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MOTIVATION

• High-speed circuits ->Gigahertz clock rates ->
Increased switching activity

• Feature sizes to deep submicron levels
•  Vdd levels going down to conserve power
• Power and Ground buses cannot be assumed to 

be perfect conductors
• P&G buses must be designed carefully to 

ensure that supply voltage levels are 
maintained at appropriate levels.

• Better CAD techniques needed for estimation 
of voltage drops in P&G buses for functional 
and physical reliability in integrated circuits.
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SPECIFIC P&G PROBLEMS

• Functional and Physical reliability
– Increased resistivity in P&G distribution network due to 

smaller feature sizes
– Reduces the current carrying capabilities of P&G networks
– High current transients in P&G buses
– Voltage drops across the P&G networks
– Can lead to incorrect logic operation
– and/or reduction in switching speeds
– Lifetime reductions and complete failure due to 

electromigration
– Also contributes to an increase in dynamic power 

dissipation

PROBLEM SOLUTIONS

• Accurate estimates of voltage drops and current 
densities in P&G buses

– Use circuit level analog simulators (like SPICE) for current 
and voltage estimations

– The main problems  are  the Time and Computational cost 
due to size of P&G networks

• Faster simulation times achieved by using
– custom tools targeted towards solving this specific problem
– simplified device models
– make use of tree or mesh structures of P&G networks
– find reduced order approximation of the transfer functions 
– problems include loss of accuracy and algorithm stability 

• All solutions proposed so far are numeric in 
nature

SOME EXISTING 
ALGORITHMS

• J. E. Hall, D. E. Hocevar, P. Yang, and M. J. McGraw, “SPIDER-- a CAD system for 
modeling VLSI metallization patterns,” IEEE Transactions on CAD,  Nov. 1987.

– Estimates Median-Time-to-Failure for each section of a 
metal bus

– Makes use of SPICE runs
– User must provide estimates of current sources
–

• S. Choudhury and M. A. Breuer, “Optimum design of IC power/ground nets subject to 
reliability constraints,” IEEE Transactions on CAD, July 1988.

– More general technique
– Takes into consideration electromigration and voltage drops 

from leaf to node
– Transform the problem into an unconstrained optimization 

problem
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SOME EXISTING 
ALGORITHMS (cont ...)

• R. Dutta and M. Marek-Sadowska, “Automatic sizing of power/ground 
P/G networks in VLSI,” Proceedings DAC, pp. 783-786, 1989.

– Modeled as a nonlinear programming problem
– Cost function is the sum of the segments areas
– Constraints are wire width
– Convergance is not necessary, meaningful results are 

achieved at any time the iterations are terminated

• T. Mitsuhashi and E. S. Kuh, “Power and ground network topology 
optimization for cell-based VLSIs,” in Proceedings of the ACM/IEEE 
Design Automation Conference, pp. 524-529, 1992.

T H I S  A L G O R I T H M  &  
SYMBOLIC ANALYSIS

• Motivation: Use of SPICE is computationally 
expensive and other current methods use 
simplified current estimation techniques but 
are limited to performing DC analysis

• Sapatnekar and Shah presented a method (1996) 
that uses frequency domain techniques:

– not limited to a resistive or any one class of networks
– can perform transient analysis (with simplified models)
– near linear algorithm (in the size of the network)
– results within 1% of SPICE

• The algorithm is very suitable for symbolic 
analysis because of its linear models, frequency 
domain techniques and repetitive evaluations

P&G BUS MODEL

Pad

 

Bus Contact Point

•Ground Bus Example
•Switch is modeled as a linear resistor
•Power Bus Modeled analogously
•Resistor Model is worse case for both  
  pullup and pulldown

Substrate
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SEGMENTED RC MODEL of 
P&G BUS

• Modeled as a set of segments connected in the 
form of a tree

• Each segment is modeled using a lumped RC
•  π model
• Ri =ρli /ωi

• Ci=βliωi

• where li is the length of the ith segment,  ωi is 
the width of the ith segment,  ρ is the sheet 
resistance and β is the wire capacitance per unit 
area 

Rs1 Rs2

Cs1/2 Cs1/2 Cs2/2Cs2/2

ls1 ,ωs1 ls2 ,ωs2

Ground

Ground

Ground

EXAMPLE MODEL FOR 
GROUND NET

• The P&G network is 
modeled as a tree T 
having m+1 nodes

• m edges (wire segments)
•  one or more switches 

connected to each node
• Assume switches 

undergo state changes at 
predefined time points

cp1

cp10

cp9

cp2

cp8

cp7

cp4
cp3

cp6

cp5

SYMBOLIC ANALYSIS 
APPLICATION

• The algorithm computes the time domain voltage 
waveform at each node for every time instance 

• Two steps, which are repeated for every time point at 
which one or more switches changed states.

1) Solve a set of equations of the form 
(G + sC) V(s) = J(s)
using an efficient path tracing algorithm, to obtain V(s).

2) Given V(s) at every node, compute the time domain 
response by approximating V(s) with a rational Padé 
approximation.

Both steps are perfectly suitable for symbolic analysis:
Linear, fixed topology network that requires many 
computational iterations
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ALGORITHM BASIS

• Event-driven algorithm where the events 
specified are the time points at which one or 
more switches change their state.

• The events are typically generated by an event-
driven simulator

• All the switches that switch at the same time 
point are grouped together and placed at the 
beginning of a new interval

• The interval list is {(0,t1),(t1,t2),....}
Events (i)

time (t)
t1 t2 t3 t4 t5t6 t7 t80

ALGORITHM OUTLINE

• Construct interval
• Select every element in the interval list in that 

order
• Set the corresponding switch states 
• Process the interval (compute new states)
• Repeat with the the new switch states and 

computed initial conditions for next interval.
• Continue until all the intervals are processed.

COMPUTATION WITHIN AN 
INTERVAL

• The initial conditions on the capacitors are 
taken into consideration

• Compute the moments of each node voltage in 
the P&G networks 

• Generate a stable Padé approximation
• Transform to a time domain voltage waveform
• The response is used to compute the initial 

conditions at all the nodes at the time of the 
next switching event

• Repeat the process
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COMPUTATION WITHIN AN 
INTERVAL (continued...)

• S = Set of switches connected to the P&G bus
• E = {e1,....,em} is the set of all the segments in T
• I = {ik | k = 1.....Imax} is the interval list
• ik is the kth interval  

• Associated with each interval ik is a subset of switches  sk and their 
states pk

• tk is the time span of interval ik  

BEGIN ALGORITHM Vdrop() 
 I = IntervalList(); 
 foreach ik in I

 foreach  j  in sk and state(j)  in pk
 SetSwitch(T,j,state(j))  
 PropagateActivity(T,j,state(j)); 

 foreach  n  in Nodes(T)
 fn(t) = TimeDomainResponse(moments(n)); 

 SetInitialCondition(n,fn(tk)) 

END ALGORITHM Vdrop()

MOMENT COMPUTATION BY 
PATH TRACING 

• Computation of moments of the voltage at any 
given node

• Recursively reduce the subtrees rooted at the 
given node n to an admittance YTi(n) and a 
current source JTi(n)

where 
• YTi(n) is the equivalent admittance of the subtree Ti, as seen from 

node n to the ground
•  JTi(n) is the combined effect of all the switch elements in Ti which 

have contributed to the current in the ground net. 

Subtree
T1

Subtree
T2

 
n JT1(s)

YT1(s)

YT2(s)

JT2(s)

 
n

MOMENT COMPUTATION 
(continued...)

• The equivalent current 
sources and admittances are 
computed for every node in 
linear time using a path 
tracing algorithm.

• The algorithm proceeds from 
the leaf-nodes, which are the 
contact points at the 
terminating segments of the 
ground net.  

• A leaf-node could have 
multiple switches but exactly 
one segment connected to it.

J(s)
Y(s)

 n 
e1

 
e1 n

Subtree
Ti

Subtree
Tj

Subtree
Tk

Subtree
Tl
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SYMBOLIC MODEL 
COMPUTATION

• J(n) and Y(n) can be computed symbolically 
• It is the same as a symbolic implementation of 

Norton's theorem
• SCAPP used to generate a sequence of 

expressions
• A simpler symbolic implementation possible
• The equivalent current source of a single switch 

i is given by:

Ji = Vc
s

sCnet
1 + RdsCnet

SYMBOLIC MODEL 
COMPUTATION

• Vc is the initial voltage on the capacitor Cnet at 
the start of the given interval.  

• The pole at the origin in indicates that Cnet is 
modeled as 

Ji = Vc
s

sCnet
1 + RdsCnet

Cnet

+

Cnet

Vcu(t)

SYMBOLIC MODEL 
COMPUTATION (continued....)

• Using Maclaurin series 
polynomial 
approximations we have

• Total admittance and 
equivalent current is:

• The expressions includes 
the effect of all the 
switches with binary 
operators controlling the 
closing and opening of the 
switches during the 
evaluation phase

Ji (n) = Vc(sCnet − RdsCnet
2 + Rds2Cnet

3 +. . . . . )

Yi = sCnet
1 + RdsCnet

Yi = sCnet − Rds2Cnet
2 + Rds3Cnet

3 +. . . . .

Y(n) = Yi∑ ∀i ∈   Switches at n

J(n) = Ji∑ ∀i ∈   Switches at n
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EFFECT OF THE CURRENT 
SOURCES

• The effect of the equivalent current sources is 
propagated to every node in the network

• Terminate segment e in the ground network, 
connecting a single contact point u to the rest of 
the network, rooted at v

R(e)

C(e)/2

C(e)/2
J(u)

Y(u)

v u

Y(v)

Direction of propagation

EQUIVALENT ADMITTANCE

• The admittance and the equivalent current 
source, as seen into edge e from node v is 
computed as

Y(v) = 1

R(e) + {Y0(u) + (Y1(u) + 0.5C(e))s+. . . .+Y2n−1(u)s2n−1}−1 + 0.5C(e)

= Y0(u) + (Y1(u) + 0.5C(e))s+. . . .+Y2n−1(u)s2n−1

(1 + R(e)Y0(u)) + R(e)(Y1(u) + 0.5C(e))s+. . . .+(R(e)Y2n−1(u)s2n−1 + 0.5C(e)

Yk (v) =
Yk (u) − R(e)Yk−i (v)Yi (u)

i=1

k

∑
1 + R(e)Y0(u)

Y(v) = Y0(v) + Y1(v)s + Y2(v)s2 +. . .+Yk (v)sk +. . .

where

which yields

EQUIVALENT CURRENT 
SOURCE

Using Norton's theorem (shorting node v to 
ground) we get

Jk (v) = J0(v) + J1(v)s + J2(v)s2 +. . .+Jk (v)sk +. . .

Jk (v) =
Jk (u) − R(e)Jk−i (v)Yi (u)

i=1

k

∑
1 + R(e)Y0(u)

where

Thus, we say that the equivalent admittance 
and current source have been propagated from 
node u to v
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GENERALIZING THE 
ALGORITHM

• The above case only considers the switches 
connected to leaf-nodes

• In general, switches can be connected to any 
node

• In cases where a node has more then one 
segment and multiple switches connected,  the 
switches are processed in a similar manner

• The admittance and current source can be 
propagated if and only if a maximum of one 
segment is left unprocessed at the given node. 

GENERAL NODE CASE

• Since each node n in a 
P&G network is a root of 
a subtree Ti, the 
equivalent devices seen 
through edge ei can be 
computed by

Yei (n) = YT j
(n)

j=1, j≠i

k

∑Jei (n) = JT j
(n)

j=1, j≠i

k

∑

n

n4

n3

n2

n1

nk

GENERAL NODE CASE (continued...)

• Voltage moments at n:

V(n) = J(n)
Y(n)

J(n) = JTi
(n)

i=1

k

∑

Y(n) = YTi
(n)

i=1

k

∑

V(n) = V0(n) + V1(n)s + V2(n)s2 +. . .+Vk (n)sk +. . .

Vk (n) =
Jk (n) − Vk−i (n)Yi (u)

i=1
k∑
Y0(n)

where

Moments of V(n):

where
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GENERAL NODE CASE 
(continued...)

• The voltage moments can be computed at all 
nodes if equivalent Ys and Js have been 
propagated twice along each segment: once in 
each direction.  Hence a linear time path tracing 
algorithm which traces each segment once in 
either direction can be used for the computation 
of voltage moments at all nodes. 

COMPUTING TIME DOMAIN RESPONSE

• Use moment matching techniques
– We have V(s) for each node in the network
– 2N moments for the node voltages have been computed
– Largest order of approximation can be N, let M=N-1
– Approximate V(s) with an M-zero N-pole expression
– Padé Approximation

V
~

(s) = a'0 +a'1 s + a'2 s2 +. . .+a'M sM

1 + b'1 s + b'2 s2 +. . .+b'N sN

TIME DOMAIN (continued ..)

• The denominator coefficients are computed 
from the Hankel matrix

V0 V1 . . . . . . VN

V1 V2 . . . . . . VN+1

.

.
.

.

.
.

. . . . . . .
.
.

VN VN+1 . . . . . . VN+M−1





















b'N

b'N−1

.

.
.

b'1





















= −

VN+1

VN+2

.

.
.

VN+M





















The numerator coefficients 
are computed by equating 
powers of s

a'0 = V0

a'1 = V1 + b'1 V0

.

a'M = VL + b'i VM−i
i=1

M

∑
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TIME DOMAIN (cont ...)

• Given the above symbolic coefficients, the time 
domain response can be found numerically by 
writing 

V
~

(s) = ĉ + k̂i
s − p̂i

i=1
N∑

ṽ(t) = ĉδ (t) + k̂ii=1
N∑ e p̂it

• which is transformed to the time domain as

PRELIMINARY 
EXPERIMENTAL RESULTS

• Two randomly generated ground nets
– gnet1: 400 contact points

total wire length=2cm
wire width=3µ

• Accuracy was compared with HSPICE at four 
selected nodes A, B, C and D

• Comparing peak voltage and root mean square 
error

• Sample time points were 0.01ns
• Maximum order of the Padé Approximations 

was set to 3

   gnet2: 4000 contact points
total wire length=10cm
wire width=3µ

PRELIMINARY 
EXPERIMENTAL RESULTS 

(continued .... )

• gnet1: Peak and RMSE Voltages

Node Peak (Volts) Peak (Volts) VRMSE  
Vdrop HSPICE (Volts)

A 0.350 0.342 0.00130
B 0.432 0.426 0.00150
C 0.688 0.689 0.00087
D 0.461 0.463 0.00054

• gnet2: Peak and RMSE Voltages
Node Peak (Volts) Peak (Volts) VRMSE  

Vdrop HSPICE (Volts)
A 0.216 0.229 0.00017
B 0.225 0.243 0.00013
C 0.419 0.419 0.00028
D 0.129 0.125 0.00039
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CONCLUSIONS

• Expand the applications of symbolic analysis to 
a new field

• Application of symbolic analysis to Power and 
Ground interconnect analysis

• Provides mechanism for reducing cost of highly 
iterative process

• More testing of the algorithm in general and the 
symbolic role in particular is required

• Expand algorithm to perform P&G bus 
optimization, ie. produce an optimal P&G 
network based on the results


