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Abstract—Analog IC layout is usually a time-consuming man-
ual design process. Although automated analog IC layout has
been studied for decades, most of the previous works are
focused on geometric constraints. As a result, there is often a
performance gap compared to manual designs, which prevents
the automated tools from wide applications. The recent progress
on machine learning technology offers an opportunity for solving
this problem. In this work, several machine learning techniques
are investigated for analog IC performance prediction, which is
further applied for performance driven placement. Simulation
results from several amplifier designs indicate that the proposed
approach can achieve performance similar to manual layout but
is orders of magnitude faster.

I. INTRODUCTION

Analog IC (Integrated Circuit) layout is usually a manual
design process. This is in sharp contrast to its digital coun-
terpart, which is highly automated. This difference is due
to several intertwined factors. First, the impact of layout on
analog circuit performance can be very large due to significant
RC (Resistance and Capacitance) parasitic generated in layout.
In Table I, a few performance characteristics from schematic
(pre-layout) and post-layout simulation of an OTA (Opera-
tional Transconductance Amplifier) design are compared. One
can see that layout can cause as much as 22% loss of unity
gain frequency. Second, the layout effect on performance
is often very complex and thus difficult to be quickly and
accurately estimated. Last but not the least, analog circuit
performance has much larger variety than digital circuits, and
different performance metrics are used for different types
of analog circuits. For example, operational amplifiers are
focused on gain, bandwidth and phase margin, ADC/DAC
(Analog to Digital/ Digital to Analog Converter) pays attention
to linearity, and settling time is evaluated for PLL (Phase
Locked Loop) circuits. Overall, analog IC layout requires
experienced designers to perform multiple iterations of trial
layout and simulation evaluations. Consequently, it is very
time consuming and forms a design bottleneck.

Characteristic Schematic Layout Change
DC Gain (dB) 39.30 37.25 -5%

Bandwidth (MHz) 10.64 10.47 -2%
Unity Gain Frequency (MHz) 440 383 -22%

TABLE I: Schematic and post-layout performance of OTA
(Operational Transconductance Amplifier).

Automated analog IC layout has been studied for

decades [1]. However, most of the previous works are focused
on special geometric constraints for analog ICs, e.g., symmetry
and common centroid [2]–[7]. Although these constraints are
fundamental for dealing with performance deviations in pres-
ence of variations, they are far from being adequate for achiev-
ing desired nominal performance. Performance is considered
in analog IC layout by transforming performance constraints
to geometric constraints in [8]. However, the interactions
among multiple performance characteristics are simplified
such that the geometric constraints can be unnecessarily tight
and make it very difficult to find a feasible solution. The
work of [9] directly optimizes circuit performance in analog
IC placement. However, the performance is estimated by a
simple linear model that is hard to be generalized to many
nonlinear behaviors in analog circuits. Special performance
related constraints are identified and enforced in [10], [11]
for analog IC placement. However, these special constraints
are not for general cases. A recent work [12] applies neural
network for layout migration of different sizing solutions
with little attention on circuit performance. Overall, automated
performance driven analog IC layout techniques are far from
being well studied or mature to wide applications.

In this work, we study a machine learning approach to
automated performance driven analog IC placement. Since
wire parasitic is largely decided by the distance among pins,
placement generates the first order effect on circuit perfor-
mance. Different from constraint-based methods [8], [10],
[11], our approach directly optimizes circuit performance
during placement. Moreover, machine learning-based perfor-
mance models can handle nonlinear behaviours and therefore
is superior to the linear model used in [9]. Different machine
learning techniques are investigated, including SVM (Support
Vector Machine), neural network and random forest.

Our work makes the following contributions.

• Machine learning based circuit performance prediction
techniques are developed.

– Feature selection and data preparation techniques are
proposed to obtain a large amount training data with
almost no layout designs.

– Machine learning model fidelity is studied in addition
to its accuracy and precision. There has been very
few, if not none, study on machine learning model
fidelity in VLSI circuit designs.
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• A performance driven analog IC placement methodology
is proposed. It can directly optimize analog circuit per-
formance along with conventional objectives, including
wirelength, area and geometric constraints such as sym-
metry constraints.

• The proposed approach is applied on the placement
for three different kinds of OTA designs. The post-
layout simulation results show that the proposed approach
achieves significantly better performance than conven-
tional automatic placement. It also reaches performance
similar to manual layout but orders of magnitude faster.

The rest of this paper is organized as follows. Related
previous works are briefly reviewed in Section II. The problem
formulation and an overview of our approach is provided in
Section III. The proposed machine learning techniques for
circuit performance prediction are introduced in Section IV.
The performance driven placement method is described in
Section V. Experimental results are shown in Section VI. The
conclusion is provided in Section VII.

II. RELATED PREVIOUS WORK

The study of automated analog IC layout is early as 30 years
ago [1]. Analog IC placement methods [2]–[5] have mostly
followed the simulated annealing framework in floorplanning
of digital designs, except that additional geometric constraints,
such as symmetry and common centroid, are considered. The
geometric constraints are often enforced through sequence
pair [2], [3], [5] or B-tree representation [4]. Recently, an-
alytical approaches are explored in [6], [7] without directly
addressing analog circuit performance.

The layout impact on performance is noticed in [8], where
performance constraints are transformed into geometric con-
straints for layout. Such transformation is not sophisticated
enough to well capture the complicated relationship between
layout and performance, and thus it faces the dilemma that the
obtained geometric constraints are either overly tight or in-
sufficient for satisfying performance specifications. A directly
performance driven layout approach is proposed in [9]. How-
ever, the performance is estimated by linear approximation,
which is not effective for nonlinear characteristics. In [10] and
[11], analog IC performance is addressed by the constraints
of monotonic current paths. However, the effectiveness of this
technique is restricted to certain performance characteristics
instead of being general for different metrics.

Recently, machine learning techniques are explored for
analog IC designs. In [12], a neural network technique is
developed for layout migration without considering perfor-
mance. Knowledge mining is applied to reuse legacy design
patterns [13], but again without directly considering perfor-
mance. Reinforcement learning-based analog parameter tuning
is proposed in [14]. Graph neural network techniques are
applied to generate templates for RF passives [15].

Overall, the study on performance driven placement for
analog ICs has been limited and far from sufficient.

III. PROBLEM FORMULATION AND OVERVIEW OF THE
APPROACH

Given an analog circuit netlist (or schematic description)
and process technology file, the placement is to determine
the locations of all transistors and passive devices in the
circuit such that design rules and geometric constraints, such
as symmetry, are satisfied and a composite objective func-
tion, in terms of area, wirelength and circuit performance, is
minimized. Our placement algorithm is based on simulated
annealing, which has been widely used in previous analog
placement works [5]. A main advantage of simulated annealing
is its flexibility in incorporating different types of cost func-
tions. Although it is not a fast algorithm in general, its runtime
speed is acceptable for analog IC designs, which typically have
much less elements than digital circuits. A key difference from
previous works is that circuit performance is captured in the
cost function through a machine learning model. That is, given
a placement solution, the machine learning model predicts its
performance. Performance driven analog placement is a huge
challenge, and our approach is focused on solving a type of
analog circuits, e.g., amplifiers, as a step toward overcoming
the entire challenge.

IV. MACHINE LEARNING-BASED CIRCUIT PERFORMANCE
PREDICTION

There are large variety of different machine learning tech-
niques. In this work, three popular techniques are investigated:
Neural Network (NN) [16], Random Forest (RF) [17] and
Support Vector Machine (SVM) [18].

A. Machine Learning Feature Engineering

A placement solution (x,y) = ((x1, y1), (x2, y2), ...) spec-
ifies locations for all circuit elements. A vector of circuit
characteristics z = (z1, z2, ...) depend on (x,y). For example,
the characteristics can be gain, phase margin, linearity, settling
time, etc. To predict z through a machine learning model
M, the input features for M can be naı̈vely chosen as
(x,y). However, such features require to generate a layout
solution for each training sample, where the post-routing z
values are used as labels. Generating a large number of layout
solutions and performing parasitic extractions would cost a
large computation runtime.

We propose an alternative approach for the model features
such that almost no layout solution is needed for obtaining
training data, and therefore data preparation time is greatly
reduced. An observation is that the dependence of z on (x,y)
is through post-routing wirelength l = (l1, l2, ...) among
placed circuit elements, which decide RC parasitic. We suggest
to approximate l with a pre-routing estimate l̃ = (l̃1, l̃2, ...),
which serve as machine learning model features. As such, no
layout needs to be performed in preparing training data. To
simplify the description, we assume that all wires have the
same width and thus RC parasitic is determined by wirelength.
This assumption is often true when the routing is mostly
performed at lower metal layers.

For a 2-pin net, the pre-routing wirelength estimate is simply
the Manhattan distance between the two pins. This is a lower
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Fig. 1: Star model for multi-pin nets.

bound to post-routing wirelength and often the actual one as
analog circuits are generally not congested and wire detour
does not happen very often. The situation for multi-pin nets
is more complex as it depends on Steiner tree constructions
in routing stage. We propose to use the star model for the
pre-routing estimate. This is illustrated by the 3-pin net in
Figure 1. A star has a center, which is chosen to have the
medium coordinates among all pins in the net. For a 3-pin
net, such center is actually the Steiner point location of the
optimal Steiner minimum tree, as shown by point D on right of
Figure 1. In the star model, every pin has a direct connection
with the center. Therefore, an m-pin net consists of m wire
segments and corresponding lengths. The wirelengths of all
wire segments l̃ = (l̃1, l̃2, ...) form the input features to a
machine learning model.

B. Training Data Preparation

The star model allows us to generate many training data
samples using only one layout solution. Given an arbitrary
legal placement of a circuit, routing is performed to obtain
a complete layout and then parasitic extraction is conducted.
Then, the wire parasitics of the extracted netlist are removed to
form a template where transistor parasitics are retained. Next,
a random star model is inserted at each net of the template to
obtain one training sample. For example, one training sample
can be obtained by assigning random values to lA, lB and lC
to the schematic in Figure 1, which is the template. Last, the
layout annotated schematic is simulated to obtain label values
for z. By iterating with different random wirelength in the star
models, many different training samples can be obtained. In
this process, layout is performed only once.

C. Machine Learning Model Output

Given input feature l̃ = (l̃1, l̃2, ...), a machine learning
model M attempts to predict performance z = (z1, z2, ...).
In general, the prediction can be carried in several different
ways:

• Regression. This is to directly predict numerical values
of z = (z1, z2, ...). According to our experience, it is
quite challenging to obtain accurate regression.

• Classification. This is to classify each characteristic zi
into a certain class, e.g., to classify whether or not
zi ≥ θi, where θi is a given threshold or specification.
For example, if zi is the gain for an amplifier design
and θi = 40dB, the classification predicts if the gain
is at least 40dB. Such classification cannot differentiate
between clear cases, where the model has a large chance

to be correct, and borderline cases, where the model is
more error prone.

• Logistic regression. This is to estimate the probability
P (zi ≥ θi), i = 1, 2, ... that performance specification
θi is satisfied. Thus, logistic regression can be treated as
soft classification and avoid the aforementioned drawback
of classification.

We choose to use the machine learning models in the way of
logistic regression. For a neural network, there is a nonlinear
sigmoid function that maps the output into probability. Typi-
cally, people use a step function to classify a positive sample
if the probability is greater than a threshold. Here, we directly
use the probability. For random forest, the classification prob-
ability of each sample is calculated according to classification
results from all the trees in the random forest. For SVM, the
probability is calibrated using Platt scaling, which is logistic
regression on the SVM’s scores.

D. Machine Learning Model Fidelity
A machine learning model is usually evaluated by its accu-

racy, precision, etc. Since the models here are applied to guide
placement optimization, what matters is actually the model
fidelity [19]. Roughly speaking, fidelity tells the consistency
between a model and the golden reference, and indicates if the
model can guide optimization moves toward correct directions.
For example, there are two placement solutions p and q, with
post-routing gains of gp = 40dB and gq = 50dB, respectively.
Model M1 predicts gp,1 = 25dB and gq,1 = 30dB while
model M2 predicts gp,2 = 46dB and gq,2 = 44dB. Although
model M1 has greater errors than model M2, it has higher
fidelity as it correctly predicts that the gain of p is smaller than
q. If the optimization is to find a solution with the maximum
gain, model M2 would incorrectly point to picking solution
p even though it has smaller errors.

Given two solutions p and q, if the logistic regression results
of model M on circuit characteristic z are P (z̃p ≥ θ) and
P (z̃q ≥ θ), we say model M is consistent with golden
reference ẑp and ẑq if and only if P (z̃p ≥ θ) > P (z̃q ≥ θ)⇔
ẑp ≥ ẑq . The percentage among N distinct solution pairs for
which model M is consistent with the golden reference is a
quantitative metric of fidelity. The ideal fidelity is 100%.

V. PERFORMANCE DRIVEN PLACEMENT GUIDED BY
MACHINE LEARNING

The placement algorithm follows the framework of simu-
lated annealing like many previous works [5], [9]. The relative
spatial order among circuit elements is described by sequence
pairs [2], [5], which is friendly to enforcing many geometric
constraints, such as symmetry and common centroid. The key
difference from the previous work is that circuit performance
is explicitly considered in the cost function of simulated
annealing.

Usually, the performance of a circuit is evaluated by a set
of characteristics z1, z2, ..., which can be gain, phase margin,
etc. For each of the characteristics zi, a satisfaction function
is defined as

ψi(zi) =

{
1 zi ≥ θi
zi
θi

zi < θi
(1)
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where θi is the design specification for zi. If there are K
characteristics to be considered, the performance FOM (Figure
of Merit) is defined as

Φ =

K∑
i=1

wi · ψi(zi) (2)

where wi represents weight factors and
∑K
i=1 wi = 1. If all

performance specifications are satisfied, Φ = 1.
The machine learning model estimates the probability that

a specification is satisfied instead of directly predicting the
value of each characteristic. Therefore, we define a POD
(Probability of Demerit) based on the machine learning model
inference results:

∆ =

K∑
i=1

wi · P (zi < θi) (3)

where P indicates the probability of violating specifications.
Evidently, POD needs to be minimized. POD can be directly
evaluated by the machine learning models, is easy to be
incorporated in simulated annealing and captures the same
intention as FOM in principle.

The cost function to be minimized in simulated annealing
is

α ·A+ β ·W + γ ·∆ (4)

where A is normalized total area, W is normalized total
wirelength estimated according to HPWL (Half Perimeter
Wirelength), and α, β and γ are weighting factors that sum to
1. In addition to minimizing the cost function, our simulated
annealing algorithm enforces geometric constraints, such as
symmetry and common centroid, like in [5].

VI. EXPERIMENT RESULTS

The experiments are conducted on a Linux machine using
Xeon (R) E5-2680 V2 processor with 2.8GHz frequency and
256G memory. The machine learning models are implemented
in Python. Our analog IC placer and a router based on [20]
were programmed in C++. SPICE simulations are performed
on extracted netlists after after layout and design rule checking.
The ASAP 7nm process technology [21] is employed in the
experiment.

The proposed techniques are evaluated on three different
OTA designs: 5-transistor OTA, cascode OTA and current mir-
ror OTA. For each design, 1000 layout annotated schematics
are generated by randomly varying wirelength for each net
and then simulated to obtain training data. Among each 1000
samples, 600 samples are employed for training and the others
are used for testing. During the model construction, cross
validation is performed to tune model hyperparameters.

A. Evaluation of Machine Learning Models

The neural network structure after tuning has three hidden
layers and the number of nodes in each layer is equal to input
feature size. Each random forest in the experiment has no more
than 500 trees, each of which has height no greater than 10.
For SVM, radial basis function kernel is employed and the
regularization parameter is set to be 1.

TPR FPR Accuracy Precision F1 Score
NN 87.1% 9.72% 88.7% 90.3% 88.7%
RF 76.3% 24.4% 76.2% 76.4% 76.3%

SVM 77.3% 20.8% 78.4% 79.5% 78.2%

TABLE II: Average model performance among all four char-
acteristics of all three OTA designs.

The evaluation of a machine learning model usually uses
the following terms:

• True Positive (TP): the number of samples for which the
model correctly classifies them to positive class.

• True Negative (TN): the number of samples for which
the model correctly classifies them to negative class.

• False Positive (FP): the number of samples for which the
model falsely classifies them to positive class.

• False Negative (FN): the number of samples for which
the model falsely classifies them to negative class.

Then, a machine learning model is often evaluated by the
following metrics.

• TPR (True Positive Rate), a.k.a. recall: TP
TP+FN .

• FPR (False Positive Rate): FP
FP+TN .

• Accuracy: TP+TN
TP+TN+FP+FN .

• Precision: TP
TP+FP .

• F1 score: 2×Precision×TPR
Precision+TPR .

The NN, RF and SVM results on these metrics are summarized
in Table II. These are the average results among the four
circuit performance characteristics and the three OTA designs.
In order to apply these metrics, the logistic regression results
from the models, which are probabilities, are rounded into
binary classifications. One can see that NN has the best result
with 87% TPR at about 9.7% FPR.

Fig. 2: Machine learning model accuracy on gain, unity gain
frequency (UGF), bandwidth (BW) and phase margin (PM).

We further analyze the accuracy of these models on different
circuit characteristics of different OTA designs. The results are
plotted in Figure 2. NN outperforms both RF and SVM on
every case. SVM is better than RF on gain, bandwidth and
phase margin.

Table III shows results of machine learning model fidelity,
which is defined in Section IV-D, with respect to simulation
results on layout annotated schematic, which is the golden
reference and illustrated on the left of Figure 1. These results
are obtained from 43071 distinct solution pairs. In this case,
the machine learning model input features are the same as the
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5-transistor OTA Cascode OTA Current Mirror OTA AverageGain UGF BW PM Gain UGF BW PM Gain UGF BW PM
NN 89.7% 99.2% 98.7% 99.0% 98.1% 97.5% 98.7% 97.5% 99.1% 98.7% 99.4% 99.0% 97.9%
RF 92.5% 96.1% 92.8% 91.8% 82.3% 92.0% 86.1% 83.3% 94.9% 96.5% 94.7% 94.7% 91.5%

SVM 90.5% 95.2% 92.1% 89.2% 81.7% 88.8% 84.1% 79.3% 95.7% 96.4% 96.0% 94.8% 90.3%

TABLE III: Machine learning model fidelity with respect to simulation of layout annotated schematics.

5-transistor OTA Cascode OTA Current Mirror OTA AverageGain UGF BW PM Gain UGF BW PM Gain UGF BW PM
NN 84.8% 82.9% 87.7% 87.9% 88.1% 79.0% 84.3% 80.6% 84.1% 81.6% 85.5% 85.2% 84.3%
RF 86.3% 85.2% 85.1% 81.6% 88.6% 84.9% 90.3% 85.3% 82.3% 81.3% 79.8% 81.8% 84.4%

SVM 81.6% 80.7% 89.1% 89.5% 85.6% 79.5% 87.3% 85.7% 86.5% 80.5% 79.9% 81.5% 83.9%

TABLE IV: Machine learning model fidelity with respect to simulation of post-layout circuits.

star model wirelength (see Figure 1). Hence, inconsistency
between model prediction and the golden reference is due to
the errors on predicting circuit characteristics. The average
fidelity results of all three models are above 90%, which is
greater than their accuracy reported in Table II. Like the results
in Table II, NN outperforms RF and SVM.

Schematic Manual Conventional
Automatic [5] NN RF SVM

Gain (dB) 32.43 32.39 26.5 31.86 31.49 32.15

UGF (MHz) 1105 870.37 656.9 718.9 785.4 721.6

BW (MHz) 26.45 21.0 34.23 18.17 20.68 17.65

PM (degree) 86.47 85.05 85.53 93.84 94.1 94.07

FOM 1.00 0.89 0.76 0.81 0.84 0.82

Area (µm2) - 18.72 16.41 19.73 17.97 17.95

Wirelength (µm) - 12.40 7.36 10.38 8.13 9.16

TABLE V: Results of 5-transistor OTA.

(a) Manual (b) Conventional
automatic [5]

(c) SVM based

Fig. 3: SVM-guided layout of 5-transistor OTA.

The golden reference for the fidelity results in Table IV are
obtained from post-layout simulation. In this case, the actual
wirelength after layout might be different from the machine
learning model input features. Thus, the inconsistency may
be attributed to this discrepancy besides errors on predicting
circuit characteristics. To certain extent, the models here
attempt to predict post-layout wirelength as well. Interestingly,
all three models achieve very similar fidelity of about 84%.

Such results tell that RF and SVM are better in predicting
post-layout wirelength although they are not as good as NN
in predicting circuit performance.

Schematic Manual Conventional
Automatic [5] NN RF SVM

Gain (dB) 37.0 33.01 23.71 37.0 33.73 26.1

UGF (MHz) 1522.9 1167 947.6 1025 873.7 1266

BW (MHz) 21.82 26.75 56.02 13.0 17.76 58.42

PM (degree) 82.1 80.66 108.5 105.4 95.69 103.3

FOM 1.00 0.85 0.71 0.82 0.77 0.78

Area (µm2) - 26.52 24.12 31.68 29.45 27.36

Wirelength (µm) - 20.69 8.17 13.79 21.73 19.09

TABLE VI: Results of cascode OTA.

Fig. 4: SVM-guided layout of cascode OTA.

Schematic Manual Conventional
Automatic [5] NN RF SVM

Gain (dB) 32.57 32.73 33.05 32.64 33.04 32.87

UGF (MHz) 531.03 542.96 451.0 481.1 499.8 497.4

BW (MHz) 12.5 12.96 10.19 11.42 11.33 11.51

PM (degree) 82.82 79.39 78.48 77.96 77.62 77.14

FOM 1.00 0.99 0.90 0.94 0.95 0.95

Area (µm2) - 15.75 14.49 21.47 17.06 20.46

Wirelength (µm) - 18.40 10.1 19.42 13.36 14.00

TABLE VII: Results of current mirror OTA.

B. Results of Performance Driven Placement

The performance driven placement guided by machine
learning is evaluated by comparison with manual layout and
conventional automatic placement [5]. Individual circuit per-
formance characteristics are obtained from post-layout simula-
tion. The overall performance of a layout solution is evaluated
by the FOM defined in Equation (2). The performance result
from simulating schematics is also provided as a reference.
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Time Training 5-transistor OTA Cascode OTA Current mirror OTA
Placement Routing Total Placement Routing Total Placement Routing Total

Manual (min) - 90 110 160
Conventional automatic [5] (s) - 0.22 1.04 1.26 0.60 1.67 2.27 0.20 1.18 1.38

NN (s) 27.75 7.18 1.19 8.37 7.40 3.13 10.53 7.93 1.40 9.33
RF (s) 4.03 12.93 1.52 14.45 13.09 2.96 16.05 13.73 1.23 14.96

SVM (s) 3.84 5.14 1.27 6.41 5.37 2.07 7.44 5.82 1.05 6.87

TABLE VIII: Run-time comparison.

Fig. 5: RF-guided layout of current mirror OTA.

1) Results of 5-Transistor OTA: The main results of the
5-transistor OTA design are summarized in Table V. RF
guided placement achieves FOM of 0.84, which is close to
the FOM of 0.89 by the manual layout and significantly
better than conventional automatic method [5]. At the same
time, RF achieves the same area and much shorter post-layout
wirelength compared to the manual layout. Please note all
symmetry constraints are satisfied in all these layout designs.
Sample layout pictures of the 5-transistor OTA design are
shown in Figure 3.

2) Results of Cascode OTA: The results of cascode OTA are
shown in Table VI and Figure 4. In this case, NN achieves the
best FOM of 0.82 among the three machine learning models
and this FOM is close to the 0.85 of manual layout. Its area
is bigger than manual layout but its post-layout wirelength is
much shorter.

3) Results of Current Mirror OTA: The results of current
mirror OTA are shown in Table VII and Figure 5. All three
models achieve FOM values similar to the manual layout and
better than the conventional automatic layout. They tend to
result in greater area but shorter wirelength. The similar FOMs
from the three models can be attributed to the similar fidelity
among them.

4) Runtime Cost: Computation runtime comparison is pro-
vided in Table VIII. The machine learning-based layout time is
orders of magnitude faster than manual design. For example,
the total layout times for SVM-guided placement are 842X,
887X, and 1397X faster than manual layout in the three OTA
designs.

VII. CONCLUSION AND FUTURE RESEARCH

A new approach to performance driven analog IC placement
guided by machine learning is proposed. In this methodology,
layout design is largely avoided in preparing machine learning
model training data. The model fidelity is analyzed in addition
to accuracy. Experimental results show that the proposed
approach outperforms conventional automatic method and can
obtain circuit performance similar to manual layout but is
orders of magnitude faster. In future research, we will study
how to apply machine learning across different kinds of analog
circuits other than OTAs.
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