
1

Retiming Level-Clocked Circuits for Latch Count
Minimization

Naresh Maheshwari Sachin S. Sapatnekar
Dept. of Electrical & Computer Engineering Dept. of Electrical & Computer Engineering

Iowa State University, Ames IA 50011 University of Minnesota, Minneapolis, MN 55455
naresh@iastate.edu sachin@ee.umn.edu

Abstract|
Retiming is a powerful transformation that can min-

imize the number of memory elements in a sequen-
tial circuit under clock period constraints. Recent re-
search has led to the development of extremely fast
algorithms for retiming edge-triggered circuits. How-
ever, level-clocked circuits have the potential to oper-
ate faster and require less memory elements than edge-
triggered circuits. This paper addresses the harder
problem of retiming level-clocked circuits, and presents
a space and time e�cient retiming algorithm, called
Minaret-L, whose performance compares well with the
state of art edge-triggered retiming methods. Minaret-
L can perform latch count minimization for large cir-
cuits (over 56,000 gates) that use multi-phase symmet-
ric clock schedules very e�ciently (under 1.5 hours).

I. Introduction

Retiming [1], [2] relocates the memory elements in
a circuit, without changing its functionality, to opti-
mize some cost function, e.g, clock period [3], number
of latches [4], power [5] or testability [6]. The problem
of �nding the minimum clock period without regard to
area is calledminperiod retiming, and that of minimiz-
ing the number of memory elements while satisfying
a target clock period is called minarea retiming.

The memory elements in a circuit may be ei-
ther edge-triggered 
ip-
ops (FF's) or level-sensitive
latches. In a level-clocked circuit the latch is transpar-
ent during the active period of the clock, and the delay
through a combinational logic path can be longer than
one clock cycle, as long as it is compensated by shorter
paths delays in the subsequent cycles. This transpar-
ent nature of the latch provides more 
exibility both in
terms of the minimum clock period achievable and the
minimum number of memory elements needed. Un-
fortunately this transparency also perplexes the anal-
ysis of level-clocked circuitry because data can ripple
through several stages of memory elements before its
propagation is complete. This complicates the design
of level-clocked circuits, making the need of good au-
tomation tools acute.

As a result several e�orts have been made to re-
time circuits with level-triggered latches based on the

This work was supported in part by National Science Founda-
tion award MIP-9502556, a Lucent Technologies DAC Graduate
Scholarship and a Iowa State University Computation Center
Grant. Reprinted from TAU 97

Leiserson-Saxe approach [2], e.g. [7], [8], [9], [10].
Since minperiod retiming algorithms do not pay any
regard to the number of latches in the retimed cir-
cuit, they tend to signi�cantly increase the number
of latches. Hence there is a real need for constrained
minarea retiming methods. TIM [9] provides one such
minarea retiming method for two-phase symmetric
clocking schedules. The minarea retiming problem
for level-clocked circuits can be formulated as a lin-
ear program (LP) similar to the one in [2]. Due to
the transparent nature of the latches the number of

constraints in this LP is extremely large, almost jGj2

2
for a circuit with jGj gates. This places heavy time
and space requirements on minarea retiming and TIM
is not capable of retiming large circuits (with tens of
thousands of gates) for minimum area. The objective
of this work, called Minaret-L, is to be able to retime
level-clocked circuits with tens of thousands of gates
in reasonable time.

An e�cient method for minarea retiming of edge-
triggered circuits was presented in [12]. This was
achieved by utilizing the observation that in edge-
triggered circuits, if a sub-path satis�es the timing
constraints, then any path containing this sub-path
will also satisfy the timing constraints. Unfortunately
this is not true in level-clocked circuits, because of
the the transparent nature of latches. Therefore the
techniques of [12] cannot be applied to level-clocked
circuits.

The ASTRA algorithm in [3], presented a di�erent
approach to retiming of edge-triggered circuits uti-
lizing the retiming-skew relation. This relation was
extended to level-clocked circuits in [11], which pre-
sented an algorithm for minperiod retiming of level-
clocked circuits under a general multi-phase clocking
scheme. Both of these methods are capable of minpe-
riod retiming of large circuits but do not address the
harder problem of minarea retiming.

The work in [4], presented e�cient techniques to
obtain bounds on the variables of the minarea LP for
edge-triggered circuits. It then used these bounds to
further reduce the size of the LP and the time required
for generating the LP. Utilizing the retiming-skew re-
lation for level-clocked circuits from [11], bounds on
the variables of the minarea LP are obtained in this



work, along the lines of [4]. However due to the trans-
parent nature of latches, unlike edge-triggered circuits,
the techniques of [4] cannot be used to reduce the
time required to generate the LP in level-clocked cir-
cuits. This presents a major hurdle in retiming large
level-clocked circuits for minimum area, because in
the absence of any e�ciency-enhancing technique, the
minarea LP can not be generated in a reasonable time.
This work also presents new techniques for reducing
the time taken to generate the minarea LP in level-
clocked circuits.
The rest of the paper is organized as follows: Sec-

tion II presents the required background, followed by
techniques for reducing the linear program in Sec-
tion III. We then present e�cient techniques for gen-
erating this reduced LP in Section IV, and solving it
in Section V. Section VI presents experimental re-
sults on the ISCAS-89 benchmarks, and Section VII
concludes the paper.

II. Background

A. The Clock Model

As in [9] a k-phase clock is a set of k periodic signals
� = h�1; 
1; �2; 
2; : : : �k ; 
ki, where �i is the active
duration of phase i and 
i is the gap between the
falling edge of phase i and the rising edge of phase
(i + 1). We denote the duration of phase i by �i =
�i + 
i. We overload the symbol � to also denote
the clock period � =

Pk
i=1 �i. A clocking scheme is

symmetric if all phases have the same duration and
active intervals, i.e. if �i = � 8i = 1 � � � k and 
i =

 8i = 1 � � � k. Thus for a k phase symmetric clocking
scheme � = k � � and � = � + 
. In this work we
consider only symmetric clocking schemes.

B. The Circuit Model

The graph model used here is identical to the one in
[2]. A sequential circuit is represented by a directed
graph, G(V;E), where each vertex v corresponds to
a gate, and a directed edge euv represents a connec-
tion from the output of gate u to the input of gate v,
through zero or more latches. Each vertex has a �xed
delay d(v). Each edge has associated with it a weight
w(euv) and a width �(eij). The weight is the number
of latches between the output of gate u and the input
of gate v. The width of an edge is the area cost of
placing one latch on it.
To accurately model the number of latches needed

in a circuit we take into account maximum latch shar-
ing. To achieve this each gate with multiple fanouts
has a mirror vertex of zero delay, associated with it
[2].
A retiming is a labeling of the vertices r : V !

Z, where Z is the set of integers. The weight of an
edge euv after retiming, denoted by wr(euv) is given
by wr(euv) = w(euv) + r(v) � r(u).

The retiming label r(v) for a vertex v represents the
number of latches moved from its output towards its
inputs. One may de�ne the weight w(p) of any path
p : u ; v, originating at vertex u and terminating
at vertex v, as the sum of the weights on the edges
on p, and its delay d(p) as the sum of the delays of
the vertices on p. Similarly wr(p) is the sum of the
weights on the edges on p after retiming, and is given
by

wr(p) = w(p) + r(v) � r(u) (1)

For a level-clocked circuit to be properly clocked the
delay between any two gates should be less than the
time available [10], i.e.,

d(p) � (wr(p) + 1) � � + � (2)

After substituting Equation 1, this constraint can be
rewritten as

r(u)� r(v) � w(p) �
d(p)

�
+ 1 +

�

�
(3)

Clearly if there are multiple paths from u to v only
the tightest constraint (minimum right hand side)
is irredundant. We denote the minimum value ofh
w(p)� d(p)

�

i
over all paths from u to v by �(u; v),

i.e.

�(u; v) = min
8p:u;v

�
w(p)�

d(p)

�

�
(4)

Let us de�ne �(u; v) as

�(u; v) =

�
�(u; v) +

�

�
+ 1

�
(5)

Since the retiming variables r(u) and r(v) are integers,
we can rewrite Equation (3) as

r(u)� r(v) � �(u; v) (6)

C. The Minarea Retiming Problem

The constrained minarea retiming problem for a
target period � is formulated as the following LP [9]:

min
X
v2(V )

2
4
0
@ X

8j2FI(v)

�(ejv)�
X

8j2FO(v)

�(evj)

1
A � r(v)

3
5

subject to r(u)� r(v) � w(euv) 8euv 2 E (7)

r(u)� r(v) � �(u; v) 8u; v 9 p : u; v

The objective function represents the number of
latches added to the retimed circuit in relation to
the original circuit, taking into account maximal latch
sharing at the output of a gate. �(eij) is the cost of a
latch on edge eij as de�ned in Section II-B. The �rst
set of constraints ensures that the weight euv of each
edge (i.e., the number of latches between the output of



gate u and the input of gate v) after retiming is non-
negative. We will refer to this set as the circuit con-
straint set Cc. The second set of constraints ensures
that after retiming, each path satis�es the proper tim-
ing constraint of Equation (2). This set, being depen-
dent on the clock period, is referred to as the period
constraint set Cp.

D. Alternate View of Retiming

In [11] the term Global Departure Time (GDT) is
de�ned for each latch, as the latest departure time
of data signal from that latch, with reference to the
arrival time at the primary inputs, in a global time
frame. GDT is an abstract term and can have either
positive or negative values. A relation between GDT
and retiming, similar to the one between skew and re-
timing for edge-triggered circuits [3] is also presented
in [11]. This relation is used to solve the minperiod re-
timing problem for level-clocked circuits, by mapping
it to the clock skew optimization problem. The GDT's
so obtained are then used to get the actual retiming.
Moving a latch from the inputs of a gate to its outputs
is equivalent to increasing the GDT of that latch by
an amount equal to the delay of the gate. Likewise,
a motion from outputs to the inputs is equivalent to
reducing the GDT by the gate delay. A value of GDT
between �� and 0 is considered allowable, since it
corresponds to zero skew. The GDT's are reduced by
relocating latches across gates obtaining the retimed
circuit.

III. The Reduced Linear Program

In this section, we will show how reliable bounds on
the retiming variables together with other techniques
can be used to reduce the size of the LP in Equa-
tion (7), in terms of both the number of variables and
constraints.

A. Reducing the Variable Set

The work in [4] modi�ed the methods in [3] to ob-
tain bounds on the r variables for edge-triggered cir-
cuits. In this work we modify the methods in [11]
along the same lines to obtain bounds on the r vari-
ables for level-clocked circuits.
Consider the simple circuit in Figure 1 with unit

gate delays and a single-phase clocking scheme with
50% duty cycle. We assume that the data signals are
available at the primary inputs at the falling edge of
the clock, and must arrive at the primary outputs be-
fore the falling edge. This assumption gives any signal
exactly two clock period to reach the primary outputs
from the primary inputs. To achieve the minimum
clock period of 2.0 units, one must move the latch L1
either to the output of gate G1 or to the output of
gate G2; no other position of the latch L1 is feasible.
Therefore, it can be seen that the latches cannot be

sent to just any location in the circuit; rather, there is
a restricted range of locations into which a latch may
be moved.

IN OUTL1

G1 G2 G3 G4

Fig. 1. Example circuit.

As in [4] this concept of restricted mobility of latches
is related to the \nearest" and \farthest" location
from the primary inputs, that any latch can occupy
under the target clock. These locations can be thought
of as the boundaries to the range within which the
latch may be moved. Here we use the term ASAP (as-
soon-as-possible) locations to refer to the locations in
which all latches are as close to the primary inputs as
possible. Similarly the ALAP (as-late-as-possible) lo-
cations has all latches as close to the primary outputs
as possible.

IN OUT

G2 G3 G4G1
L1

Fig. 2. ASAP latch locations after retiming.

IN OUT

G3 G4G1 G2

L1

Fig. 3. ALAP latch locations after retiming.

The algorithm for minperiod retiming in [11] is
modi�ed along the lines of [4] to give ASAP or ALAP
locations. This modi�ed algorithm is run twice on the
original circuit, once for ASAP and once for ALAP, to
generate the bounds on the r variables. While moving
the latches, we count the number of latches that tra-
verse each gate. The count of latches moved across a
gate in arriving at the ASAP [ALAP] locations is the
upper [lower] bound on the r variable for that gate.
The bounds on the r value of a mirror vertex mi

for the gate i can easily be derived from the bounds
on the fanouts of gate i as explained in [4]. Thus we
obtain upper and lower bounds on the r variables cor-
responding to each gate y (including mirror vertices)
of the form.

Ly � r(y) � Uy (8)

If Uy = Ly = ky we say that gate y is �xed or im-
mobile, otherwise the gate is called 
exible. These
bounds are with respect to a �xed host vertex, i.e.,
LH = UH = 0. We can now reduce the variable set V
of the LP in Equation (7) to V 0 � V the variable set
of Minaret-L where

V 0 = fv 2 V jUv 6= Lvg (9)

Example: For the circuit in Figure 1, the ASAP lo-
cation for the latch L1 is at the output of gate G1



as shown in Figure 2. The number of latches moved
across each gate in arriving at this ASAP location,
and hence the upper bounds are: UG1 = �1, UG2 = 0,
UG3 = 0, and UG4 = 0. The ALAP location of latch
L1 is at the output of gate G2, as shown in Figure 3.
The number of latches moved across each gate in ar-
riving at this ALAP location, and hence the lower
bounds are: LG1 = �1, LG2 = �1, LG3 = 0, and
LG4 = 0.

B. Pruning the Constraint Set

As in [4] a constraint c(i; j) of the type r(i)�r(j) �
cij is always satis�ed if Ui�Lj � cij is true. This leads
us to the following rule

Rule 1: Any constraint (i; j) of the form r(i) �
r(j) � cij is redundant in the presence of the bounds
and can be dropped if Ui � Lj � cij .

Consider three gates a, b and c, such that gate b lies
on the path from gate a to gate c. If gate b is a fanin
of gate c then we have

C1 : r(a) � r(b) � �(a; b)

C2 : r(b)� r(c) � w(ebc)

C3 : r(a)� r(c) � �(a; c)

If �(a; b) + w(ebc) � �(a; c) then constraint C3 is
redundant and can be dropped. This leads us to the
following rule

Rule 2: If b and c are two gates reachable from gate
a, such that gate b is a fanin of gate c and �(a; b) +
w(ebc) � �(a; c) then the period constraint from gate
a to gate c is redundant and can be dropped.

If gate b is a fanout of gate a then we have

C4 : r(a) � r(b) � w(eab)

C5 : r(b)� r(c) � �(b; c)

C6 : r(a)� r(c) � �(a; c)

If w(eab) + �(b; c) � �(a; c) then constraint C6 is
redundant and can be dropped. This leads us to the
following rule.

Rule 3: If gate b is a fanout of gate a and gate c

is some gate reachable from gate a, then if w(eab) +
�(b; c) � �(a; c) then the period constraint from gate
a to gate c is redundant and can be dropped.

Rule 1 prunes the constraints because the informa-
tion in the bounds on r variables makes some con-
straints redundant. Rule 2 and Rule 3 on the other
hand prune the constraints because of the discrete na-
ture of the � values; these rules can be generalized
to include implication by more than two constraints;
these generalized rules will, however, be computation-
ally expensive to apply. Rules 2 and 3 on the other
hand, can be e�ciently applied as explained in Sec-
tion IV.

Together these rules can reduce the circuit con-
straint set (Cc) to obtain the reduced circuit con-
straint set C 0

c � Cc, and the period circuit con-
straint set (Cp) to get the reduced period constraint
set C 0

p � Cp. This gives us the reduced LP of Minaret-
L as follows:

min
X
v2V 0

2
4
0
@ X

8j2FI(v)

�(ejv)�
X

8j2FO(v)

�(evj)

1
A � r(v)

3
5

(10)

subject to r(u)� r(v) � w(euv) 8(u; v) 2 C 0
c

r(u)� r(v) � �(u; v) 8(u; v) 2 C 0
p

Lu � r(u) � Uu 8u 2 V 0

IV. Generating the Reduced Linear

Program

The reduced circuit constraint set C 0
c is easily

obtained by dropping redundant constraints using
Rule 1. A major portion of the computational e�ort
in retiming a level-clocked circuit for minimum area is
spent in generating the period constraints set Cp. We
now describe e�cient techniques for generating the re-
duced period constraint set C 0

p.

A. Computing the � Values

The generation of period constraints requires com-
putation of �(u; v) for all-pairs of gates in the cir-
cuit. These � values can be obtained by re-weighting

each edge eij with w0(eij) =
h
w(eij)�

d(i)
�

i
and com-

puting all-pair shortest paths. We use Johnson's al-
gorithm [13] which has O(jV j) memory requirement,
since O(jV j2) memory is not practical for large circuits
with tens of thousand of gates. Johnson's algorithm
�rst re-weights all edges to ensure nonnegative edge
weights. The shortest paths between all pair of gates
are then be computed by running Dijkstra's algorithm
for each gate as source.
Let us consider a particular run of Dijkstra's algo-

rithm with gate a as the source, and let b be a gate
to which the shortest path �(a; b) has been obtained.
Let c be any other gate in the circuit, reachable from
gate b.

By de�nition, r(a)� r(b) � Ua � Lb

If Ua � Lb � �(a; b),

then r(a)� r(b) � �(a; b). (11)

From Equation (3) and Equation (4)

r(b)� r(c) � �(b; c) +
�

�
+ 1,

which when combined with Equation (11) gives

r(a) � r(c) � �(a; b) + �(b; c) +
�

�
+ 1 (12)



If the shortest path from gate a to gate c does not
go through gate b then �(a; b) + �(b; c) � �(a; c) and
we do not need to process the fanouts of gate b to
obtain �(a; c). On the other hand, if the shortest path
from gate a to gate c is indeed through gate b then
�(a; b) + �(b; c) = �(a; c) and Equation (12) is same as
the period constraint r(a) � r(c) � �(a; c). If Ua �
Lb � �(a; b) then this period constraint is redundant.
In either case we need not process the fanouts of gate
b. Since this is true for any c, reachable from gate b,
we get the following rule.

Rule 4: If during the shortest path calculations from
source a using the Dijkstra's algorithm, for any gate b
we have Ua � Lb � �(a; b), we do not need to process
the fanouts of gate b.

Notice that unlike TIM, our approach does not com-
pute the full (all-pairs) shortest path matrix, because
of the pruning provided by Rule 4. Since we generate
the period constraints from one gate (say gate a) at
a time, both �(a; b) and �(a; c) are available in the
same iteration, and Rule 2 can be e�ciently applied
to drop redundant period constraints as they are gen-
erated.

B. Reusing � Computations

We now describe how to reuse some of the compu-
tations performed in obtaining the � values to further
speed up the generation of period constraints. The
idea is motivated by the fact that in many practical
circuits (e.g, ISCAS-89) a high percentage of gates are
single-fanout gates. Consider one such gate a with
the single fanout b. For gate a, the shortest paths
to all other gates must be via gate b, which implies
that �(a; c) = w0(ea;b) + �(b; c). Therefore we can ob-
tain the shortest paths from gate a by simply adding
w0(ea;b) to the shortest paths from gate b. Thus if we
somehow ensure that shortest paths from gate b are
obtained before those from gate a, we will save one
complete execution of Dijkstra's algorithm (for gate
a as source). We call this approach \chaining" and
the set of gates for which only one � computations is
performed as \chains." We use Dijkstra's algorithm
to obtain the � values for the gate at the head of a
chain, and then simple additions give the � values for
all of the other gates in the chain. This chaining tech-
nique can be generalized to store � values from multi-
ple gates. We found that by using a simple chaining
technique, with no storage overhead we could reduce
the time spent in generating the period constraints on
average by about 50%.

These chains are obtained by a fast preprocessing
step which maps each gate to exactly one chain. As
a side note, Rule 4 must be modi�ed for use with
chaining to ensure that it holds for all gates that reuse
� computations. This reuse of � computations also
enables e�cient application of Rule 3. This is possible

because for a gate a with only one fanout (gate b),
�(a; c) is derived from �(b; c), and hence both are
available when the period constraint from a to c is
being generated.

V. Solving the Linear Program

Like Equation (7), the LP in Equation (10) is also
the dual of a min-cost 
ow problem [2]. We found that
it could be solved very e�ciently using the network
simplex algorithm from [14]. The network simplex
method is a graph based adaptation of the LP simplex
method that exploits the network structure to achieve
very good e�ciency. The upper and lower bounds on
the r variables provide a initial feasible spanning tree.
This tree has two levels only, with the host node as the
root and all other nodes as leaves. To prevent cycling
we construct the initial basis to be strongly feasible
by using the appropriate bound (upper or lower) to
connect a node to the root (host node). It is easy
to maintain strongly feasible trees during the simplex
operations, and details are given in [14].

Using the �rst eligible arc pivot rule with a
wraparound arc list from [15, page 417] gave us signif-
icant improvements in the run time. The r variables
(duals of the 
ow variables) are directly available from
the min-cost 
ow solution. Using these techniques we
could solve min-cost 
ow problems with 70,000 vari-
ables and more than 17 million constraints in under 9
minutes.

VI. Experimental Results

We present results for the larger circuits in ISCAS-
89 benchmark suite, and some other large circuits
(myex1 through myex5) created by combining ISCAS-
89 circuits. As in [9], to obtain level-clocked circuits,
we replaced each edge-triggered FF in the ISCAS-89
circuit by two level-sensitive latches.

In Table I we show for each circuit, the number of
gates jGj, the number of latches, the problem size, and
the execution times. The circuits are retimed for the
minimum possible period, and the number of latches
for both minperiod retiming [11] and minarea retiming
by Minaret-L (for the same clock period) obtained af-
ter taking into account the maximum register sharing
[2] are shown. For almost all circuits minarea retim-
ing reduces the number of latches in the circuit by a
factor of two to three as compared to minperiod re-
timing, even though both retime the circuit for the
same clock period. This underscores the importance
of minarea retiming.

We compare the size of the LP in Minaret-L given
in Equation (10) and the original LP in Equation (7)
by presenting the number of variables and constraints
in both. It can be seen that up to three orders of
magnitude reduction is obtained in the number of con-
straints by using Minaret-L. The number of unpruned



constraints grow at the rate of O(jGj2) and our prun-
ing techniques reduce this rate of growth signi�cantly.

Also presented are the CPU time required to com-
pute the bounds on the r variables (Tb), generate the
LP (Tp), and to solve it (Ts). All execution times are
in seconds on a DEC AXP system 3000/900 worksta-
tion with 256M RAM. It can be seen that even though
the reduction in size of the LP due to the bounds is
signi�cant, the extra time spent in obtaining them
is an insigni�cant fraction of the total CPU time for
minarea retiming (Ttotal). The time required to gen-
erate the LP dominates the total execution time sig-
nifying the importance of chaining and Rule 4. The
small execution time of Minaret-L highlights the ef-
fectiveness of our e�ciency enhancing techniques.

VII. Conclusion

A fast algorithm for minarea retiming of large
level-clocked circuits has been presented. The entire
ISCAS-89 benchmark suite could be retimed in min-
utes. This work uni�es the two approaches to retiming
of level-clocked circuits, i.e., the TIM [9] and the AS-
TRA [11] approaches. This uni�cation together with
the other techniques (Rule 2, Rule 3, Rule 4 and chain-
ing) leads to an e�cient method of generating a much
smaller LP, with two to three orders of magnitude less
constraints. It makes it feasible to retime large level-
clocked circuits (over 56,000 gates) for minimum area
in very reasonable time (under 1.5 hours). To put
this in perspective, the largest level-clocked circuit for
which minarea retiming results had been published in
the past had less than 400 gates [9].

Minaret-L can retime large level-clocked circuit for
minimum area in time similar to that required for
retiming edge-triggered circuits, thus bringing the
techniques for retiming level-clocked circuits at par
with the state of art in retiming techniques for edge-
triggered circuits.

TABLE I

Minimum Area Retiming using Minaret-L

Circuit jGj # Latches # Variables # Constraints Tb Tp Ts Ttotal
Minperiod Minarea Minaret-L Original Minaret-L Original (sec) (sec) (sec) (sec)

s3384 1,754 685 322 1,961 2,166 54,216 761,365 0.19 1.95 0.57 2.71
s4863 2,407 588 237 2,693 2,995 83,752 5,482,144 0.15 4.96 0.46 5.57
s5378 2,863 660 314 2,960 3,664 31,497 4,595,422 0.15 2.93 0.25 3.32
s6669 3,218 1,168 530 3,787 4,100 59,372 1,924,119 0.24 5.99 0.46 6.69
s9234.1 3,337 590 260 3,543 3,893 136,675 6,443,183 0.24 12.40 0.72 13.36
s13207.1 8,004 2,831 890 7,656 9,180 73,796 22,908,612 1.05 19.29 1.36 21.70
s15850.1 9,843 1,718 1,033 9,013 11,332 93,423 39,493,359 1.42 49.27 2.90 53.60
s35932 16,420 4,629 3,457 17,144 21,716 110,019 129,482,466 1.85 42.93 4.73 49.51
s38584.1 19,595 7,399 2,852 20,590 23,390 161,638 293,482,466 3.55 118.21 10.48 132.24
s38417 21,504 6,861 2,722 25,735 25,923 4,390,018 149,498,368 4.93 350.44 147.60 502.97
myex1 26,113 8,503 4,559 32,509 32,922 4,550,735 313,110,465 5.59 484.69 61.01 551.29
myex2 29,134 9,288 3,883 30,489 34,417 213,914 504,058,462 7.16 394.72 20.25 422.13
myex3 35,711 13,309 6,370 43,837 44,812 11,325,336 725,691,302 8.16 1613.56 187.48 1809.20
myex4 40,993 15,087 5,531 48,708 49,214 7,400,927 819,727,160 10.39 1926.41 234.11 2170.92
myex5 56,895 19,307 9,039 70,000 70,414 17,269,129 1,624,722,880 16.84 4623.62 535.62 5176.07

References

[1] C. Leiserson, F. Rose, and J. B. Saxe, \Optimizing syn-
chronous circuitry by retiming," in Proceedings of the 3rd
Caltech Conference on VLSI, pp. 87{116, 1983.

[2] C. E. Leiserson and J. B. Saxe, \Retiming synchronous
circuitry," Algorithmica, vol. 6, pp. 5{35, 1991.

[3] S. S. Sapatnekar and R. B. Deokar, \Utilizing the retiming
skew equivalence in a practical algorithm for retiming large
circuits," IEEE Transactions on Computer-Aided Design,
vol. 15, pp. 1237{1248, Oct. 1996.

[4] N. Maheshwari and S. S. Sapatnekar, \An improved al-
gorithm for minimum-area retiming," in Proceedings of
the ACM/IEEE Design Automation Conference, pp. 2{7,
1997.

[5] J. Monteiro, S. Devadas, and A. Ghosh, \Retiming se-
quential circuits for low power," in Proceedings of the
IEEE/ACM International Conference on Computer-Aided
Design, pp. 398{402, 1993.

[6] S. Dey and S. Chakradhar, \Retiming sequential circuits
to enhance testability," in Proceedings of the IEEE VLSI
Test Symposium, pp. 28{33, 1994.

[7] N. Shenoy, R. K. Brayton, and A. Sangiovanni-Vincentelli,
\Retiming of circuits with single phase transparent
latches," in Proceedings of the IEEE International Con-
ference on Computer Design, pp. 86{89, 1991.

[8] A. Ishii, C. E. Leiserson, and M. C. Papaefthymiou, \Op-
timizing two-phase, level-clocked circuitry," in Advanced
Research in VLSI and Parallel Systems: Proceedings of
the 1992 Brown/MIT Conference, pp. 246{264, 1992.

[9] M. C. Papaefthymiou and K. H. Randall, \Tim: A timing
package for two-phase, level-clocked circuitry," in Proceed-
ings of the ACM/IEEE Design Automation Conference,
pp. 497{502, 1993.

[10] B. Lockyear and C. Ebeling, \Optimal retiming of
level-clocked circuits using symmetric clock schedules,"
IEEE Transactions on Computer-Aided Design, vol. 13,
pp. 1097{1109, Sept. 1994.

[11] N. Maheshwari and S. S. Sapatnekar, \A practical algo-
rithm for retiming level-clocked circuits," in Proceedings
of the IEEE International Conference on Computer De-
sign, pp. 440{445, 1996.

[12] N. Shenoy and R. Rudell, \E�cient implementation of
retiming," in Proceedings of the IEEE/ACM Interna-
tional Conference on Computer-Aided Design, pp. 226{
233, 1994.

[13] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduc-
tion to Algorithms. New York, NY: McGraw-Hill, 1990.

[14] M. S. Bazaraa, J. J. Javis, and H. Sherali, Linear Program-
ming and Network Flows. New York, NY: John Wiley,
1977.

[15] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network
Flows Theory, Algorithms and Applications. Englewood
Cli�s, NJ: Prentice Hall, 1993.


