithm 1.

sharing the same operator, the resource conflicts could only hap-
pen between the op0 and one of the remaining operations in the
list at a certain clock cycle and no deadlock would happen. This
property substantially reduces the complexity of the pipeline in-
terlocking. The stall signal and the bubble signal are only needed
for the operation op0. However, if there are multiple periodic
sharing lists, each sharing an operator respectively, they have the
above property when at least one of the two following conditions
is satisfied:
1. All the periodic sharing lists have the same period K.
2. Any two of the periodic sharing lists don’t overlap, i.e., for

every two periodic sharing lists OP 0 and OP 1,

either, stage[min(OP 0)] > stage[max(OP 1)]

or, stage[min(OP 1)] > stage[max(OP 0)]

where, for a list OP = {op0, op1, op2, . . . , opN−1} ,

min(OP ) = op0, max(OP ) = opN−1

Then, for a periodic sharing list, the corresponding stall, bubble
and input signals can be synthesized iteratively with Algorithm
1. The periodic sharing list OP is first initialized to an empty list.
The IT is an internal variable representing a wire to generate the
BUBBLE and the STALL. The INi is the ith input to the shared
operator. Then, the algorithm is iterated and the operations is
added one by one. The INi and IT are also updated iteratively.
The OR, AND,MUX and NOT mean generating corresponding
gates. Particularly, the first input of MUX is the selection signal
sel. The second input is selected when the sel is low; the third
input of MUX is selected when sel is high. Figure 4 shows how
they are synthesized for the same example in Figure 3.

5. Experimental Results
We implemented our high-level synthesis system with LLVM

compiler [19] as the front-end, similar to existing tools such as
LegUp [2] and Altera FPGA SDK [25]. The C code is first trans-
formed to the LLVM IR using LLVM-based C compiler “clang”.

The proposed mapping-based HLS, performed with and without
the the resource optimization phase, transforms the LLVM IR to
Verilog HDL code. We also generated Verilog HDL code using
a state-of-the-art commercial HLS tool. We tried several differ-
ent pipeline intervals and frequency constraints of the commer-
cial tool for each case and selected the best results. After HLS, all
the Verilog codes are fed into Xilinx Vivado for logic synthesis,
place and route with targeted device of Zynq-7000 family FPGAs.
The experiments are conducted on a PC with 2.0GHz processor
and 8GB memory.

A comparison of the post-layout results from our mapping
phase alone and the commercial tool is provided in Table 1. On av-
erage, our mapping-based HLS achieves about 74× speedup with
same or better performance. The direct mapping leads to aver-
age data rate that is over 5× faster than the commercial tool. The
price paid here is more resource utilization, especially registers,
as resource constraints are relaxed in this phase.

We also conducted experiments with both the mapping and re-
source optimization phases of our HLS. In the experiment, the
number of shared operations is limited to no more than four. The
results of both variants, pipeline with and without interlock, are
obtained and shown in Table 2. The LUT usage is lower with both
variants. However, the interlocked pipelined circuits consume
about 42% more registers while achieves about 13% power sav-
ing on average. The power saving is from the local clock gating,
which lowers the switching activities, but the clock-gated regis-
ters cannot be mapped to LUT shift registers. Thus, the register
usage is significantly higher than those without interlocking.

Our techniques have some advantages that are difficult to be
evaluated in a quantitative manner. For example, the support to
structural recursion is an yes/no feature and difficult to be quan-
tified. Our automatic pipeline interlock synthesis would help re-
duce trial HLS runs in design space exploration. However, its
evaluation requires to expand the research scope to not only HLS
but also DSE.

6. Conclusions
We develop a fast mapping-based high level synthesis tech-

nique, which leads to 74× speedup over a commercial tool. Such
fast speed will facilitate extensive solution search in design space
exploration. Although our technique is described and validated
on FPGA, it can be extended to general HLS as well. One impor-
tant feature of our technique is the support to pipeline synthesis,
especially the synthesis of pipelined circuit with interlock, which
is the first such work, to the best of our knowledge. The local in-
cremental resource optimization helps reduce the number of HLS
trials over different pragmas in source code. Our HLS often leads
to circuits with higher data rates than the commercial tool, but at
the expense of resource utilization increase.
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#LUT #Register #DSP
Frequency
(MHz)

Latency
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Data Rate
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HLS
Runtime (s)

Add Mapping 18 35 0 276.47 10.85 1 276.47 0.056
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Table 1: The comparison of post-layout results obtained from our mapping phase alone without resource optimization and a state-of-the-art
commercial HLS tool. The Sscan and Pscan are designs for sequential scan and parallel scan as described in [23]. Bsort is a Bitonic sorter of 16 32-bit
numbers [24]. SHA256 is 256-bit secure hash algorithm fully unrolled except the outer-most loop. Designs with arrays are marked with *. The average
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#LUT #Register #DSP Frequency (MHz) Latency (ns) Power (mW) Data Rate (MHz) Time
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AVG - 83% 94% 75% 100% 103% 95.35% 50% 104%
+ 84% 134% 75% 101% 101% 83.46% 51% 106%

Table 2: The post-route results obtained from our HLS after the resource optimization phase, with two variants: pipelined circuits without interlock
(marked with “-”) and interlocked pipelined circuits (marked with “+”). The percentages are compared with the mapping results in Table 1. The last
column is the total HLS runtime (Phase I + Phase II) compared with the mapping results (Phase I).
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