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Abstract

With the increasing inuence of the resistive e�ects
of interconnects on the performance of VLSI systems,
a greater stress is being laid on careful interconnect
design. One prominent technique is the approach of
sizing wires for long interconnects to achieve the de-
sired speed and power characteristics [1{4]. It has
also been suggested that one may appropriately insert
repeaters [5] for signi�cant delay reductions. This pa-
per uni�es these approaches to optimizing an inter-
connect by placing a prespeci�ed number of bu�ers
(drivers and repeaters) using a dynamic programming
procedure and then performing simultaneous wire and
bu�er sizing using a sensitivity-based heuristic. Ex-
perimental results are presented to prove the utility
and performance of the approach.

1 Introduction
With an increasing need for high performance VLSI
circuits, a large amount of e�ort is being applied in
optimizing the performance of the digital circuits by
means of optimization at the physical level of VLSI
design. Speci�cally, with decreasing minimum feature
sizes, long interconnects may have signi�cant resis-
tances, in which case the lumped capacitance model of
an interconnect is no longer valid, and the distributed
nature of the wire resistance must be taken into con-
sideration.

While an increase in the wire width decreases its
resistance, it also increases the capacitance and the
dissipated power. Therefore, optimization needs to
be carried out by suitably sizing the interconnects to
achieve the best power-delay tradeo�.

In [1{3], wire sizing alone was used to reduce in-
terconnect delays. Subsequently, it was shown in [4]
that a signi�cant improvement in performance can be
achieved by optimizing the sizes of both the wires and
the driver at the root of the interconnect tree.

While wire and bu�er sizing help reduce delay sig-
ni�cantly, the load capacitance for long nets driven
by the cascade of drivers at the root is extremely
large, thereby imposing impractical bu�er width re-
quirements at the root. A solution to this problem
has been proposed in [5] wherein bu�ers in the form
of repeaters are introduced (without wire sizing) at
di�erent intervals in the interconnect. Introduction
of repeaters essentially decomposes the large intercon-
nect into two or more sub-nets which in themselves
constitute smaller load capacitances and hence require
smaller bu�ers to drive them.
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We are also aware of a parallel e�ort in this area
by Lillis, Cheng and Lin [6]. The approach uses a
dynamic programming formulation and reduces the
search space using judicious approximations.

In this paper, we solve the problem of inserting
drivers and repeaters into an interconnect and siz-
ing them and the wires to derive power-delay tradeo�
curves. The tradeo� approach to optimization pre-
sented here is supported by the sharply rising nature
of the power-delay curves for an interconnect which
indicate that the power dissipation corresponding to
the minimumdelay may not be as desirable a solution
as meeting a slightly larger delay speci�cation with a
signi�cant reduction in power dissipation.

We present a two step method to optimize the per-
formance of an interconnect under delay constraints at
the leaf nodes. The �rst step involves solving a bu�er
insertion problem using a dynamic programming for-
mulation for the appropriate introduction of repeaters
in the RC wire tree. The second step sizes the inserted
bu�ers as well as the wire segments to meet all of the
delay constraints, using a sensitivity-based heuristic.

2 Problem Formulation

2.1 Interconnect and Bu�er Modeling
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Figure 1: An Example of a Bu�ered Interconnect Tree

This work assumes that the interconnect net is in the
form of a tree, T , as shown in Figure 1, where each
branch of the tree is either a bu�er or a wire section.
Each wire section can further be modeled as a succes-
sion of RC wire segments as shown in Figure 2. The
resistance, Ri and the capacitance Ci of ith segment
of the tree are, given by formul��li=wi and �liwi,

R 1 R 2 R n

C 1 C 2 C 3 C n

Figure 2: Cascaded RC model of wire segment

where wi and li are, respectively, the width and the
length of the ith segment, � is the sheet resistance of



the wire, and � is the wire capacitance per unit area.
The bu�ers in the RC tree T are modeled as shown

in Figure 3. The input end of the bu�er is modeled as
a gate capacitance, Cgi. The output end of the bu�er
is modeled by a driver resistance, Rdi, and the source-
drain capacitance. The driver resistance and the gate
capacitance are, respectively, given by �dldi=wdi and
�dldiwdi, where wdi and ldi are respectively width and
the length of the ith bu�er, �d is the resistive constant
for the bu�er, and �d is the capacitance per unit area
of the channel di�usion. The expression for the source-
drain capacitance at the output is similar to that for
Cgi, with a di�erent proportionality constant.
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 / drain
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Figure 3: Bu�er Model

2.1.1 Delay Modeling

The delay of the interconnect tree is determined by
using the Elmore delay model [8]. For an RC tree, the
Elmore delay from the root to any node is given by:

X

j 2 Pi

Rj(
X

k 2 desc(j)

Ck)

where Pi is the path from the root node to that node,
and desc(j) is the set of nodes that are descendants of
node j in the tree.

The introduction of bu�ers at intermediate points
in an RC tree modi�es the delay computation to the
leaf nodes since the presence of a bu�er isolates the
downstream capacitance of that bu�er from the rest
of the tree. Consequently, the delay equations for the
leaf nodes will not include the capacitances that have
been isolated by the bu�ers introduced in the tree, and
the introduction of bu�ers divides the tree T into m
subtrees Ti; 1 � i � m, each of which is an RC tree,
such that the delay to leafnode i is now given by:

di =
X

8 j2 Pi

Rj(
X

8 k 2 desc(j) ; k 2 Ti

Ck) (1)

where Ti is the subtree to which the node j belongs.

2.1.2 Power Modeling

The power dissipated in the interconnect tree com-
prises two components [9]:

(a) The dynamic power dissipated by a bu�er is the
power required to charge/discharge the total capaci-
tance driven by that bu�er.
(b) The short circuit dissipation of a bu�er is the
dissipation of power due to the existence of a direct
path from Vdd to ground during the transient period
which is proportional to the rise time of the signal
driving the given bu�er.

The dynamic power component P dyn
di , is given by:

P dyn

di =
mX

i = 1

X

j 2 Ti

CjV
2
ddf

where Cj is the capacitance at node j, Vdd is the sup-
ply voltage, f is the switching frequency of the net
and Ti is as de�ned in Section 2.1.1. It can be easily
veri�ed that P dyn

di may equivalently be written as:

P dyn
di =

mX

i = 1

CdiV
2
ddf (2)

where Cdi is the downstream capacitance being driven
by the bu�er at the root of the subtree Ti.

The short circuit dissipation is modeled as:

P sckt
di =

�

12
(Vdd � 2jVT j)

3� f (3)

where P sckt
di is the short circuit power, � is given by

K(wdi=ldi), where K is the transconductance, � is the
rise time of the input signal, and jVT j is the magnitude
of the threshold voltage of the transistors in the bu�er.
Both � and jVT j are assumed to be equal for n and p
transistors. The model estimates the value of � using
the Elmore delay between the two bu�ers.

A series of experiments conducted with di�erent
number of repeaters and di�erent wire sizes for inter-
connects indicated that under normal working condi-
tions the short circuit power dissipation comprised an
insigni�cant fraction (� 1%) of the total power dis-
sipation. Hence, although the short-circuit power is
included in the problem formulation, it is ignored in
the implementation of the wire and bu�er optimiza-
tion algorithm, leading to a signi�cant reduction in
the execution times of the program.

We observe here that when the width of a wire j
belonging to a subtree Ti is changed, the e�ects of the
change are localized to Ti. Similarly, whenever a gate
or bu�er size is changed, the delay of the interconnect
network can be recalculated using incremental tech-
niques. These observations are particularly important
in ensuring the e�cient implementation of the sensi-
tivity algorithm described in Section 4.

2.2 Problem Statement

The problem comprises two steps, namely:

Step 1: Bu�er placement in the unsized intercon-
nect network using dynamic programming to position
a prespeci�ed number of bu�ers at the driving end of
one or more wire segments which constitute a set of
legal positions for bu�er insertion. Note that this step
is only used to determine the best bu�er locations, and
that the optimal bu�er sizes obtained in this step are
discarded in Step 2.
Step 2: Simultaneous wire and bu�er sizing us-

ing a sensitivity-based heuristic to minimize the de-
lay to the leaf nodes with the minimal increase in the
power. Given that the parameters of the problem are
the widths of the wire segments in tree, wi; i = 1 � � �n1,



and the widths of the drivers, wdi; i = 1 � � �n2, in
a tree T whose leaf-nodes are speci�ed by the set
leafnode(T ), the problem can be formally stated as:

minimize
mX

i = 1

Pdi (4)

subject to dj < Dspec;j 8 j 2 leafnode(T )

where Pdi is the power dissipated in the ith subtree; dj
and Dspec;j are, respectively the delay and the timing
speci�cation at leaf-node j of the interconnect tree T .

3 Properties of Problem Formulation

3.1 The Discrete Sizing Problem

The discrete sizing problem is the problem of �nding
optimal wire and bu�er sizes to solve the problem for-
mulated in (4) such that the wire widths and bu�er
sizes may only take on values which are integral mul-
tiples of a speci�ed base size, usually the minimum
feature size for the technology.
De�nition 1: An assignment f for a tree T is an
(n1+n2) tuple of numbers [ w1; :::wn1; wd1; :::; wdn2 ],
where n1 and n2 are the number of wires and bu�ers,
respectively, in the tree T, and wi; 1 � i � n1 and
wdi; 1 � i � n2 are the widths of the wires and the
bu�ers, respectively.
De�nition 2: Given a routing tree T, a wire width
assignment f is a monotonic assignment if wp � wc

whenever wire Sp is an ancestor of Sc, and both wires
lie in the same subtree.

The signi�cance of the monotonicity of the problem
is emphasized by Theorem 1, the proof of which is
similar to that of Theorem 1 in [2].

Theorem 1 (The monotonicity property) Under the
Elmore delay model, any optimal wire width assign-
ment f� must be monotone.

In other words, an optimal set of wire sizes in any
subtree Ti, de�ned in Sec. 2.1.1 must be a monotonic
wire width assignment. We emphasize that the mono-
tonicity property is valid only for wire sections in the
same subtree, and not across subtrees.

The results in Theorem 1 implicitly assume that
the maximum allowable size for each wire is the same,
although in situations such as a congested routing re-
gion, one may prefer to limit the minimumwire size in
that region, causing the monotonicity property to fail.
However, the monotonicity property is not critical to
the correctness of the work presented here.

We now state a second property that is used by the
sensitivity based algorithm.

Theorem 2 Let i be a leafnode, and let Pi be the
path from the root node to i. Then the delay from
root to node i cannot be decreased by increasing any
wire or bu�er size that does not lie on Pi.

It may be noted that the separability property used
in [1] was shown in [2] to be invalid for the case where
the Elmore delay to each leafnode is considered inde-
pendently.

3.2 Continuous Wire Sizing Problem

The continuous wire sizing problem is the problem of
�nding optimal wire widths to solve the wire sizing
problem, such that the wire widths may take on any
real value. The approach in this work solves the con-
tinuous sizing problem and maps the solution to dis-
crete sizes. It is worth noting that Theorems 1 and 2
are valid for the continuous wire sizing problem too.
De�nition 3 Posynomials: A posynomial is a func-
tion g of a positive variable w 2 Rn that has the form

g(w) =
X

j

j

nY

i=1

w
�ij

i (5)

where the exponents �ij 2 R and the coe�cients j >
0. It is worth noting that the sum and product of
posynomials yield another posynomial.

A posynomial in w has the useful property that it
can be mapped onto a convex function in x through
the elementary variable transformation,

(wi) = (exi) (6)

We now state some properties of the delay and
power dissipation in an interconnect, the proofs of
which have not been included due to space limitations.

Property 1: The delay along any path of a bu�ered
RC tree is a posynomial function of the parameters wi

and wdi of the problem stated in (4).
Property 2: The total power dissipation (dynamic
and short-circuit) of a bu�er in the tree T is a posyn-
omial function of the parameters wi and wdi.
Property 3: The continuous wire sizing problem
stated in Section 4 is unimodal i.e, any local minimum
of this problem is a global minimum

To observe this, note that the transformation
(wi; wdi) = (exi ; exdi)

transforms any posynomial function of the wi's and
wdi's to a convex function of the xi's and the xdi's.
Hence, under this transformation, the objective func-
tions as well as the constraints are convex, and since
the mapping function is one-to-one, the optimization
problem under consideration is unimodal.

4 Implementation

4.1 Bu�er Placement

The implementation of the bu�er insertion algorithm
for an unsized net is described in [7]. The original
algorithm in [7] has been modi�ed to include a con-
straint on the maximum number of bu�ers that can
be inserted. This is done by dynamically eliminating
any possible con�guration of the tree which requires
more bu�ers than speci�ed by the upper bound.

The output of the bu�er insertion algorithm com-
prises of bu�ered RC tree T , where the inserted
bu�ers, are selected from a bu�er library (LB). Each
of the bu�ers in the library is speci�ed by its internal
delay (Dbuf ), channel width (wdi), and the length of
di�usion channel ldi of the bu�er. Bu�er insertion is
performed by the insert bu�ers procedure which ac-
cepts the given wire tree T , the bu�er library LB, and



Nmax, the maximum number of bu�ers that can be
inserted in the tree, as input parameters. It must be
noted that the bu�er library LB is only used to deter-
mine the positions of the bu�ers and the sizes of the
inserted bu�ers are set back to minimum size (0.5 �m)
before the wire and bu�er sizing is done. This is done
because the bu�er placement algorithm may produce
large bu�ers that are optimal for the unsized net, but
may prove to be excessively large after the bu�er and
wire sizing is done.

Given that B is the set of legal positions for bu�er
insertion in the tree T , and N is the number of leaf
nodes, the complexity of the bu�er placement algo-
rithm is O(B2 +N ).

4.2 The Sensitivity-based Heuristic

The sensitivity heuristic used in [2] performs wire size
optimization with the objective of minimizing the area
under delay constraints at the leaf nodes.

Initially, all widths are set to the minimum allow-
able value, corresponding to a small value for the ob-
jective function, with the possibility that some con-
straints may be violated. In each step, the philosophy
of the heuristic is to attempt to achieve the best re-
duction in the amount of constraint violation, with
minimum increase in the objective function. To this
end, the most sensitive wire or bu�er is identi�ed, and
its size is bumped up by a bumping factor, F .

The bu�ered net problem has two sets of param-
eters, the wire widths [w1; � � � ; wn1] and the driver
widths [wd1; � � � ; wdn2]. The sensitivity with respect
to either of these parameters xi = (wi or wdi) is given
by:

Si =
Delay(size = F � xi)�Delay(size = xi)

�P
(7)

where �P is the change in power due to the change
in the width of the branch (bu�er or wire), and the
function Delay returns the delay from the root node
to the leaf node with the maximumviolation, which is
referred to as the current leaf node in the pseudo-code.

The sensitivity of each wire and each bu�er along
the path from the root to the current leaf node is com-
puted using Equation (7), and the size of the single
wire or bu�er with the minimum negative sensitivity
(i.e, the negative sensitivity with the largest magni-
tude) is bumped up by the bumping factor, F . In the
inner loop, the algorithm checks whether the branch
being considered for sensitivity is a wire or a bu�er.
If the branch is a bu�er, and the sensitivity of the
bu�er is the most negative so far, then the boolean
variable maxsensitive isbu�er is set to true, else it is
set to false. In either case the variable maxsensitiv-
ity branch is set to the number of the branch having
maximum sensitivity for the current leaf node. At the
end of the inner loop execution, both the maxsensi-
tive isbu�er and maxsensitivity branch are used to de-
termine parameter to be bumped. The bumping of
the maxsensitive wire/bu�er is done by the functions
change wire width/change bu�er width respectively.

The process continues until no wire or bu�er has
a negative sensitivity, which gives the solution to the

unconstrained problem of minimizing the largest de-
lay to the leafnode under maximum wire and driver
width constraints or until the delay speci�cations at
all leafnodes are met. This is the stopping criterion
alluded to in the pseudo-code.

BEGIN ALGORITHM POINT()
/* Power Optimal Interconnect */

LB = Bu�er library;
Nmax = Maximum number of bu�ers to be inserted;
insert bu�ers (T , LB, Nmax);
Bmax = maximum allowable bu�er size;
F = bumping factor;
while (stopping criterion not met)

current leaf node = leaf node with the
largest delay violation;

maxsensitivity = 0;
maxsensitivity branch = -1;
maxsensitive isbu�er = false;
for each branch i (wire or bu�er)
that is an ancestor of current leaf node

if the present branch i is a bu�er
and wdi < F �Bmax
and Si < maxsensitivity then /*xi = wdi*/

maxsensitivity = Sdi;maxsensitivity branch = i;
maxsensitive isbu�er = true;

else if present branch i is a wire
and wi < F � wAns(i)
and Si < maxsensitivity then /*xi = wi*/

maxsensitivity = Si;maxsensitivity branch = i;
if (maxsensitivity branch == -1) exit;
if maxsensitive isbu�er then

change bu�er width(i);
else change wire width(i);

MAP()
END ALGORITHM POINT()

4.3 Mapping Algorithm

After �nding a solution to the continuous wire siz-
ing problem, the heuristic calculates the discrete solu-
tion by using a sensitivity based mapping algorithm to
round o� wire sizes to the next higher or lower integer.
The solution to the continuous optimization problem
problem provides a lower bound on the solution to the
discrete sizing problem, and we have observed that the
mapping algorithm described here leads to an insignif-
icant degradation in the quality of the solution. The
mapping algorithm is given below.

BEGIN ALGORITHM MAP()
Mark all wires and bu�ers as unprocessed;
Mark all leaf nodes as unprocessed;
While (all leafnodes not processed)

current leaf node = unprocessed leaf node
with largest delay;

for each unprocessed branch (wire or bu�er)i
that is an ancestor of current leaf node

if (width(i) is an integer) continue;
wi+ = d width(i)e;wi� = b width(i)c
if (delay(wi+)� delay(width(i))

< delay(wi�)� delay(width(i) ))
width(i) = wi+;

else

width(i) = wi�;
END ALGORITHM MAP()



5 Experimental Results
Experiments were carried out for the following circuit
examples using the technology parameters in [4]. The
Maxdelay and Minpower �gures correspond to a un-
sized interconnect driven by a minimum-sized driver,
and may be used as a reference to evaluate the results.
Interconnect 1 A single wire of length 2cm divided
into 50�m sections (Maxdelay = 69.89ns, Minpower
= 120.2 pJ/transition)
Interconnect 2 A 12 sink tree with a maximum
path length of 2cm to the leaf nodes and 50�m
sections (Maxdelay = 139.33ns, Minpower = 247.6
pJ/transition)

For �xed values of the number of inserted bu�ers
(Nins) and the maximum allowable bu�er size, a
power-delay tradeo� curve was obtained for each cir-
cuit. Several such tradeo� curves for Interconnect 1
and Interconnect 2 are, respectively, shown in Fig-
ures 4, 5 and Figures 6, 7. The maximum bu�er sizes
�xed at 30 and 50�m respectively, and each plot pro-
vides a comparison of the tradeo� curves obtained for
di�erent number of inserted bu�ers. Note that these
curves are incomplete; they do not show the maximum
delay point corresponding to the minimum-sized wire
with a minimum-sized driver and no repeaters. Ta-
bles 1 and 2 show the minimum delay achievable us-
ing the algorithm for various values of the maximum
bu�er size and the maximum number of bu�ers in-
serted, for Interconnect 1 and Interconnect 2, respec-
tively.

It can be seen that when a small number of bu�ers
is used, the delay can generally be brought down
by increasing the number of bu�ers. As evidenced
in Figures 6 and 7, beyond a certain point, inser-
tion of bu�ers will cause the timing behavior to de-
teriorate; however, the minimum achievable delay is
smaller when more bu�ers are used. Although it is
not shown here due to space limitations, it is obvious
that one cannot add bu�ers inde�nitely and expect to
reduce delays; beyond a certain point, no additional
improvement is provided by inserting more bu�ers.

The wire pro�les for Interconnect 1 for the tightest
constraint case (Dspec = 0:5ns) are given in Figure 8
and 9. The discontinuities in the wire widths indicate
the presence of a bu�er; for example, in Figure 8, a
bu�er is inserted at a distance of 240 segments from
the root. Speci�cally, we note that the farthest re-
peater from the driver is placed closer to the leafnode,
corresponding to the fact that a large load capacitance
has to be driven. Note that Interconnect 1 has only
one leaf node, and for Interconnect 2, the wire sizes
along a path to only one selected leaf node have been
shown. The curves also indicate that by placing an
upper bound on the bu�er sizes (Bmax), the amount
of wiresizing done, as compared to bu�er sizing can
be controlled.

It is observed that depending on the number of re-
peaters inserted and the positions in which they are
inserted, the performance of the net can be improved
signi�cantly over the unsized tree with no repeaters.
Further wire and bu�er sizing is used to meet the
speci�c delay constraints. Our experiments have also
shown that our approach of inserting drivers and re-

Table 1: Intct 1: Power Dissipation (pJ/transition)
Bmax Nins Power Min. Net CPU

(pJ/tr.) Delay (ns) Time(s)
0.5�m 1 120.3 68.76 7.22
(min- 2 120.4 68.20 7.13
sized) 3 120.5 68.00 7.10
30�m 1 123.1 6.30 31.5

2 131.3 3.24 22.4
3 141.7 2.13 17.3

50�m 1 123.1 5.60 48.1
2 128.1 3.08 39.1
3 138.2 2.00 33.7

Table 2: Intct 2: Power Dissipation (pJ/transition)
Bmax Nins Power Min. Net CPU

(pJ/tr.) Delay (ns) Time(s)
0.5�m 5 247.8 136.78 6.4
(min- 8 248.1 133.43 6.9
sized) 15 248.3 29.10 7.0
30�m 5 253.1 13.48 8.9

8 259.7 4.99 9.5
15 271.0 3.02 7.3

50�m 5 256.1 2.54 12.2
8 261.9 1.24 13.2
15 275.1 0.87 9.0

peaters, and sizing these and the wires provides better
results than the approach of combined driver sizing
with wire sizing, without using repeaters, as in [4].
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Figure 4: Intct1: Power Delay Curve, Bmax = 30�m
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Figure 5: Intct1: Power Delay Curve, Bmax = 50�m

250

255

260

265

270

0 5 10 15 20

P
o
w
e
r
 
(
p
J
 
/
t
r
a
n
s
i
t
o
n
)

Delay (ns)

5 buffer(s)
8 buffer(s)
15 buffer(s)

Figure 6: Intct 2: Power Delay Curve, Bmax = 30�m
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Figure 7: Intct 2: Power Delay Curve, Bmax = 50�m
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Figure 8: Intct 1: Wire Pro�le, Bmax = 50�m,
Nmax = 1; Delay = 5:60ns
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Figure 9: Intct 1: Wire Pro�le, Bmax = 50�m,
Nmax = 3; Delay = 2:00ns
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Figure 10: Intct 2: Wire Pro�le, Bmax = 50�m,
Nmax = 5; Delay = 2:54ns
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Figure 11: Intct 2: Wire Pro�le, Bmax = 50�m,
Nmax = 15; Delay = 0:87ns


