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Abstract—Analog integrated circuit design is highly complex and its
automation is a long-standing challenge. We present a reinforcement
learning approach to automatic transistor sizing, a key step in determin-
ing analog circuit performance. A circuit attention network technique is
developed to capture the impact of transistor sizing on circuit perfor-
mance in an actor-critic learning framework. Our approach also includes
a stochastic technique for addressing layout effect, another important
factor affecting performance. Compared to Bayesian optimization (BO)
and Graph Convolutional Network-based reinforcement learning (GCN-
RL), two state-of-the-art methods, the proposed approach significantly
improves robustness against layout uncertainty while achieving better
post-layout performance. BO and GCN-RL can be enhanced with our
stochastic technique to reach solution quality similar to ours, but still
suffer from a much slower convergence rate. Moreover, the knowledge
transfer in our approach is more effective than that in GCN-RL.

I. INTRODUCTION

Analog Integrated Circuits (ICs) are essential components in many
electronic systems, including wireless communication, biomedical
instruments and sensing systems. Their designs are intrinsically
complex and hence require highly specialized expertise as well as
tremendous effort. Unlike digital ICs, whose designs are largely auto-
mated, analog design automation has long been an unsolved challenge
despite decades of research endeavor. Many conventional techniques
failed as they lack an efficient means for capturing complex circuit
characteristics. By contrast, machine learning is capable of knowledge
extraction and reuse. Therefore, it provides an alternative angle and
potential for overcoming the challenge. This work is to make use of
reinforcement learning for automatic transistor sizing, which is a key
design step in determining analog circuit performance.

An early work on analog transistor sizing [1] is a rule-based
approach, whose performance control is very coarse-grained. A
posynomial performance model is developed in [2] for guiding analog
sizing. However, analog circuit behavior is so complex that a posyn-
omial model is often inadequate. An evolutionary algorithm-based
sizing method was proposed in [3]. A recently popular approach
is Bayesian Optimization (BO) [4], where circuit performance is
described by a Gaussian process and simulation-based sampling is
required. Later, reinforcement learning approaches are explored [5],
[6]. Their agent kernel is deep neural network, which is not as
effective as graph neural network [7] as the underlying structure of an
analog circuit is a graph. A state-of-the-art approach is GCN (Graph
Convolutional Network)-based reinforcement learning method [8].

Many previous works [1]–[5], [8] mean to perform sizing for
schematic designs prior to layout. However, layout has a large impact
to circuit performance as illustrated by Fig. 1 for a 5T-OTA (5-
Transistor Operational Transconductance Amplifier) design. The two
crosses indicate the gain and phase margin (PM) of two sizing
solutions A and B. After different layout designs of A (B), red square
(blue triangle) solutions are obtained. The layout effect is not only
large but also has considerable variations, which are due to different
designers in manual designs and different tool parameter settings

in automatic designs. When post-layout circuit performance fails to
meet specifications, the circuit needs to be resized. It is common that
designers struggle with multiple sizing-layout iterations, which cost
a huge amount of time and effort.

Some previous works incorporate layout, parasitic extraction and
post-layout simulation with transistor sizing [6], [9], [10] to address
layout effect. However, both layout design and parasitic extraction
can be very time consuming. Moreover, post-layout circuit simulation
takes much longer time than schematic simulation due to drastic
increase of circuit elements after parasitic extraction. Even a sim-
plified realization of this process [10] can greatly exacerbate compu-
tation cost for transistor sizing. A template-based parasitic estimation
technique is proposed in [11]. However, a template is applicable
to limited cases and difficult to be generalized. Recently, machine
learning-based parasitic prediction techniques are developed [12],
[13]. Although such prediction can avoid layout design cost, it does
not handle layout uncertainty as the prediction is targeted to an
average effect.

Our analog transistor sizing approach is built upon an actor-critic
learning framework – DDPG (Deep Deterministic Policy Gradi-
ent) [14]. This work makes the following contributions.

1) We develop Circuit Attention Network (CAN), which is a
customized graph neural network and serves as the actor and
critic to capture the impact of sizing on performance in DDPG.
This distinguishes itself from other reinforcement learning-
based sizing methods [5], [6], [8], where off-the-shelf (graph)
neural network models are adopted. Simulation results confirm
the effectiveness of this customized network. Additionally,
CAN allows knowledge transfer among different topologies of
the same type of circuits and the transfer is more effective than
the GCN-based technique [8].

2) We propose a stochastic technique to mitigate layout effect
during transistor sizing from an angle different from previous
works. It attempts to make a sizing solution robust against
layout uncertainty, e.g., it would choose solution B rather
than A in Fig. 1. As such, it can avoid expensive layout and
extraction, which are employed in most previous works. It is
also be applied as a complement to the parasitic prediction-
based approach [12], [13].

Fig. 1: Layout induced performance degradation and variations for
5T-OTA.
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3) The proposed approach is validated through post-layout simula-
tions on several designs of 12nm technology. The results show
significant improvement on circuit performance and robustness
against layout uncertainty compared to Bayesian optimiza-
tion (BO) [4] and GCN-based reinforcement learning (GCN-
RL) [8], two state-of-the-art methods. On average, CAN-RL
has 10.6% circuit performance improvement over GCN-RL for
default layouts. BO and GCN-RL can be enhanced with our
stochastic technique to achieve solution quality similar to ours,
but still suffer from a much slower convergence rate. When all
the three methods apply the stochastic technique, our approach
is 3.1× faster than GCN-RL and 5.6× faster than BO.

The rest of this paper is organized as follows. The analog transistor
sizing formulation is provided in Section II. Our approach is de-
scribed in Section III. Experimental results are shown in Section IV.
Conclusions and future research are discussed in Section V.

II. PROBLEM FORMULATION

Consider an analog IC, which contains N transistors. The sizes of
these transistors are denoted by a vector of positive integer variables
x = [x1, x2, . . . , xN ] ∈ NN . Please note that analog transistor sizes
can be either discrete or continuous and we focus on discrete sizing
in this work. Usually, a circuit is evaluated by multiple performance
metrics, such as gain, bandwidth, phase margin, etc, which are
denoted by f = [f1, f2, . . . , fM ] ∈ RM and depend on the values of
x. Each performance metric fj has a specification or design target
φj . Then, the metrics can be partitioned into two sets: Π+ (Π−) is
the set of metrics preferred to be greater (less) than φj , such as gain
and bandwidth (delay and offset). To make results of different metrics
comparable, normalized performance metrics are defined as

qj =


min(

fj
φj
, 1), for fj ∈ Π+

min(
φi

fj
, 1), for fj ∈ Π−

, j = 1, 2, . . . ,M (1)

To assess the overall performance of a circuit, a Figure Of Merit
FOM =

∑M
j=1 wjqj is evaluated, where wj indicates weighting

factors and
∑M

j=1 wj = 1. Performance optimization means to
maximize the FOM . The FOM definition here is similar to those
in previous works [5], [8].

In this work, we propose a new figure of merit as an important
ingredient for our stochastic technique to address layout effect in
transistor sizing. Unlike previous works, where the performance of a
sizing solution is regarded deterministic, we treat normalized metric
qj as a random variable to account for layout uncertainty after sizing.
The new figure of merit additionally considers robustness against
layout uncertainty and is defined as

FOMR =

M∑
j=1

wj (µ(qj)− β · σ(qj)) (2)

where µ and σ indicate mean and standard deviation, respectively,
and β is a weighting factor. The transistor sizing problem we will
solve is formulated as

max
x

FOMR(x)

s.t. xL ≤ xi ≤ xU , i = 1, 2, . . . , N

xi ∈ N, i = 1, 2, . . . , N

(3)

where xL and xU are lower and upper bounds for transistor sizes,
respectively.

The first term µ(qj) in the objective function plays the same role
as the conventional FOM . By maximizing the second term −β ·
σ(qj), the sizing solution with small performance variance induced
by layout is preferred. As such, solution B in Fig. 1 would be selected

over A according to this formulation. It is evident that the worst
case post-layout performance from B would be superior to that from
A. Please note that FOMR is for guiding solutions search in our
approach while FOM can still be used to assess a specific circuit
either schematic or layout.

III. ROBUST TRANSISTOR SIZING METHOD

A. Overview

The robust transistor sizing problem (3) is solved through DDPG
(Deep Deterministic Policy Gradient) [14] framework as this is one
of the most advanced reinforcement learning methods. The states are
defined by transistor sizes x in their legal range [xL, xU ]. The actions
a = [a1, a2, . . . , aN ] ∈ {−1, 0,+1}N are transistor size changes
by -1, 0 or +1. However, multiple transistors can change their sizes
simultaneously in one time step. The raw output values from DDPG
actor are continuous and we round them to obtain integer actions. The
reward is FOMR defined by (2). An overview of our approach is

Fig. 2: Robust transistor sizing flow.

depicted in Figure 2. After an action is taken according to the actor,
the circuit is modified with corresponding transistor size changes.
Then, RC insertion and Monte Carlo circuit simulation are performed
to compute reward FOMR, and these two steps form the kernel of
our stochastic technique addressing layout effect. According to the
reward, value function Q(x,a) is updated for the critic network.
Then, the policy is revised for the actor network. The actor/critic
network is a dedicate design, called Circuit Attention Network
(CAN), which is different from deep neural network in DDPG. The
actor/critic network update process, including sampling replay buffer
and updating target networks, follows the DDPG framework [14].

B. Reward Computation

Reward computation is to estimate FOMR, which considers
robustness against layout uncertainty. It is the kernel of our stochastic
technique for considering layout effect during sizing. Its key advan-
tage is that the expensive process of layout, extraction and post-
layout simulation can be avoided. Please note the Monte Carlo circuit
simulation is before extraction and thus has much less elements than
post-layout simulation, although it considers layout effect.

Layout effect is mainly due to RC (Resistance and Capacitance)
parasitic from metal wires generated during layout design. Given a
sizing solution, we insert RC elements for each net to emulate layout
effect and its variations. The insertion is applied through star models.
That is, a conceptual center node is generated for each net and an
edge is inserted between the center and each pin of this net. For
example, D is the center node for the net connecting pins A, B and
C in Fig. 3. For each edge in a star model, an RC element is inserted
as shown in the right part of Fig. 3. The R and C for the same edge
are correlated following the same random wire-length of this edge.
The random RC values are assumed to follow Gaussian distribution,
and their mean/variance are obtained from historical design data.

For a sizing solution, K sets of RC elements are separately inserted
and K-run Monte Carlo (MC) circuit simulations are performed,
where each run corresponds to one set of random RC elements.
A circuit simulator, such as SPICE, usually has embedded MC
support, which executes much faster than separated MC runs. Even



Fig. 3: RC insertion via star model in schematic.

after RC elements are inserted, circuit simulations at schematics are
still much faster than post-layout simulations. After MC simulations,
µ(qj), σ(qj), j = 1, 2, . . . ,M are obtained and the reward FOMR

can be calculated according to Equation (2).

C. Circuit Attention Network for Actor and Critic

We develop Circuit Attention Network (CAN), a customized Graph
Neural Network (GNN), to serve as actor and critic networks in
reinforcement learning. This is similar to [7], which is also a
customized GNN for circuit design. However, CAN architecture is
different from [7], which is for performance prediction in analog
placement.

1) Circuit Graph and Features for CAN: A circuit is abstracted
to a graph and associated features G(V, E ,X,E) to serve as input
to CAN. Devices (including transistors), IO pins and net centers
constitute the set of nodes V . Edges E indicate connections between
nodes v ∈ V and are described by an adjacency matrix A. Node
feature matrix and edge feature matrix are denoted by X and E,
respectively. Figure 4 shows an example of representing a current
mirror as a graph.

Fig. 4: A current mirror and its graph.

Feature vector for the i-th (i = 1, 2, ..., n) node, Xi ∈ Rd consists
of the following components:

• Node type: PMOS, NMOS, capacitor, current source, GND, net
center point, etc., represented by a one-hot encoded vector.

• A scalar feature for functional module that a node belongs to,
such as current mirror, differential pair and active load.

• Sizes for nodes representing transistors.
The feature Eij ∈ Rp for an edge from node j to node i

is a one-hot encoded vector. The encoding is based on the types
of node i and node j, such as transistor source, drain, gate, net
center, etc. Except transistor sizes, the other features are constant
for a specific circuit. Nevertheless, they are important for knowledge
transfer among different topologies of the same type of circuits.

2) CAN Architecture: Like most GNNs, CAN is composed by a
series of feature embedding layers followed by MLP (Multi-Layer
Perceptron). A feature embedding layer can be described by

X(l+1) = Φembed(X(l)) (4)

where l is the layer index and X(0) is the original feature tensor X .
Function Φembed indicates the embedding operation, which is to be
elaborated later.

The work of [8] uses an off-the-shelf approach of GCN [15],
where a feature embedding layer computes a uniform convolution
(aggregation) of each node feature with its neighbors. However,
analog circuit behavior is so complex that such uniform convolution
is inadequate. Like [7], CAN adopts attention-based convolution [16]
in feature embedding and simultaneously performs graph pooling

to capture a global view. The application scenario of [7] is analog
placement, where distances among transistor are known. By contrast,
our work is prior to layout and has significantly less information than
[7]. Therefore, we devise enhancements to overcome the difficulty.

In the l-th layer of feature embedding, node features become
X

(l)
i , i = 1, 2, . . . , n and edge features are transformed to

E
(l)
ij , i, j = 1, 2, . . . , n [7]. Each feature embedding layer in CAN

consists of three steps, which are elaborated as follows.
Step 1: Attention construction and compression. Attention [16] can
be treated as weights with trainable parameters for graph convolution.
In the l-th layer of feature embedding, the k-th channel of the raw
attention coefficient between nodes i and j is defined as

α̂
(l)
ijk = τijE

(l)
ijk (5)

where τij is a function ofX(l)
i andX(l)

j , and E(l)
ijk is the k-th channel

of edge feature E(l)
ij . Then, bidirection normalization is performed

to obtain 3D attention, which is defined as

α(l) =


α̃
(l)
ijk = softmaxrow(α̂

(l)
ijk)

α
(l)
ijk =

nl∑
m=1

α̃
(l)
imkα̃

(l)
jmk∑nl

u=1 α̃
(l)
umk

(6)

where α̃(l)
ijk is the k-th channel of the row-normalized raw attention

coefficient of layer l, and nl is the number of nodes in layer l.
Since graph pooling is performed at each layer, the number of nodes
may decrease from one layer to the next layer. Next, the attention is
compressed from 3D to 2D as

e
(l)
ij = g(α

(l)
ij ; b(l)) =

pl∑
k=1

α
(l)
ijkb

(l)
k (7)

where b(l) ∈ Rpl is a trainable vector and pl is the number of edge
feature channels in layer l.

Our main contribution is a new treatment of τij for analog tran-
sistor sizing. Its key idea is to separate the common and differential
parts of node features during attention construction as they affect
circuit performance differently in general. For example, consider a
workload pair and a differential pair. Their size difference affects the
gain of an amplifier in a different way from their common part or
average size. We compute the mean value of node features X̄(l) and
intermediate node features X̃(l)

i are calculated as:

X̄(l) =
1

nl

nl∑
k=1

X
(l)
k

X
(l)
d,i = X

(l)
i − X̄

(l)

X̃
(l)
i = X

(l)
d,i +X

(l)
d,i

2

(8)

where d indicates differential term. Symbol ‘+/-’ in (8) means
element-wise vector addition/subtraction. It should be noted that
X

(l)
i , X̃(l)

j , X(l)
d,i and X(l)

d,i
2 are vectors with the same size. This step

divides node features X(l) into the mean value X̄(l), which serves
as the common mode term, and X(l)

d,i, which acts as the differential
term. Furthermore, the differential term is appended with its square to
account for higher order effect, which often exists in analog circuits.
Finally, τij is the sum of differential mode term τd,ij and common
mode term τc,i as

τd,ij = LeakyReLU
(
a
(l)
d ·

[(
W (l)TX

(l)
i )||(W (l)TX̃

(l)
j

)])
τc,i = LeakyReLU

(
a(l)
c ·

[(
W (l)TX

(l)
i )||(W (l)TX̄(l)

)])
τij = τd,ij + τc,i

(9)



where W (l) is a trainable weight matrix, a(l)
d and a(l)

c are trainable
vectors, and || means vector concatenation. Compared with PEA [7],
this new attention scheme benefits CAN with up to 2.6X convergence
speed up, which is demonstrated in Table VI.
Step 2: Graph convolution. The graph convolution is performed as

Z(l) = Γ
(
g(α(l); b(l))X(l)W (l)

)
(10)

where Γ(·) is an activation function. An intermediate node embedding
Z(l) is aggregated from node feature X(l) with a 2D attention matrix
g(α(l); b(l)) defined by (7).

Step 3: Node and edge pooling. A trainable assignment matrix
S(l) ∈ Rnl×nl+1 for layer l is computed with details in [7], [17].
According to S(l), Z(l) is mapped to node feature matrix X(l+1)

with reduced dimension. Similarly, adjacency matrixA(l+1) and edge
feature tensor E(l+1) for layer l + 1 are obtained [7], [17].

Node/edge feature matrices in the last feature embedding layer are
flattened into a 1D vector and fed to MLP (Multi-Layer Perceptrons),
whose output forms actions for the actor or value function for the
critic.

3) CAN in DDPG: The robust transistor sizing follows the same
procedure of DDPG [14] except that the deep neural networks in
DDPG are replaced by CANs. Accordingly, updating neural network
weights becomes training W ,a, b, etc., in CANs. The sizing itera-
tions are not organized in epochs. Hence, each iteration corresponds
to one time step, where one action is made.

D. Knowledge Transfer among Different Topologies
In analog IC designs, a function can often be realized by different

circuit topology designs. For instance, OTA can be realized as either
cascode OTA or current mirror OTA with the same functionality. To
facilitate knowledge reuse and thereby improve design efficiency, we
wish that a reinforcement learning agent trained for one topology
(source topology) can be applied to a different topology (target
topology) with incremental training by a few data samples on target
topology.

Knowledge transfer among different topologies requires to solve
two problems: (1) How to let a single GNN model accommodate dif-
ferent input dimension sizes resulted from different graph structures?
(2) How to make a single GNN model provide output of different
sizes due to different action spaces? Please note that the critic network
has scalar output and does not face the second problem.

In CAN, the first problem is solved in the same way as [7]. That
is, the graph pooling in CAN performs node/edge feature dimension
reduction and naturally handles input of different dimension sizes.
Since the GNN in [7] generates a scalar output for different topolo-
gies, it does not need to handle the second problem. We solve the
second problem in way similar to [8]. That is, the actor network
of target topology inherits the feature embedding layers from source
topology, and replaces the MLP of source topology with an untrained
MLP. As the bulk of knowledge is stored in feature embedding
layers, the incremental training for the new MLP needs very few
data samples.

The work of [8] requires an extra step of node feature transfor-
mation for the knowledge transfer, while CAN naturally supports
knowledge transfer among different topologies without such require-
ment. Besides, two MLPs are used in [8], one at the input and the
other at the output. By contrast, CAN only needs to incrementally
train one MLP. Hence, knowledge transfer in CAN is more efficient
than [8]. This advantage is confirmed by the experiment results.

IV. EXPERIMENTAL RESULTS

A. Experiment Setup
Analog circuit testcases include three topologies of OTA (Op-

erational Transconductance Amplifier), two topologies of compara-

tor circuits, two topologies of VCO (Voltage-controlled Oscillator)
circuits and two topologies of SCF (Switched Capacitor Filter)
circuits. The three topologies of OTAs are 5T (5 Transistor)-OTA,
CC (Cascode)-OTA and CM (Current Mirror)-OTA. The machine
learning models are implemented with TensorFlow in Python. Lay-
outs are generated automatically with an open source analog physical
synthesis tool, ALIGN1. Post-layout circuit simulations are performed
through Cadence Spectre with GlobalFoundries 12nm FinFET tech-
nology process. The experiments are conducted on a Linux machine
with Xeon (R) E5-2680 V2 processor of 2.8GHz frequency and 256G
memory.

The configurations of CAN networks in the experiment are sum-
marized in Table I. For both the actor and critic, CAN has four feature
embedding layers. According to our experience, it is better to skip
graph pooling in certain layers and this is why the first (last) two
layers have the same configuration. The MLPs in the actor and critic
have 3 and 5 layers, respectively. The last MLP layer in the critic
network has a single output for the value function. The number of
neurons in the last layer of the actor MLP is the same as the number
of transistors in a circuit.

Feature embedding layers

#nodes
#node #edge

features features

12 11 31
12 11 31
6 5 12
6 5 12

#neurons in MLPs

actor critic

32
32
16

16 8

#transistors
4
1

TABLE I: CAN configuration.
For FinFET technology, transistor size refers to the number of

fins per finger. The transistor sizes are in the range of [2, 20] with
initial size being 10. For some transistors, their sizes need to be
matched, e.g., differential pairs. The size matching is maintained for
such transistors during the sizing. In the actor-critic learning, the
maximum training step is set as 300. The learning rates for the actor
and critic are set as 0.001 and 0.002, respectively. The replay buffer
size is 50 for both the actor and critic. The training batch size 32.
The reward discount is 0.9. The number of Monte Carlo runs for
each reward computation is 100.

B. Circuit Performance and Robustness

In this part, we compare the solution quality of our method CAN-
RL (with FOMR reward) and GCN-RL [8] (with FOM reward).
Bayesian optimization (BO)-based (with FOM objective) transistor
sizing [4] has also been evaluated. Its solution quality is very similar
to GCN-RL and thus its results are omitted here for brevity. The
main results are shown in Fig. 5, where each column corresponds
to the sizing solution of one method on one testcase. For each
sizing solution, we generate hundreds of different layout designs
by varying the tool parameters. The color bars and their associated
horizontal segments indicate the median quartile, mean, the maximum
and the minimum FOM among these layout designs. In addition,
FOM values of schematic designs, which are sizing solution prior
to layout, and those generated by default layout tool setting are
provided as red crosses and green triangles, respectively. Although
FOMR (2) is used as reward within CAN-RL, it means to evaluate
a statistical effect for guiding solution search. For a specific design,
either schematic or layout, the conventional deterministic FOM is
still employed to assess its overall circuit performance. We have the
following observations for Fig. 5.

• Layout usually degrades circuit performance and this is es-
pecially obvious for the two comparator designs. Although a

1https://github.com/ALIGN-analoglayout/ALIGN-public



Fig. 5: FOM distributions for different methods. Color bars show ranges of median quartiles, the horizontal segments within color bars
indicate mean value and the horizontal segments above and below color bars mean the maximum and the minimum values, respectively.

layout-oblivious approach, such as GCN-RL, can achieve a very
good performance for schematic design, its corresponding post-
layout performance can be significantly worse than that from a
layout-aware sizing.

• For multiple layout designs, our CAN-RL reaches significantly
better mean FOM than GCN-RL [8], i.e., our method achieves
better circuit performance on average.

• The FOM values from multiple layout designs of our CAN-RL
solutions have remarkably smaller variance than those of GCN-
RL. Thus, our sizing solutions are much less sensitive to layout
uncertainty than GCN-RL.

• When only the default layout setting is used, performance of
our sizing solutions is still superior to that of GCN-RL.

Circuit CC-OTA CM-OTA 5T-OTA

Method CAN-RL GCN-RL CAN-RL GCN-RL CAN-RL GCN-RL

Gain (dB) 23.26 24.07 25.14 20.75 21.28 20.62

UGF (MHz) 968.3 821.1 2132 1280 731.3 998.1

BW (MHz) 67.55 48.06 139.2 127 63.24 93.6

PM (degree) 85.54 87.63 50.37 66.2 91.2 89.0

FOM 0.90 0.83 0.96 0.91 0.98 0.96

TABLE II: Post-layout performance of OTAs using default layout
setting.

Circuit Comp1 Comp2

Method CAN-RL GCN-RL CAN-RL GCN-RL

Delay 1 (ps) 67.15 267.8 85.28 158.1

Delay 2 (ps) 19.67 2.1 48.02 41.87

Power (mW) 194.9 179.0 303.3 442.3

Offset (mV) 24.91 39.99 24.66 35.23

FOM 0.53 0.46 0.39 0.33

TABLE III: Post-layout performance of Comparators using default
layout setting.

Circuit VCO1 VCO2

Method CAN-RL GCN-RL CAN-RL GCN-RL

Min Frequency (GHz) 0.17 0.15 0.14 0.27

Max Frequency (GHz) 1.22 1.53 0.88 0.43

Power (uW) 447.0 636.9 338.8 443.9

FOM 0.61 0.55 0.70 0.49

TABLE IV: Post-layout performance of VCOs using default layout
setting.

Besides FOM values, we summarize individual circuit perfor-
mance characteristics for OTAs, Comparators, VCOs and SCFs in
Tables II, III, IV, and V, respectively. The average FOM of default
layouts is 0.73 for CAN-RL and 0.66 for GCN-RL. So CAN-RL has

Circuit SCF1 SCF2

Method CAN-RL GCN-RL CAN-RL GCN-RL

Gain (dB) 16.05 15.02 16.17 15.52

UGF (MHz) 3.29 3.11 3.08 3.01

BW (KHz) 520.9 557.0 479.5 508.4

FOM 0.76 0.72 0.73 0.71

TABLE V: Post-layout performance of SCFs using default layout
setting.
10.6% FOM improvement over GCN-RL. The results show that
indeed our CAN-RL leads to performance superior to that of GCN-
RL. Since the solution quality of BO is about the same as GCN-RL,
the observations for GCN-RL are also applicable to BO.

C. Convergence and Knowledge Transfer

In this section, we compare the convergence rates of our CAN-
RL, GCN-RL [8] and BO (Bayesian Optimization) [4]-based analog
transistor sizing. Each method has two variants: one uses layout-
oblivious FOM as its objective/reward and the other employs layout-
aware FOMR as its objective/reward. Using FOMR for BO and
GCN-RL can be regarded as an enhancement with our stochastic
technique. We also assess the impact of knowledge transfer for CAN-
RL and GCN-RL. Table VI summarizes the time to reach 97.5% of
the maximum FOM/FOMR for different methods. We have the
following observations.

• Although CAN-RL, GCN-RL and BO can eventually achieve
similar solution quality when the objective/reward is the same
(one example is shown in Figure 6), CAN-RL has the fastest
convergence. Compared to BO, CAN-RL converges 5.6× and
6.8× faster for rewards of FOMR and FOM , respectively.

• Knowledge transfer facilitates further speedup. For example,
when reward function is FOMR, the transfer makes CAN-
RL about 2.8× faster. CAN-RL enjoys higher speedup from
knowledge transfer than GCN-RL.

• Compared with using reward FOM , using FOMR causes about
2.5× slowdown on convergence. However, considering that 100-
run Monte Carlo circuit simulations are performed for each
FOMR computation, the 2.5× slowdown implies quite high
parallel efficiency in the Monte Carlo simulations.

To have a further intuition on the convergence of different methods,
curves of FOM/FOMR versus iterations are plotted in Figs 6 for
Comp1. The upper row is for reward of layout-oblivious FOM and
the lower row is for reward of layout-aware FOMR. For clarity,
we separate methods without knowledge transfer and those with
comparing transfer to the left and right columns. The solid red
curves show that CAN-RL mostly converges faster than GCN-RL
and BO. The dashed red curves exhibit further speedup for CAN-RL



Circuit

Reward=FOM Reward=FOMR

CAN CAN PEA PEA GCN GCN
BO

CAN CAN PEA PEA GCN GCN
BOTransfer No Trnsf Transfer No Trnsf Transfer No Trnsf Transfer No Trnsf Transfer No Trnsf Transfer No Trnsf

CC-OTA 0.02 0.13 0.04 0.26 0.24 0.26 0.39 0.67 2.09 0.67 3.41 2.94 4.50 6.51
CM-OTA 0.06 0.86 0.14 0.93 0.37 0.77 2.70 2.33 6.73 3.83 6.62 5.32 6.23 10.56
5T-OTA 0.12 0.17 0.14 0.39 0.13 0.37 0.23 0.92 4.51 1.47 4.32 2.86 3.84 4.21
Comp1 1.63 4.07 5.56 6.77 8.48 8.22 13.68 23.74 38.24 46.15 63.29 68.41 89.46 97.45
Comp2 0.33 1.98 1.82 3.30 6.15 6.96 3.27 12.90 59.66 35.47 66.10 62.75 86.88 91.78
VCO1 11.90 44.20 35.70 44.20 37.22 106.58 94.14 46.03 167.06 63.08 173.88 61.23 187.07 190.70
VCO2 13.31 74.82 43.24 81.47 54.34 88.91 75.19 17.33 230.22 103.98 240.12 177.65 310.88 303.77
SCF1 66.62 145.72 174.86 216.49 274.51 270.35 424.47 183.73 197.34 251.78 340.24 353.63 462.45 653.06
SCF2 16.84 33.68 30.87 56.13 106.33 134.31 142.86 45.01 208.14 151.90 230.65 325.81 376.36 511.39

Avg. 12.31 33.96 32.49 45.55 54.20 68.53 84.10 36.96 101.55 73.15 125.40 117.84 169.74 207.71

Speedup 6.8X 2.5X 2.6X 1.8X 1.6X 1.2X 1.0X 5.6X 2.0X 2.8X 1.7X 1.8X 1.2X 1.0X

TABLE VI: Time (minutes) to reach 97.5% of the maximum FOM/FOMR. Transfer learning includes CC-OTA ↔ CM-OTA, CC-OTA
→ 5T-OTA, Comp1 ↔ Comp2, VCO1 ↔ VCO2 and SCF1 ↔ SCF2.

Fig. 6: Learning curves of Comp1.

by knowledge transfer. The convergence rate in terms of iterations is
similar between FOM reward and FOMR reward. Hence, the extra
computation cost of FOMR is within each iteration.

D. Additional Analysis

One may wonder if a single run of layout, extraction and post-
layout simulation can be cheaper than the Monte Carlo (MC) pre-
layout simulation. Fig. 7 shows such comparison for CC-OTA and
Comparator1. It can be observed that the time of parasitic extraction
is very long and overall the MC simulation is still significantly faster.

Fig. 7: Runtime comparison between pre-layout MC circuit simula-
tion and a single run of layout, extraction and post-layout simulation.

V. CONCLUSIONS AND FUTURE RESEARCH

In this work, a specialized graph neural network is developed and
applied in an actor-critic learning framework for analog transistor
sizing. A stochastic technique is developed to address layout effect

without actually performing expensive layout, extraction and post-
layout simulation. Compared to GCN-based reinforcement learning
and Bayesian optimization, our method can significantly improve
circuit performance and robustness against layout variations. When
GCN-RL and BO adopt our stochastic technique, they can reach solu-
tion quality similar to ours but take several times longer computation
time. Moreover, our knowledge transfer achieves significantly more
speedup than the knowledge transfer of GCN-RL.

In future research, we will integrate machine learning-based para-
sitic prediction techniques with our stochastic reward function so that
the optimization can be more accurate and more efficient.
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