
True In-memory Computing with the CRAM: From Technology to Applications

Zamshed I. Chowdhury, Salonik Resch, Masoud Zabihi, Zhengyang Zhao, Thomas Peterson, Mahendra DC
Ulya R. Karpuzcu, Jian-Ping Wang, Sachin Sapatnekar

University of Minnesota, Twin Cities

Abstract—Traditional Von Neumann computing is falling apart
in the era of exploding data volumes as the overhead of data
transfer becomes forbidding. Instead, it is more energy-efficient
to fuse compute capability with memory where the data reside.
Emerging spintronic technologies show remarkable versatility for
the tight integration of logic and memory. In this presentation,
we introduce Computational RAM (CRAM), a novel high-density,
reconfigurable spintronic in-memory substrate, and survey sev-
eral years of progress in developing the CRAM concept across
the system stack from the device level all the way to applications.

I. FUSING COMPUTATION AND MEMORY

Classical computing platforms are not optimized for effi-
cient data transfer, which complicates large-scale data analyt-
ics in the presence of exponentially growing data volumes.
Imbalanced technology scaling further exacerbates this situa-
tion by rendering data communication, and not computation, a
critical bottleneck [5]. Specialization in hardware cannot help
in this case unless conducted in a data-centric manner.

Tight integration of compute capability into the memory,
Processing in memory (PIM), is especially promising as the
overhead of data transfer becomes forbidding at scale. The rich
design space for PIM spans full-fledged processors and co-
processors residing in memory [6]. Until the emergence of 3D-
stacking, however, the incompatibility of the state-of-the-art
logic and memory technologies prevented practical prototype
designs. Still, 3D-stacking can only achieve near memory
processing, NMP [1], [2], [8]. The main challenge remains
to be fusing computation and memory without violating array
regularity.

Emerging spintronic technologies show remarkable versa-
tility for the tight integration of logic and memory. This talk
covers a high-density, reconfigurable spintronic in-memory
compute substrate, Computational RAM (CRAM) [10]. The
basic idea is to add compute capability to the magnetic
tunnel junction (MTJ) based memory cell [7], [12], without
breaking the array regularity. Thereby each memory cell can
participate in gate-level computation as an input or as an
output. Computation is not disruptive, i.e., memory cells acting
as gate inputs do not loose their stored values. This idea is
equally applicable to Spin-Torque-Transfer (STT) and Spin-
Orbit-Torque (SOT) based technologies.

CRAM can implement different types of basic Boolean
gates to form a functionally complete set, therefore there is no
fundamental limit to the types of computation. If implemented
using SOT (STT), each column (row) in an CRAM array can
have only one active gate at a time, however, computation in
all columns (rows) can proceed in parallel. CRAM provides
true in-memory computing by reconfiguring cells within the
memory array to implement logic functions. As all cells in
the array are identical, inputs and outputs to logic gates do
not need to be confined to a specific physical location in the
array. In other words, CRAM can intiate computation at any
location in the memory array on demand.

II. OPERATION PRINCIPLE

Without loss of generality, we will next use an STT-based
CRAM as a running example. In its most basic form, a CRAM
array is essentially a 2D magneto-resistive RAM (MRAM).
When compared to the standard 1T(ransistor)1M(TJ) MRAM
cell, however, each CRAM cell features an additional transistor
TL (Fig.1(a)), which acts as a switch between memory and
logic configurations. A CRAM cell can operate as a regular
MRAM memory cell or serve as an input/output to a logic
gate.

Each MTJ consists of two layers of ferromagnets, termed
as pinned and free layers, separated by a thin insulator. The
magnetic spin orientation of the pinned layer is fixed; of the
free layer, controllable. Changing the orientation of the free
layer entails passing a (polarized) current through the MTJ,
where the current direction sets the orientation. The relative
orientation of the free layer with respect to the pinned layer,
i.e., anti-parallel (AP) or parallel (P), gives rise to two distinct
MTJ resistance levels, i.e., Rhigh and Rlow, which encode
logic 1 and 0, respectively. As resistance levels represent logic
states, Fig.1 depicts each MTJ by its resistance.
Memory Configuration: The dashed components in Fig.1(a)
capture all add-ons to the standard MRAM memory cell, in
order to support logic functions. When the array is configured
as memory, the Logic Bit Line (LBL) is set to 0 to turn the
switch TL off, and thereby to disconnect the cells from the
Logic Line (LL). In this case, the array becomes equivalent
to a standard MRAM array. In the following, we detail the
configuration for various memory operations (where LBL is
always set to 0).
• Data retention: The Word Line (WL) is set to 0 to isolate
the cells and to prevent current flow through the MTJs.

• Read: WL is set to 1, to connect each MTJ to its Bit Select
Line (BSL) and Memory Bit Line (MBL). A small voltage
pulse applied between BSL and MBL induces a current
through the MTJ, which is a function of the resistance
level (i.e., logic state), and which in turn a sense amplifier
attached to BSL captures.

• Write: WL is set to 1, to connect each MTJ to its BSL
and MBL. A large enough voltage pulse (in the order of the
supply voltage) is applied between BSL and MBL to induce
a large enough current through the MTJ to change the spin
orientation of the free layer.

Logic Configuration: LL connects all cells participating in
computation, on a per row basis. Such cells may act as logic
gate inputs or outputs. For each CRAM cell participating in
computation, WL is set to 0 to disconnect its MTJ from MBL.
Instead, LBL is set to 1 to turn the switch TL on, which in
turn connects the MTJ to the LL.

As an example, Fig.1(b) demonstrates the formation of a
two input logic gate in the array, where cells labeled by “0”,
“1”, and “2” correspond to the inputs In0, In1, and the output
Out, respectively. Fig.1(c) depicts the equivalent circuit: BSL
of the output, BSL2, is grounded; while BSL of the two inputs,

1



WL
LL

BSL MBLLBL

TL

WL
LL

BSL0 LBL0

In0 Out

MBL0 BSL1 LBL1 MBL1 BSL2 LBL2 MBL2

In1

In0

Out

In1

In1
Out

LL

(a) (b) (c) (d)
BSL2

V1V0
BSL0 BSL1

R0 R1

ROut

In0

Fig. 1: (a) CRAM cell; (b) 2-input gate formation in the array; (c), (d) 2-input NOR gate circuit equivalents.

In0 In1 Out IOut = I0 + I1
0 (Rlow) 0 (Rlow) 1 I00 > Icrit
0 (Rlow) 1 (Rhigh) 0 I01 < Icrit
1 (Rhigh) 0 (Rlow) 0 I10 = I01 < Icrit
1 (Rhigh) 1 (Rhigh) 0 I11 < Icrit

TABLE I: 2-input NOR truth table (Out pre-set = 0).
BSL0 and BSL1, are set to voltages V0 and V1. The values of
V0 and V1 determine the currents through the input MTJs, I0
and I1, as a function of their resistance values R0 and R1 (i.e.,
logic states). IOut = I0+I1 flows through the output resistance
ROut. If IOut is higher than the critical MTJ switching current
Icrit, it will change the free layer orientation of Out’s MTJ,
and thereby, the logic state of Out. Otherwise, Out will keep
its previous state.

We can easily expand this example to more than two inputs.
The key observation is that we can change the logic state of
the output as a function of the logic states of the inputs, within
the array. And voltages at BSLs of the inputs dictate how such
functions would look like.

Continuing with the example from Fig.1(b)/(c), let us try to
implement an universal, 2-input NOR gate. Table I provides
the truth table. Out would be 0 in this case for all input
combinations but In0 = 0, In1 = 0, which incurs the lowest
R0 and R1, and hence, the highest IOut = I0+I1. Let us refer
to this value of IOut as I00, following Table I. Accordingly, if
we pre-set Out to 0 (before computation starts), and determine
V0 and V1 such that I00 does exceed Icrit, while both I11 and
I01 = I10 does not, Out would not switch from (its pre-set
value) 0 to 1, for all input combinations but In0 = 0, In1 = 0.

As Boolean gates of practical importance (such as NOR)
are commutative, a single voltage level at the BSLs of the
inputs suffices to define a specific logic functionality. Each
voltage level can serve as a signature for a specific logic gate.
Accordingly, in the above example, V0 = V1 applies, and
its value simply follows from Kirchoff’s Laws, where Rhigh,
Rlow, and Icrit represent technology dependent constants.
While NOR gate is universal, we can implement different types
of logic gates following a similar methodology for mapping
the corresponding truth tables to the CRAM array.

STT-based CRAM can perform only one type of logic
function in a row, at a time, however, multiple rows can
perform the very same logic function in parallel, on the same
set of columns. In other words, CRAM supports a special form
of SIMD (single instruction multiple data) parallelism, where
instruction translates into logic gate/operation; and data, into
input cells in each row, across multiple rows, which span the
very same columns.

III. DESIGN SPACE EXPLORATION ACROSS THE SYSTEM
STACK

CRAM leverages spintronics, a promising technology due
to its robustness, high endurance, and trajectory towards fast

improvement [11]. The CRAM idea was first introduced at
the device-level in [10] with pointers to circuit-level imple-
mentation. Next came a system-level study for STT-based
CRAM [3], followed by a cross-level analysis to bridge CRAM
technology, circuit implementations, and operation schedul-
ing [14]. Then, in [13], we redesigned CRAM around a new
MTJ based on the spin-Hall effect (SHE), providing greatly
improved energy efficiency. Using both designs, we recently
demonstrated effectiveness of CRAM in accelerating Binary
Neural Networks [9] and pattern matching at scale which lies
at the core of emerging genomics applications [4].

ACKNOWLEDGEMENTS

This work was supported in part by the DARPA Non-Volatile
Logic program, NSF SPX Award CCF-1725420, and by C-
SPIN, one of the six SRC STARnet Centers, sponsored by
MARCO and DARPA.

REFERENCES

[1] “Hybrid Bandwidth Memory (HBM),” http://www.amd.com/en-us/
innovations/software-technologies/hbm.

[2] “Hybrid Memory Cube (HMC),” http://www.hotchips.org/wp-content/
uploads/hc archives/hc23/HC23.18.3-memory-FPGA/HC23.18.320-
HybridCube-Pawlowski-Micron.pdf.

[3] Z. Chowdhury et al., “Efficient in-memory processing using spintronics,”
IEEE Computer Architecture Letters, vol. 17, no. 1, pp. 42–46, 2018.

[4] Z. Chowdhury et al., “Spintronic in-memory pattern matching using
computational ram (cram),” IEEE Journal on Exploratory Solid-State
Computational Devices and Circuits, November 2019.

[5] M. Horowitz, “Computing’s Energy Problem (and What We Can Do
About It),” Keynote at ISSCC, February 2014.

[6] G. H. Loh et al., “A Processing in Memory Taxonomy and a Case For
Studying Fixed-function PIM,” in Workshop on Near-Data Processing
in conjunction with MICRO, 2013.

[7] A. Lyle et al., “Direct Communication between Magnetic Tunnel
Junctions for Nonvolatile Logic Fanout Architecture,” Applied Physics
Letters, vol. 97, no. 152504, 2010.

[8] R. Nair et al., “Active Memory Cube: A Processing-in-Memory Archi-
tecture for Exascale Systems,” IBM Journal of R.&D., vol. 59, no. 2/3,
2015.

[9] S. Resch, S. K. Khatamifard, Z. I. Chowdhury, M. Zabihi, Z. Zhao,
J.-P. Wang, S. S. Sapatnekar, and U. R. Karpuzcu, “Pimball: Binary
neural networks in spintronic memory,” ACM TACO, vol. 16, no. 4, pp.
41:1–41:26, Oct. 2019.

[10] J.-P. Wang et al., “General Structure for Computational Random Access
Memory (CRAM),” 2015, US Patent 9224447 B2.

[11] J.-P. Wang et al., “A pathway to enable exponential scaling for the
beyond-cmos era: Invited,” in DAC, 2017.

[12] J. Wang et al., “Programmable Spintronics Logic Device Based on a
Magnetic Tunnel Junction Element,” Applied Physics Letters, vol. 97,
no. 10D509, 2005.

[13] M. Zabihi et al., “Using spin-hall mtjs to build an energy-efficient in-
memory computation platform,” in ISQED, March 2019.

[14] M. Zabihi et al., “In-memory processing on the spintronic cram:
From hardware design to application mapping,” IEEE Transactions on
Computers, 2018.

2


