
1

OpeNPDN: Neural Networks for Automated
Power Delivery Network Synthesis
Vidya A. Chhabria1, Andrew B. Kahng2, Minsoo Kim2, Uday Mallappa2,

Sachin S. Sapatnekar1, and Bangqi Xu2
1University of Minnesota, 2University of California, San Diego

Abstract—Designing an optimal power delivery network (PDN)
is a time-intensive task that involves many iterations. This paper
describes, OpeNPDN, a publicly available software that relies on
a library of predesigned, stitchable templates, and uses machine
learning (ML) to rapidly build a PDN with region-wise uniform
pitches based on these templates. The software is designed
to be used at the placement stage of a standard design flow
methodology, where an optimized PDN is synthesized using a
convolution neural network, based on current and congestion
distributions available. The neural network builds a safe-by-
construction PDN that meets static IR drop and electromigration
(EM) specifications. The optimization of the PDN improves
congestion in the design by saving thousands of routing tracks in
congestion-critical regions, when compared to a globally uniform
PDN, while staying within the IR drop and EM limits.

I. INTRODUCTION

OpeNPDN [1], is an open source, ML-based framework for
optimized PDN design. This software overcomes the expen-
sive, iterative nature of optimized PDN design by employing a
convolution neural network (CNN) to synthesize a safe-PDN.
This helps enable a no-human-in-loop, correct-by-construction
design methodology, with a 24 our turn-around-time.

In OpeNPDN, synthesis is performed based on a prede-
fined, technology-specific set of templates. These templates
are defined across multiple layers and vary in their metal
utilization in the intermediate layers. Fig. 1(a) shows three
templates that are defined across multiple user-specified layers
and differ in their metal utilization. These are specified based
on a combination of metal densities of the PDN each layer.
Templates with higher metal utilization (dense) are good for
power integrity but bad for congestion. Therefore, OpeNPDN
attempts to solve the optimization problem of using minimal
possible routing resources while still meeting stringent IR drop
and EM constraints, by using machine learning to rapidly syn-
thesize a correct PDN. OpeNPDN translates the optimization
problem into one of finding a template in every region on
the tiling of a chip. The problem is solved as a classification
problem using a trained convolutions neural network (CNN).
For example, Fig. 1(b) depicts a chip with tessellated into 4
regions and a trained CNN answers the question — “which
template goes into which region?” based on the current and
congestion estimates in the region and its neighborhood. Using
the CNN, for a specific PDK and region size, a correct-by-
construction PDN can be rapidly synthesized for any design.

In the OpenROAD flow [3], OpeNPDN is used as a tool that
optimizes a synthesized PDN by depopulating stripes based on

T1

C4 bump

4 regions 
R1 – R4 
with 
different 
PDN 
densities

R1
R2

R3
R4

(a) (b)

T2

T3

Fig. 1. (a) A set of 3 templates different PDN utilizations and (b) a template-
based PDN with piece-wise uniform pitches.

the placed design’s current and congestion estimates. Fig. 2 (a)
demonstrates how the trained model can be deployed into any
design flow at the placement stage. The trained model, takes
the following inputs:

• a placed design in standard DEF format [4]
• a per-instance-based power report from OpenSTA [5]
• a congestion report of the design

and generates the following outputs:
• a representation of the CNN-synthesized safe-PDN
• an IR drop map of the design, using the synthesized PDN
• a static IR drop report which states if the CNN-

synthesized PDN is “safe” for the design
• a congestion improvement report that provides the num-

ber of tracks saved by using the piece-wise regular,
template-based PDN when compared to a uniform PDN

In the following sections, we explain the steps to use OpeN-
PDN with details on the input and output specification for both
the training and inference flows. A detailed explanation on the
algorithms employed in OpeNPDN can be found in [2].

II. OPENPDN USER GUIDE

As a part of the The-OpenROAD-Project organization, OpeN-
PDN is publically available on GitHub [1]. An overview of the
complete OpeNPDN framework, implemented in Python3.6
using Numpy, Scipy, and TensorFlow packages, is shown in
Fig. 2. Similar to standard supervised ML algorithms, this
framework has two flows, (i) an inference flow (Fig. 2 (a))
which uses a trained CNN to rapidly synthesize PDN, for any
design, provided a set of templates, and (ii) a one-time training



2

Golden data generationMap generator
Current 
maps

User defined 
templates (Ti)

Technology 
constraints

Simulated annealer, 
GV=J solution at 

each step

IR drop 
limit
EM 

constraintCongestion 
maps

Synthesized IR- and EM-safe PDN

Template 
pruning

Current 
maps

Congestion 
maps

Golden 
PDN

Training flow

(b)

Convolution neural network (CNN)

IR- and EM-safe PDN

Placed DEF 
Cell LEF

Congestion 
map

Instance-based 
power report

Static IR 
report

Inference flow

(a)

Optimal 
templates (Ti)

Fig. 2. The OpeNPDN framework: (a) inference flow which uses a CNN to rapidly synthesizes an optimized IR- and EM-safe PDN, and (b) a one-time
technology and template specific training flow.

flow (Fig. 2 (b)) which includes the golden data generation
and CNN model training itself. OpeNPDN has the following
prerequisites:

• python 3.6
• pip 18.1
• python3-venv

OpeNPDN best runs on Red Hat Enterprise, Ubuntu or Cen-
tOS Linux distributions. Additionally, please refer to require-
ments.txt file in the repository for other dependencies. The
packages in requirements.txt will be automatically installed in
a virtual environment during build process.

A. Download and install

OpeNPDN can be downloaded and installed from the GitHub
repository using the instructions in Listing 1.

1 git clone https://github.com/The-OpenROAD-Project/
OpeNPDN.git

2 cd OpeNPDN
3 make clean
4 source install.sh
5 make build
6 make testing

Listing 1. Download and install OpeNPDN.

The install script (install.sh), shown on line 4 of Listing
1, creates a virtual python environment and installs all the
necessary packages, mentioned in the requirements.txt file,
using pip. At the build stage (line 5 of Listing 1), OpeNPDN
exposes any existing CNN checkpoints and the golden training
data necessary to train the CNN (line 6). The testing phase
(line 6) runs a set of unit tests, using pytest, to check if the
installation and build have been successful.

B. Tool Usage

As a ML-based framework, OpeNPDN has two flows (i) the
training flow, a one-time step that is performed at the beginning
for a specific technology, and (ii) the inference flow, a trained
CNN is deployed into the design flow (Fig. 2).

1 pdn specify_grid stdcell {
2 name low
3 rails metal1
4 size {100.0 100.0}
5 layers {
6 metal1 {width 0.1 pitch 2.5 offset 0}
7 metal4 {width 0.5 pitch 50.0 offset 2}
8 metal7 {width 1.5 pitch 50.0 offset 2}
9 }

10 connect {{metal1 metal4} {metal4 metal7}}
11 }
12

13 pdn specify_grid stdcell {
14 name medium
15 rails metal1
16 size {100.8 100.0}
17 layers {
18 metal1 {width 0.1 pitch 2.5 offset 0}
19 metal4 {width 0.5 pitch 25.0 offset 2}
20 metal7 {width 1.5 pitch 50.0 offset 2}
21 }
22 connect {{metal1 metal4} {metal4 metal7}}
23 }
24

25 pdn specify_grid stdcell {
26 name high
27 rails metal1
28 size {100.0 100.0}
29 layers {
30 metal1 {width 0.1 pitch 2.5 offset 0}
31 metal4 {width 0.5 pitch 12.5 offset 2}
32 metal7 {width 1.5 pitch 50.0 offset 2}
33 }
34 connect {{metal1 metal4} {metal4 metal7}}
35 }
36

37 pdn specify_grid stdcell {
38 name upperGrid
39 layers {
40 metal8 {width 1.5 pitch 10.0 offset 0}
41 metal9 {width 1.5 pitch 10.0 offset 2}
42 }
43 connect {{metal7 metal8} {metal8 metal9}}
44 }

Listing 2. PDN template definition file with three templates.

1) Training flow: The training flow requires two inputs (i)
template definition file (template definition.cfg), an example
is shown in Listing 2, and (ii) technology specific file config-



3

uration file (tech spec.json), an example is shown in Listing
3, to generate a trained, technology-specific CNN. The entire
training flow, including the template definition, golden-data
generation, and CNN-training can be run using a simple “make
train” in the shell.

1 {
2 "property": {
3 "NUM_layers": 8,
4 "TECH_layers": ["M1", "M2", "M3", "M4",
5 "M5", "M6", "M7", "M8"],
6 "VDD": 1.1,
7 "IR_DROP_LIMIT": 0.010,
8 },
9 "layers": {

10 "M1": {
11 "min_width": 0.08e-6,
12 "via_res": 5.0,
13 "res": 0.38,
14 "direction": "H",
15 "t_spacing": 0.1e-06
16 },
17 "M2": {
18 "min_width": 0.08e-06,
19 "via_res": 5.0,
20 "res": 0.25,
21 "direction": "V",
22 "t_spacing": 0.1e-06
23 },

Listing 3. Technology specification file.

PDN template set definition: PDN templates are defined by
the user in a JavaScript Object Notation (JSON) format as a
combination of different pitches in each metal layer of the
PDN, while following DRC rules for the specific technology.
A critical requirement of these templates is their stitchability,
i.e., if two templates are placed adjacent to each other, then
they should align at the edges. Therefore, it is important to
avoid choosing template pitches that are co-prime. An example
of the template definition file is shown in Listing 2.

The create template.py script in the repository builds the
corresponding resistor networks for each of these templates
and stores them as python objects in the templates directory.
These objects can be reused during inference. A template
elimination script (template elimination.py) is used to prune
any sub-optimal templates (templates which are worse for both
power integrity and congestion).
“Golden” training data generation: The script run batch.py
runs a simulated annealing (SA) engine to generate near-
optimal training data. The script spawns multiple subprocesses
in parallel based on the available compute resources. The
parameters including the number of data points, number of
parallel processes can be configured in the tool config.json
file. The SA engine produces the golden data using the sim-
ulated annealer.py script and the run batch.py script prepares
the data for training the CNN.
CNN training: The CNN is built using TensorFlow Frame-
work. Based on the compute resources available the software
supports training on either a CPU or a GPU. All the hyper
parameters that are used to train the CNN are configurable
by the user and are defined in a tool configuration file
(tool config.json). If left unchanged, the default settings are
used. The CNN is trained using the cnn train.py script.

2) Inference flow: The inference flow requires the following
inputs to synthesize a template-based PDN:

• a placed design in standard DEF format [4]
• a per-instance-based power report from OpenSTA [5]
• a congestion report of the design in the format specified

in the congestion format.txt file
• the template definition file (same as that with which the

CNN was trained)
The paths to the above inputs are specified in the Makefile. A
“make inference” command in the shell, loads the trained CNN
and the specified inputs to generate the following outputs:

• a template map which represents the name of the PDN
and its location on the chip (Fig. 3(a))

• an IR drop report (IR drop.rpt), checks if CNN-
synthesized grid meets IR drop specification (Fig. 3(b))

• an IR drop map (IR map.png), a graphic showing the IR
drop distribution (Fig. 3(c))

Fig. 3. (a) Template map, (b) IR drop report, and (c) IR drop distribution.

Fig. 3(a) shows a sample of the template map, generated
by OpeNPDN, which depicts the template id, template name
and the location of the region on the chip to which it must
be applied. Fig. 3(b) shows a sample IR drop distribution,
generated by OpeNPDN, using the CNN-synthesized PDN and
the current distribution.

III. FUTURE DIRECTIONS

In its current state, OpeNPDN is an ML-based framework
which synthesizes an optimized, correct-by-construction, static
IR-drop-safe PDN at the placement stage of the design
flow. Near-term efforts are focused on developing ML-based
methodologies for dynamic power integrity problems. We
aim to eventually integrate OpeNPDN within an end to-end
hardware design process as part of the OpenROAD project [3].
While the tool is found to provide convincing results in its
current state, continuous effort is being focused on addressing
certain limitations, involving calibration of the analyzer with
commercial tools and SRAM awareness.

IV. LICENSE

The repository [1] is under a permissive BSD-3 Clause license.

REFERENCES

[1] OpeNPDN, https://github.com/The-OpenROAD-Project/OpeNPDN
[2] V. A. Chhabria, et al., “Template-based PDN Synthesis in Floorplan and

Placement Using Classifier and CNN Techniques”, in Proc. ASPDAC
(2020), to appear.

[3] The OpenROAD Project, https://theopenroadproject.org
[4] LEF/DEF reference 5.8, http://www.si2.org/openeda.si2.org/projects/

lefdefnew
[5] OpenSTA, https://github.com/The-OpenROAD-Project/


